1
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
2
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Li Y, Tahlan K, Bignell DR. Functional Cross-Talk of MbtH-Like Proteins During Thaxtomin Biosynthesis in the Potato Common Scab Pathogen Streptomyces scabiei. Front Microbiol 2020; 11:585456. [PMID: 33178168 PMCID: PMC7593251 DOI: 10.3389/fmicb.2020.585456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Thaxtomin A is a potent phytotoxin that serves as the principle pathogenicity determinant of the common scab pathogen, Streptomyces scabiei, and is also a promising natural herbicide for agricultural applications. The biosynthesis of thaxtomin A involves the non-ribosomal peptide synthetases (NRPSs) TxtA and TxtB, and an MbtH-like protein (MLP), TxtH, which may function as a chaperone by promoting the proper folding of the two NRPS enzymes in S. scabiei. MLPs are required for the proper function of many NRPS enzymes in bacteria, and they are often capable of interacting with NRPSs from different biosynthetic pathways, though the mechanism by which this occurs is still poorly understood. To gain additional insights into MLP functional cross-talk, we conducted a broad survey of MLPs from diverse phylogenetic lineages to determine if they could functionally replace TxtH. The MLPs were assessed using a protein solubility assay to determine whether they could promote the soluble expression of the TxtA and TxtB adenylation domains. In addition, the MLPs were tested for their ability to restore thaxtomin production in a S. scabiei mutant that lacked TxtH and other endogenous MLPs. Our results showed that the MLPs investigated vary in their ability to exhibit functional cross-talk with TxtH, with two of the MLPs being unable to compensate for the loss of TxtH in the assays performed. The ability of an MLP to serve as a functional partner for the thaxtomin NRPS was not correlated with its overall amino acid similarity with TxtH, but instead with the presence of highly conserved residues. In silico structural analysis of TxtH in association with the TxtA and TxtB adenylation domains revealed that several such residues are situated at the predicted interaction interface, suggesting that they might be critical for promoting functional interactions between MLPs and the thaxtomin NRPS enzymes. Overall, our study provides additional insights into the mechanism of MLP cross-talk, and it enhances our understanding of the thaxtomin biosynthetic machinery. It is anticipated that our findings will have useful applications for both the control of common scab disease and the commercial production of thaxtomin A for agricultural use.
Collapse
|
4
|
Li Y, Liu J, Adekunle D, Bown L, Tahlan K, Bignell DR. TxtH is a key component of the thaxtomin biosynthetic machinery in the potato common scab pathogen Streptomyces scabies. MOLECULAR PLANT PATHOLOGY 2019; 20:1379-1393. [PMID: 31282068 PMCID: PMC6792134 DOI: 10.1111/mpp.12843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Streptomyces scabies causes potato common scab disease, which reduces the quality and market value of affected tubers. The predominant pathogenicity determinant produced by S. scabies is the thaxtomin A phytotoxin, which is essential for common scab disease development. Production of thaxtomin A involves the nonribosomal peptide synthetases (NRPSs) TxtA and TxtB, both of which contain an adenylation (A-) domain for selecting and activating the appropriate amino acid during thaxtomin biosynthesis. The genome of S. scabies 87.22 contains three small MbtH-like protein (MLP)-coding genes, one of which (txtH) is present in the thaxtomin biosynthesis gene cluster. MLP family members are typically required for the proper folding of NRPS A-domains and/or stimulating their activities. This study investigated the importance of TxtH during thaxtomin biosynthesis in S. scabies. Biochemical studies showed that TxtH is required for promoting the soluble expression of both the TxtA and TxtB A-domains in Escherichia coli, and amino acid residues essential for this activity were identified. Deletion of txtH in S. scabies significantly reduced thaxtomin A production, and deletion of one of the two additional MLP homologues in S. scabies completely abolished production. Engineered expression of all three S. scabies MLPs could restore thaxtomin A production in a triple MLP-deficient strain, while engineered expression of MLPs from other Streptomyces spp. could not. Furthermore, the constructed MLP mutants were reduced in virulence compared to wild-type S. scabies. The results of our study confirm that TxtH plays a key role in thaxtomin A biosynthesis and plant pathogenicity in S. scabies.
Collapse
Affiliation(s)
- Yuting Li
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Jingyu Liu
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Damilola Adekunle
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Luke Bown
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
- Present address:
Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐Champaign1206 W Gregory DriveUrbana Il61801USA
| | - Kapil Tahlan
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Dawn R.D. Bignell
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| |
Collapse
|
5
|
Lundy TA, Mori S, Garneau-Tsodikova S. Probing the limits of interrupted adenylation domains by engineering a trifunctional enzyme capable of adenylation, N-, and S-methylation. Org Biomol Chem 2019; 17:1169-1175. [PMID: 30644493 DOI: 10.1039/c8ob02996b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adenylation (A) domains found in nonribosomal peptide synthetases (NRPSs) exhibit tremendous plasticity. Some A domains have been shown to display the ability to contain within them the catalytic portion of an auxiliary domain, most commonly that of a methyltransferase (M) enzyme. This unique feature of A domains interrupted by M domains allows them to possess bifunctionality, where they can both adenylate and methylate an amino acid substrate. Additionally, these types of inserted M domains are able to selectively carry out either backbone or side chain methylation of amino acids. Interruptions with M domains are naturally found to occur either between the a2-a3 or the a8-a9 of the ten conserved motifs of A domains. Herein, we set out to answer the following question: Can one A domain support two different M domain interruptions occurring in two different locations (a2-a3 and a8-a9) of the A domain and possess the ability to adenylate an amino acid and methylate it on both its side chain and backbone? To answer this question we added a backbone methylating M3S domain from TioS(A3aM3SA3b) between the a8-a9 region of a mono-interrupted A domain, TioN(AaMNAb), that already contained a side chain methylating MN domain between its a2-a3 region. We evaluated the di-interrupted A domain TioN(AMNAM3SA) with a series of radiometric and mass spectrometry assays and found that this engineered enzyme was indeed capable of all three activities. These findings show that production of an active trifunctional di-interrupted A domain is possible and represents an exciting new avenue for future nonribosomal peptide (NRP) derivatization.
Collapse
Affiliation(s)
- Taylor A Lundy
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, Lexington, KY 40536-0596, USA.
| | | | | |
Collapse
|
6
|
An Orphan MbtH-Like Protein Interacts with Multiple Nonribosomal Peptide Synthetases in Myxococcus xanthus DK1622. J Bacteriol 2018; 200:JB.00346-18. [PMID: 30126939 DOI: 10.1128/jb.00346-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022] Open
Abstract
One mechanism by which bacteria and fungi produce bioactive natural products is the use of nonribosomal peptide synthetases (NRPSs). Many NRPSs in bacteria require members of the MbtH-like protein (MLP) superfamily for their solubility or function. Although MLPs are known to interact with the adenylation domains of NRPSs, the role MLPs play in NRPS enzymology has yet to be elucidated. MLPs are nearly always encoded within the biosynthetic gene clusters (BGCs) that also code for the NRPSs that interact with the MLP. Here, we identify 50 orphan MLPs from diverse bacteria. An orphan MLP is one that is encoded by a gene that is not directly adjacent to genes predicted to be involved in nonribosomal peptide biosynthesis. We targeted the orphan MLP MXAN_3118 from Myxococcus xanthus DK1622 for characterization. The M. xanthus DK1622 genome contains 15 NRPS-encoding BGCs but only one MLP-encoding gene (MXAN_3118). We tested the hypothesis that MXAN_3118 interacts with one or more NRPS using a combination of in vivo and in vitro assays. We determined that MXAN_3118 interacts with at least seven NRPSs from distinct BGCs. We show that one of these BGCs codes for NRPS enzymology that likely produces a valine-rich natural product that inhibits the clumping of M. xanthus DK1622 in liquid culture. MXAN_3118 is the first MLP to be identified that naturally interacts with multiple NRPS systems in a single organism. The finding of an MLP that naturally interacts with multiple NRPS systems suggests it may be harnessed as a "universal" MLP for generating functional hybrid NRPSs.IMPORTANCE MbtH-like proteins (MLPs) are essential accessory proteins for the function of many nonribosomal peptide synthetases (NRPSs). We identified 50 MLPs from diverse bacteria that are coded by genes that are not located near any NRPS-encoding biosynthetic gene clusters (BGCs). We define these as orphan MLPs because their NRPS partner(s) is unknown. Investigations into the orphan MLP from Myxococcus xanthus DK1622 determined that it interacts with NRPSs from at least seven distinct BGCs. Support for these MLP-NRPS interactions came from the use of a bacterial two-hybrid assay and copurification of the MLP with various NRPSs. The flexibility of this MLP to naturally interact with multiple NRPSs led us to hypothesize that this MLP may be used as a "universal" MLP during the construction of functional hybrid NRPSs.
Collapse
|
7
|
Mori S, Green KD, Choi R, Buchko GW, Fried MG, Garneau-Tsodikova S. Using MbtH-Like Proteins to Alter the Substrate Profile of a Nonribosomal Peptide Adenylation Enzyme. Chembiochem 2018; 19:2186-2194. [PMID: 30134012 DOI: 10.1002/cbic.201800240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/21/2018] [Indexed: 01/19/2023]
Abstract
MbtH-like proteins (MLPs) are required for soluble expression and/or optimal activity of some adenylation (A) domains of nonribosomal peptide synthetases. Because A domains can interact with noncognate MLP partners, how the function of an A domain, TioK, involved in the biosynthesis of the bisintercalator thiocoraline, is altered by noncognate MLPs has been investigated. Measuring TioK activity with 12 different MLPs from a variety of bacterial species by using a radiometric assay suggested that the A domain substrate promiscuity could be altered by foreign MLPs. Kinetic studies and bioinformatics analysis expanded the complexity of MLP functions and interactions.
Collapse
Affiliation(s)
- Shogo Mori
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone St., Lexington, KY, 40536-0596, USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone St., Lexington, KY, 40536-0596, USA
| | - Ryan Choi
- University of Washington, Center for Emerging and Re-emerging Infectious Diseases, 750 Republican St., Seattle, WA, 98109, USA.,University of Washington, Seattle Structural Genomics Center for Infectious Diseases, 307 Westlake Avenue N, Seattle, WA, 98109, USA
| | - Garry W Buchko
- University of Washington, Seattle Structural Genomics Center for Infectious Diseases, 307 Westlake Avenue N, Seattle, WA, 98109, USA.,Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, P. O. Box 999, Richmond, WA, 99352, USA.,School of Molecular Biosciences, Washington State University, P. O. Box 647520, Pullman, WA, 99164, USA
| | - Michael G Fried
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Biological Sciences Research Bldg, 741 South Limestone St., Lexington, KY, 40536-0509, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone St., Lexington, KY, 40536-0596, USA
| |
Collapse
|
8
|
Schomer RA, Park H, Barkei JJ, Thomas MG. Alanine Scanning of YbdZ, an MbtH-like Protein, Reveals Essential Residues for Functional Interactions with Its Nonribosomal Peptide Synthetase Partner EntF. Biochemistry 2018; 57:4125-4134. [PMID: 29921120 DOI: 10.1021/acs.biochem.8b00552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are megasynthetases that require complex and specific interactions between multiple domains and proteins to functionally produce a metabolite. MbtH-like proteins (MLPs) are integral components of many NRPSs and interact directly with the adenylation domain of the megasynthetases to stimulate functional enzymology. All of the MLP residues that are essential for functional interactions between the MLP and NRPS have yet to be defined. Here we probe the interactions between YbdZ, an MLP, and EntF, an NRPS, from Escherichia coli by performing a complete alanine scan of YbdZ. A phenotypic screen identified 11 YbdZ variants that are unable to replace the wild-type MLP, and these YbdZ variants were characterized using a series of in vivo and in vitro assays in an effort to explain why functional interactions with EntF were disrupted. All of the YbdZ variants enhanced the solubility of overproduced EntF, suggesting they were still capable of direct interactions with the megasynthase. Conversely, we show that EntF also influences the solubility of YbdZ and its variants. In vitro biochemical analyses of EntF function with each of the YbdZ variants found the impact that an amino acid substitution will have on NRPS function is difficult to predict, highlighting the complex interaction between these proteins.
Collapse
Affiliation(s)
- Rebecca A Schomer
- Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Hyunjun Park
- Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - John J Barkei
- Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Michael G Thomas
- Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
9
|
Solution NMR Studies of Mycobacterium tuberculosis Proteins for Antibiotic Target Discovery. Molecules 2017; 22:molecules22091447. [PMID: 28858250 PMCID: PMC6151718 DOI: 10.3390/molecules22091447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/27/2017] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis is an infectious disease caused by Mycobacteriumtuberculosis, which triggers severe pulmonary diseases. Recently, multidrug/extensively drug-resistant tuberculosis strains have emerged and continue to threaten global health. Because of the development of drug-resistant tuberculosis, there is an urgent need for novel antibiotics to treat these drug-resistant bacteria. In light of the clinical importance of M. tuberculosis, 2067 structures of M. tuberculsosis proteins have been determined. Among them, 52 structures have been solved and studied using solution nuclear magnetic resonance (NMR). The functional details based on structural analysis of M. tuberculosis using NMR can provide essential biochemical data for the development of novel antibiotic drugs. In this review, we introduce diverse structural and biochemical studies on M. tuberculosis proteins determined using NMR spectroscopy.
Collapse
|
10
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 607] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
11
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
12
|
Singh M, Chaudhary S, Sareen D. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product. J Biosci 2017; 42:175-187. [PMID: 28229977 DOI: 10.1007/s12038-017-9663-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are the major multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically important antibiotics and siderophores. Each of the multiple modules of an NRPS activates a different amino or aryl acid, followed by their condensation to synthesize a linear or cyclic natural product. The studies on NRPS domains, the knowledge of their gene cluster architecture and tailoring enzymes have helped in the in silico genetic screening of the ever-expanding sequenced microbial genomic data for the identification of novel NRPS/PKS clusters and thus deciphering novel non-ribosomal peptides (NRPs). Adenylation domain is an integral part of the NRPSs and is the substrate selecting unit for the final assembled NRP. In some cases, it also requires a small protein, the MbtH homolog, for its optimum activity. The presence of putative adenylation domain and MbtH homologs in a sequenced genome can help identify the novel secondary metabolite producers. The role of the adenylation domain in the NRPS gene clusters and its characterization as a tool for the discovery of novel cryptic NRPS gene clusters are discussed.
Collapse
Affiliation(s)
- Mangal Singh
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
13
|
Miller BR, Drake EJ, Shi C, Aldrich CC, Gulick AM. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture. J Biol Chem 2016; 291:22559-22571. [PMID: 27597544 DOI: 10.1074/jbc.m116.746297] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/26/2016] [Indexed: 11/06/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.
Collapse
Affiliation(s)
- Bradley R Miller
- From the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203.,the Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, and
| | - Eric J Drake
- From the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203.,the Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, and
| | - Ce Shi
- the Center for Drug Design and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Courtney C Aldrich
- the Center for Drug Design and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Andrew M Gulick
- From the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, .,the Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, and
| |
Collapse
|
14
|
Abstract
The nonribosomal peptide synthetases are modular enzymes that catalyze synthesis of important peptide products from a variety of standard and non-proteinogenic amino acid substrates. Within a single module are multiple catalytic domains that are responsible for incorporation of a single residue. After the amino acid is activated and covalently attached to an integrated carrier protein domain, the substrates and intermediates are delivered to neighboring catalytic domains for peptide bond formation or, in some modules, chemical modification. In the final module, the peptide is delivered to a terminal thioesterase domain that catalyzes release of the peptide product. This multi-domain modular architecture raises questions about the structural features that enable this assembly line synthesis in an efficient manner. The structures of the core component domains have been determined and demonstrate insights into the catalytic activity. More recently, multi-domain structures have been determined and are providing clues to the features of these enzyme systems that govern the functional interaction between multiple domains. This chapter describes the structures of NRPS proteins and the strategies that are being used to assist structural studies of these dynamic proteins, including careful consideration of domain boundaries for generation of truncated proteins and the use of mechanism-based inhibitors that trap interactions between the catalytic and carrier protein domains.
Collapse
|
15
|
Labby KJ, Watsula SG, Garneau-Tsodikova S. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis. Nat Prod Rep 2015; 32:641-53. [PMID: 25622971 DOI: 10.1039/c4np00120f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nonribosomal peptides (NRPs) account for a large portion of drugs and drug leads currently available in the pharmaceutical industry. They are one of two main families of natural products biosynthesized on megaenzyme assembly-lines composed of multiple modules that are, in general, each comprised of three core domains and on occasion of accompanying auxiliary domains. The core adenylation (A) domains are known to delineate the identity of the specific chemical components to be incorporated into the growing NRPs. Previously believed to be inactive, A domains interrupted by auxiliary enzymes have recently been proven to be active and capable of performing two distinct chemical reactions. This highlight summarizes current knowledge on A domains and presents the various interrupted A domains found in a number of nonribosomal peptide synthetase (NRPS) assembly-lines, their predicted or proven dual functions, and their potential for manipulation and engineering for chemoenzymatic synthesis of new pharmaceutical agents with increased potency.
Collapse
Affiliation(s)
- Kristin J Labby
- Beloit College, Department of Chemistry, 700 College Street, Beloit, WI 53511, USA
| | | | | |
Collapse
|
16
|
Buchko GW, Yee A, Semesi A, Myler PJ, Arrowsmith CH, Hui R. Solution-state NMR structure of the putative morphogene protein BolA (PFE0790c) from Plasmodium falciparum. Acta Crystallogr F Struct Biol Commun 2015; 71:514-21. [PMID: 25945703 PMCID: PMC4427159 DOI: 10.1107/s2053230x1402799x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/23/2014] [Indexed: 12/22/2022] Open
Abstract
Protozoa of the genus Plasmodium are responsible for malaria, which is perhaps the most important parasitic disease to infect mankind. The emergence of Plasmodium strains resistant to current therapeutics and prophylactics makes the development of new treatment strategies urgent. Among the potential targets for new antimalarial drugs is the BolA-like protein PFE0790c from Plasmodium falciparum (Pf-BolA). While the function of BolA is unknown, it has been linked to cell morphology by regulating transcription in response to stress. Using an NMR-based method, an ensemble of 20 structures of Pf-BolA was determined and deposited in the PDB (PDB entry 2kdn). The overall topology of the Pf-BolA structure, α1-β1-β2-η1-α2/η2-β3-α3, with the β-strands forming a mixed β-sheet, is similar to the fold observed in other BolA structures. A helix-turn-helix motif similar to the class II KH fold associated with nucleic acid-binding proteins is present, but contains an FXGXXXL signature sequence that differs from the GXXG signature sequence present in class II KH folds, suggesting that the BolA family of proteins may use a novel protein-nucleic acid interface. A well conserved arginine residue, Arg50, hypothesized to play a role in governing the formation of the C-terminal α-helix in the BolA family of proteins, is too distant to form polar contacts with any side chains in this α-helix in Pf-BolA, suggesting that this conserved arginine may only serve a role in guiding the orientation of this C-terminal helix in some BolA proteins. A survey of BolA structures suggests that the C-terminal helix may not have a functional role and that the third helix (α2/η2) has a `kink' that appears to be conserved among the BolA protein structures. Circular dichroism spectroscopy shows that Pf-BolA is fairly robust, partially unfolding when heated to 353 K and refolding upon cooling to 298 K.
Collapse
Affiliation(s)
- Garry W. Buchko
- Seattle Structural Genomics Center for Infectious Disease, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Adelinda Yee
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Semesi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle BioMed, Seattle, Washington, USA
- Department of Medical Education and Biomedical Informatics and Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Cheryl H. Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Structural Genomics Consortium, England
| | - Raymond Hui
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Structural Genomics Consortium, England
| |
Collapse
|
17
|
KtzJ-dependent serine activation and O-methylation by KtzH for kutznerides biosynthesis. J Antibiot (Tokyo) 2013; 67:59-64. [DOI: 10.1038/ja.2013.98] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 12/11/2022]
|
18
|
Royer M, Koebnik R, Marguerettaz M, Barbe V, Robin GP, Brin C, Carrere S, Gomez C, Hügelland M, Völler GH, Noëll J, Pieretti I, Rausch S, Verdier V, Poussier S, Rott P, Süssmuth RD, Cociancich S. Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides. BMC Genomics 2013; 14:658. [PMID: 24069909 PMCID: PMC3849588 DOI: 10.1186/1471-2164-14-658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 09/22/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas. RESULTS We performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv. oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. oryzae pv. oryzae strains X8-1A and X11-5A, possess novel NRPS gene clusters and share related NRPS-associated genes such as those required for the biosynthesis of non-proteinogenic amino acids or the secretion of peptides. In silico prediction of peptide structures according to NRPS architecture suggests eight different peptides, each specific to its producing strain. Interestingly, these eight peptides cannot be assigned to any known gene cluster or related to known compounds from natural product databases. PCR screening of a collection of 94 plant pathogenic bacteria indicates that these novel NRPS gene clusters are specific to the genus Xanthomonas and are also present in Xanthomonas translucens and X. oryzae pv. oryzicola. Further genome mining revealed other novel NRPS genes specific to X. oryzae pv. oryzicola or Xanthomonas sacchari. CONCLUSIONS This study revealed the significant potential of the genus Xanthomonas to produce new non-ribosomally synthesized peptides. Interestingly, this biosynthetic potential seems to be specific to strains of Xanthomonas associated with monocotyledonous plants, suggesting a putative involvement of non-ribosomally synthesized peptides in plant-bacteria interactions.
Collapse
Affiliation(s)
- Monique Royer
- CIRAD, UMR BGPI, Montpellier Cedex 5, F-34398, France
| | | | | | - Valérie Barbe
- CEA/DSV/IG/Genoscope, Centre National de Séquençage, Evry Cedex F-91057, France
| | | | | | | | - Camila Gomez
- CIRAD, UMR BGPI, Montpellier Cedex 5, F-34398, France
| | - Manuela Hügelland
- Institut für Chemie, Technische Universität Berlin, Berlin D-10623, Germany
| | - Ginka H Völler
- Institut für Chemie, Technische Universität Berlin, Berlin D-10623, Germany
| | - Julie Noëll
- CIRAD, UMR BGPI, Montpellier Cedex 5, F-34398, France
| | | | - Saskia Rausch
- Institut für Chemie, Technische Universität Berlin, Berlin D-10623, Germany
| | | | - Stéphane Poussier
- UMR PVBMT, Université de la Réunion, Saint-Denis, La Réunion F-97715, France
| | - Philippe Rott
- CIRAD, UMR BGPI, Montpellier Cedex 5, F-34398, France
| | | | | |
Collapse
|
19
|
Davidsen JM, Bartley DM, Townsend CA. Non-ribosomal propeptide precursor in nocardicin A biosynthesis predicted from adenylation domain specificity dependent on the MbtH family protein NocI. J Am Chem Soc 2013; 135:1749-59. [PMID: 23330869 DOI: 10.1021/ja307710d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nocardicin A is a monocyclic β-lactam isolated from the actinomycete Nocardia uniformis that shows moderate antibiotic activity against a broad spectrum of gram-negative bacteria. The monobactams are of renewed interest due to emerging gram-negative strains resistant to clinically available penicillins and cephalosporins. Like isopenicillin N, nocardicin A has a tripeptide core of non-ribosomal origin. Paradoxically, the nocardicin A gene cluster encodes two non-ribosomal peptide synthetases (NRPSs), NocA and NocB, predicted to encode five modules pointing to a pentapeptide precursor in nocardicin A biosynthesis, unless module skipping or other nonlinear reactions are occurring. Previous radiochemical incorporation experiments and bioinformatic analyses predict the incorporation of p-hydroxy-L-phenylglycine (L-pHPG) into positions 1, 3, and 5 and L-serine into position 4. No prediction could be made for position 2. Multidomain constructs of each module were heterologous expressed in Escherichia coli for determination of the adenylation domain (A-domain) substrate specificity using the ATP/PPi exchange assay. Three of the five A-domains, from modules 1, 2, and 4, required the addition of stoichiometric amounts of MbtH family protein NocI to detect exchange activity. On the basis of these analyses, the predicted product of the NocA and NocB NRPSs is L-pHPG-L-Arg-D-pHPG-L-Ser-L-pHPG, a pentapeptide. Despite being flanked by non-proteinogenic amino acids, proteolysis of this pentapeptide by trypsin yields two fragments from cleavage at the C terminus of the L-Arg residue. Thus, a proteolytic step is likely involved in the biosynthesis of nocardicin A, a rare but precedented editing event in the formation of non-ribosomal natural products that is supported by the identification of trypsin-encoding genes in N. uniformis.
Collapse
Affiliation(s)
- Jeanne M Davidsen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | | |
Collapse
|
20
|
Herbst DA, Boll B, Zocher G, Stehle T, Heide L. Structural basis of the interaction of MbtH-like proteins, putative regulators of nonribosomal peptide biosynthesis, with adenylating enzymes. J Biol Chem 2012. [PMID: 23192349 DOI: 10.1074/jbc.m112.420182] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The biosynthesis of nonribosomally formed peptides (NRPs), which include important antibiotics such as vancomycin, requires the activation of amino acids through adenylate formation. The biosynthetic gene clusters of NRPs frequently contain genes for small, so-called MbtH-like proteins. Recently, it was discovered that these MbtH-like proteins are required for some of the adenylation reactions in NRP biosynthesis, but the mechanism of their interaction with the adenylating enzymes has remained unknown. In this study, we determined the structure of SlgN1, a 3-methylaspartate-adenylating enzyme involved in the biosynthesis of the hybrid polyketide/NRP antibiotic streptolydigin. SlgN1 contains an MbtH-like domain at its N terminus, and our analysis defines the parameters required for an interaction between MbtH-like domains and an adenylating enzyme. Highly conserved tryptophan residues of the MbtH-like domain critically contribute to this interaction. Trp-25 and Trp-35 form a cleft on the surface of the MbtH-like domain, which accommodates the alanine side chain of Ala-433 of the adenylating domain. Mutation of Ala-433 to glutamate abolished the activity of SlgN1. Mutation of Ser-23 of the MbtH-like domain to tyrosine resulted in strongly reduced activity. However, the activity of this S23Y mutant could be completely restored by addition of the intact MbtH-like protein CloY from another organism. This suggests that the interface found in the structure of SlgN1 is the genuine interface between MbtH-like proteins and adenylating enzymes.
Collapse
Affiliation(s)
- Dominik A Herbst
- Interfakultäres Institut für Biochemie, Eberhard Karls-Universität Tübingen, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
21
|
Hur GH, Vickery CR, Burkart MD. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 2012; 29:1074-98. [PMID: 22802156 DOI: 10.1039/c2np20025b] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many pharmaceuticals on the market today belong to a large class of natural products called nonribosomal peptides (NRPs). Originating from bacteria and fungi, these peptide-based natural products consist not only of the 20 canonical L-amino acids, but also non-proteinogenic amino acids, heterocyclic rings, sugars, and fatty acids, generating tremendous chemical diversity. As a result, these secondary metabolites exhibit a broad array of bioactivity, ranging from antimicrobial to anticancer. The biosynthesis of these complex compounds is carried out by large multimodular megaenzymes called nonribosomal peptide synthetases (NRPSs). Each module is responsible for incorporation of a monomeric unit into the natural product peptide and is composed of individual domains that perform different catalytic reactions. Biochemical and bioinformatic investigations of these enzymes have uncovered the key principles of NRP synthesis, expanding the pharmaceutical potential of their enzymatic processes. Progress has been made in the manipulation of this biosynthetic machinery to develop new chemoenzymatic approaches for synthesizing novel pharmaceutical agents with increased potency. This review focuses on the recent discoveries and breakthroughs in the structural elucidation, molecular mechanism, and chemical biology underlying the discrete domains within NRPSs.
Collapse
|
22
|
Zolova OE, Garneau-Tsodikova S. Importance of the MbtH-like protein TioT for production and activation of the thiocoraline adenylation domain of TioK. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20131c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Boll B, Taubitz T, Heide L. Role of MbtH-like proteins in the adenylation of tyrosine during aminocoumarin and vancomycin biosynthesis. J Biol Chem 2011; 286:36281-90. [PMID: 21890635 PMCID: PMC3196098 DOI: 10.1074/jbc.m111.288092] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/01/2011] [Indexed: 11/06/2022] Open
Abstract
MbtH-like proteins consist of ∼70 amino acids and are encoded in the biosynthetic gene clusters of non-ribosomally formed peptides and other secondary metabolites derived from amino acids. Recently, several MbtH-like proteins have been shown to be required for the adenylation of amino acid in non-ribosomal peptide synthesis. We now investigated the role of MbtH-like proteins in the biosynthesis of the aminocoumarin antibiotics novobiocin, clorobiocin, and simocyclinone D8 and of the glycopeptide antibiotic vancomycin. The tyrosine-adenylating enzymes CloH, SimH, and Pcza361.18, involved in the biosynthesis of clorobiocin, simocyclinone D8, and vancomycin, respectively, required the presence of MbtH-like proteins in a 1:1 molar ratio, forming heterotetrameric complexes. In contrast, NovH, involved in novobiocin biosynthesis, showed activity in the absence of MbtH-like proteins. Comparison of the active centers of CloH and NovH showed only one amino acid to be different, i.e. Leu-383 versus Met-383. Mutation of this amino acid in CloH (L383M) indeed led to MbtH-independent adenylating activity. All investigated tyrosine-adenylating enzymes exhibited remarkable promiscuity for MbtH-like proteins from different pathways and organisms. YbdZ, the MbtH-like protein from the expression host Escherichia coli, was found to bind to adenylating enzymes during expression and to influence their biochemical properties markedly. Therefore, the use of ybdZ-deficient expression hosts is important in biochemical studies of adenylating enzymes.
Collapse
Affiliation(s)
- Björn Boll
- From the Pharmazeutisches Institut, Universität Tübingen, 72076 Tübingen, Germany
| | - Tatjana Taubitz
- From the Pharmazeutisches Institut, Universität Tübingen, 72076 Tübingen, Germany
| | - Lutz Heide
- From the Pharmazeutisches Institut, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Stacy R, Begley DW, Phan I, Staker BL, Van Voorhis WC, Varani G, Buchko GW, Stewart LJ, Myler PJ. Structural genomics of infectious disease drug targets: the SSGCID. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:979-84. [PMID: 21904037 PMCID: PMC3169389 DOI: 10.1107/s1744309111029204] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/19/2011] [Indexed: 11/29/2022]
Abstract
The Seattle Structural Genomics Center for Infectious Disease (SSGCID) is a consortium of researchers at Seattle BioMed, Emerald BioStructures, the University of Washington and Pacific Northwest National Laboratory that was established to apply structural genomics approaches to drug targets from infectious disease organisms. The SSGCID is currently funded over a five-year period by the National Institute of Allergy and Infectious Diseases (NIAID) to determine the three-dimensional structures of 400 proteins from a variety of Category A, B and C pathogens. Target selection engages the infectious disease research and drug-therapy communities to identify drug targets, essential enzymes, virulence factors and vaccine candidates of biomedical relevance to combat infectious diseases. The protein-expression systems, purified proteins, ligand screens and three-dimensional structures produced by SSGCID constitute a valuable resource for drug-discovery research, all of which is made freely available to the greater scientific community. This issue of Acta Crystallographica Section F, entirely devoted to the work of the SSGCID, covers the details of the high-throughput pipeline and presents a series of structures from a broad array of pathogenic organisms. Here, a background is provided on the structural genomics of infectious disease, the essential components of the SSGCID pipeline are discussed and a survey of progress to date is presented.
Collapse
Affiliation(s)
- Robin Stacy
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109-5219, USA
| | - Darren W. Begley
- Seattle Structural Genomics Center for Infectious Disease, USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Isabelle Phan
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109-5219, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Box 357185, Seattle, WA 98195, USA
| | - Gabriele Varani
- Seattle Structural Genomics Center for Infectious Disease, USA
- Departments of Chemistry and Biochemistry, University of Washington, Box 351700, Seattle, WA 98185, USA
| | - Garry W. Buchko
- Seattle Structural Genomics Center for Infectious Disease, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Lance J. Stewart
- Seattle Structural Genomics Center for Infectious Disease, USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109-5219, USA
- Departments of Global Health and Medical Education and Biomedical Informatics, University of Washington, Box 357238, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery. J Ind Microbiol Biotechnol 2011; 38:1747-60. [PMID: 21826462 DOI: 10.1007/s10295-011-1022-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
Abstract
Mycobacterium tuberculosis encodes mycobactin, a peptide siderophore that is biosynthesized by a nonribosomal peptide synthetase (NRPS) mechanism. Within the mycobactin biosynthetic gene cluster is a gene that encodes a 71-amino-acid protein MbtH. Many other NRPS gene clusters harbor mbtH homologs, and recent genetic, biochemical, and structural studies have begun to shed light on the function(s) of these proteins. In some cases, MbtH-like proteins are required for biosynthesis of their cognate peptides, and non-cognate MbtH-like proteins have been shown to be partially complementary. Biochemical studies revealed that certain MbtH-like proteins participate in tight binding to NRPS proteins containing adenylation (A) domains where they stimulate adenylation reactions. Expression of MbtH-like proteins is important for a number of applications, including optimal production of native and genetically engineered secondary metabolites produced by mechanisms that employ NRPS enzymes. They also may serve as beacons to identify gifted actinomycetes and possibly other bacteria that encode multiple functional NRPS pathways for discovery of novel secondary metabolites by genome mining.
Collapse
|
26
|
Buchko GW, Phan I, Myler PJ, Terwilliger TC, Kim CY. Inaugural structure from the DUF3349 superfamily of proteins, Mycobacterium tuberculosis Rv0543c. Arch Biochem Biophys 2010; 506:150-6. [PMID: 21144816 DOI: 10.1016/j.abb.2010.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/28/2022]
Abstract
The first structure for a member of the DUF3349 (PF11829) family of proteins, Rv0543c from Mycobacterium tuberculosis, has been determined using NMR-based methods and some of its biophysical properties characterized. Rv0543c is a 100 residue, 11.3 kDa protein that both size exclusion chromatography and NMR spectroscopy show to be a monomer in solution. The structure of the protein consists of a bundle of five α-helices, α1 (M1-Y16), α2 (P21-C33), α3 (S37-G52), α4 (G58-H65) and α5 (S72-G87), held together by a largely conserved group of hydrophobic amino acid side chains. Heteronuclear steady-state {¹H}-¹⁵N NOE, T₁, and T₂ values are similar through-out the sequence indicating that the backbones of the five helices are in a single motional regime. The thermal stability of Rv0543c, characterized by circular dichroism spectroscopy, indicates that Rv0543c irreversibly unfolds upon heating with an estimated melting temperature of 62.5 °C. While the biological function of Rv0543c is still unknown, the presence of DUF3349 proteins predominantly in Mycobacterium and Rhodococcus bacterial species suggests that Rv0543 may have a biological function unique to these bacteria, and consequently, may prove to be an attractive drug target to combat tuberculosis.
Collapse
Affiliation(s)
- Garry W Buchko
- Biological Sciences Division and Seattle Structural Genomics Center for Infectious Disease, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | |
Collapse
|
27
|
Felnagle EA, Barkei JJ, Park H, Podevels AM, McMahon MD, Drott DW, Thomas MG. MbtH-like proteins as integral components of bacterial nonribosomal peptide synthetases. Biochemistry 2010; 49:8815-7. [PMID: 20845982 DOI: 10.1021/bi1012854] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The biosynthesis of many natural products of clinical interest involves large, multidomain enzymes called nonribosomal peptide synthetases (NRPSs). In bacteria, many of the gene clusters coding for NRPSs also code for a member of the MbtH-like protein superfamily, which are small proteins of unknown function. Using MbtH-like proteins from three separate NRPS systems, we show that these proteins copurify with the NRPSs and influence amino acid activation. As a consequence, MbtH-like proteins are integral components of NRPSs.
Collapse
Affiliation(s)
- Elizabeth A Felnagle
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|