1
|
Wan X, Wang X, Xiao Q. Comparative Metabolomic Analysis of the Nutrient Composition of Different Varieties of Sweet Potato. Molecules 2024; 29:5395. [PMID: 39598785 PMCID: PMC11597878 DOI: 10.3390/molecules29225395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Sweet potatoes are rich in amino acids, organic acids, and lipids, offering exceptional nutritional value. To accurately select varieties with higher nutritional value, we employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze the metabolic profiles of three types of sweet potatoes (white sweet potato flesh, BS; orange sweet potato flesh, CS; and purple sweet potato flesh, ZS). When comparing CS vs. BS, ZS vs. BS, and ZS vs. CS, we found differences in 527 types of amino acids and their derivatives, 556 kinds of organic acids, and 39 types of lipids. After excluding the derivatives, we found 6 amino acids essential for humans across the three sweet potatoes, with 1 amino acid, 11 organic acids, and 2 lipids being detected for the first time. CS had a higher content of essential amino acids, while ZS had a lower content. Succinic acid served as a characteristic metabolite for ZS, helping to distinguish it from the other two varieties. These findings provide a theoretical basis for assessing the nutritional value of sweet potatoes and setting breeding targets while facilitating the selection of optimal varieties for food processing, medicine, and plant breeding.
Collapse
Affiliation(s)
| | | | - Qiang Xiao
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (X.W.); (X.W.)
| |
Collapse
|
2
|
Paliwal D, Thom M, Hussein A, Ravishankar D, Wilkes A, Charleston B, Jones IM. Towards Reverse Vaccinology for Bovine TB: High Throughput Expression of Full Length Recombinant Mycobacterium bovis Proteins. Front Mol Biosci 2022; 9:889667. [PMID: 36032666 PMCID: PMC9402895 DOI: 10.3389/fmolb.2022.889667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis caused by Mycobacterium bovis, is a significant global pathogen causing economic loss in livestock and zoonotic TB in man. Several vaccine approaches are in development including reverse vaccinology which uses an unbiased approach to select open reading frames (ORF) of potential vaccine candidates, produce them as recombinant proteins and assesses their immunogenicity by direct immunization. To provide feasibility data for this approach we have cloned and expressed 123 ORFs from the M. bovis genome, using a mixture of E. coli and insect cell expression. We used a concatenated open reading frames design to reduce the number of clones required and single chain fusion proteins for protein pairs known to interact, such as the members of the PPE-PE family. Over 60% of clones showed soluble expression in one or the other host and most allowed rapid purification of the tagged bTB protein from the host cell background. The catalogue of recombinant proteins represents a resource that may be suitable for test immunisations in the development of an effective bTB vaccine.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Areej Hussein
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Alex Wilkes
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- *Correspondence: Ian M. Jones,
| |
Collapse
|
3
|
Sunita, Singh Y, Beamer G, Sun X, Shukla P. Recent developments in systems biology and genetic engineering toward design of vaccines for TB. Crit Rev Biotechnol 2022; 42:532-547. [PMID: 34641752 PMCID: PMC11208086 DOI: 10.1080/07388551.2021.1951649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Tuberculosis (TB) is one of the most prevalent diseases worldwide. The currently available Bacillus Calmette-Guérin vaccine is not sufficient in protecting against pulmonary TB. Although many vaccines have been evaluated in clinical trials, but none of them yet has proven to be more successful. Thus, new strategies are urgently needed to design more effective TB vaccines. The emergence of new technologies will undoubtedly accelerate the process of vaccine development. This review summarizes the potential and validated applications of emerging technologies, including: systems biology (genomics, proteomics, and transcriptomics), genetic engineering, and other computational tools to discover and develop novel vaccines against TB. It also discussed that the significant implementation of these approaches will play crucial roles in the development of novel vaccines to cure and control TB.
Collapse
Affiliation(s)
- Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Tufts University, North Grafton, MA, USA
| | - Xingmin Sun
- Department of Molecular Medicine, College of Medicine (COM), University of South Florida, Tampa, FL, USA
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Structure-function characterization of the mono- and diheme forms of MhuD, a noncanonical heme oxygenase from Mycobacterium tuberculosis. J Biol Chem 2021; 298:101475. [PMID: 34883099 PMCID: PMC8801480 DOI: 10.1016/j.jbc.2021.101475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022] Open
Abstract
MhuD is a noncanonical heme oxygenase (HO) from Mycobacterium tuberculosis (Mtb) that catalyzes unique heme degradation chemistry distinct from canonical HOs, generating mycobilin products without releasing carbon monoxide. Its crucial role in the Mtb heme uptake pathway has identified MhuD as an auspicious drug target. MhuD is capable of binding either one or two hemes within a single active site, but only the monoheme form was previously reported to be enzymatically active. Here we employed resonance Raman (rR) spectroscopy to examine several factors proposed to impact the reactivity of mono- and diheme MhuD, including heme ruffling, heme pocket hydrophobicity, and amino acid–heme interactions. We determined that the distal heme in the diheme MhuD active site has negligible effects on both the planarity of the His-coordinated heme macrocycle and the strength of the Fe-NHis linkage relative to the monoheme form. Our rR studies using isotopically labeled hemes unveiled unexpected biomolecular dynamics for the process of heme binding that converts MhuD from mono- to diheme form, where the second incoming heme replaces the first as the His75-coordinated heme. Ferrous CO-ligated diheme MhuD was found to exhibit multiple Fe-C-O conformers, one of which contains catalytically predisposed H-bonding interactions with the distal Asn7 residue identical to those in the monoheme form, implying that it is also enzymatically active. This was substantiated by activity assays and MS product analysis that confirmed the diheme form also degrades heme to mycobilins, redefining MhuD’s functional paradigm and further expanding our understanding of its role in Mtb physiology.
Collapse
|
5
|
Black KA, Duan L, Mandyoli L, Selbach BP, Xu W, Ehrt S, Sacchettini JC, Rhee KY. Metabolic bifunctionality of Rv0812 couples folate and peptidoglycan biosynthesis in Mycobacterium tuberculosis. J Exp Med 2021; 218:212052. [PMID: 33950161 PMCID: PMC8105722 DOI: 10.1084/jem.20191957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 11/04/2022] Open
Abstract
Comparative sequence analysis has enabled the annotation of millions of genes from organisms across the evolutionary tree. However, this approach has inherently biased the annotation of phylogenetically ubiquitous, rather than species-specific, functions. The ecologically unusual pathogen Mycobacterium tuberculosis (Mtb) has evolved in humans as its sole reservoir and emerged as the leading bacterial cause of death worldwide. However, the physiological factors that define Mtb’s pathogenicity are poorly understood. Here, we report the structure and function of a protein that is required for optimal in vitro fitness and bears homology to two distinct enzymes, Rv0812. Despite diversification of related orthologues into biochemically distinct enzyme families, rv0812 encodes a single active site with aminodeoxychorismate lyase and D–amino acid transaminase activities. The mutual exclusivity of substrate occupancy in this active site mediates coupling between nucleic acid and cell wall biosynthesis, prioritizing PABA over D-Ala/D-Glu biosynthesis. This bifunctionality reveals a novel, enzymatically encoded fail-safe mechanism that may help Mtb and other bacteria couple replication and division.
Collapse
Affiliation(s)
| | - Lijun Duan
- Texas A&M University, College Station, TX
| | | | | | | | | | | | | |
Collapse
|
6
|
Lara J, Diacovich L, Trajtenberg F, Larrieux N, Malchiodi EL, Fernández MM, Gago G, Gramajo H, Buschiazzo A. Mycobacterium tuberculosis FasR senses long fatty acyl-CoA through a tunnel and a hydrophobic transmission spine. Nat Commun 2020; 11:3703. [PMID: 32710080 PMCID: PMC7382501 DOI: 10.1038/s41467-020-17504-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium tuberculosis is a pathogen with a unique cell envelope including very long fatty acids, implicated in bacterial resistance and host immune modulation. FasR is a TetR-like transcriptional activator that plays a central role in sensing mycobacterial long-chain fatty acids and regulating lipid biosynthesis. Here we disclose crystal structures of M. tuberculosis FasR in complex with acyl effector ligands and with DNA, uncovering its molecular sensory and switching mechanisms. A long tunnel traverses the entire effector-binding domain, enabling long fatty acyl effectors to bind. Only when the tunnel is entirely occupied, the protein dimer adopts a rigid configuration with its DNA-binding domains in an open state, leading to DNA dissociation. The protein-folding hydrophobic core connects the two domains, and is completed into a continuous spine when the effector binds. Such a transmission spine is conserved in a large number of TetR-like regulators, offering insight into effector-triggered allosteric functional control. FasR is a TetR-like transcriptional activator that plays a central role in sensing mycobacterial long-chain fatty acids and regulating lipid biosynthesis in Mycobacterium tuberculosis. Here authors present crystal structures of M. tuberculosis FasR in complex with acyl effector ligands and with DNA, uncovering its molecular sensory and switching mechanisms.
Collapse
Affiliation(s)
- Julia Lara
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Lautaro Diacovich
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Rosario, 2000, Argentina
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, 11400, Uruguay
| | - Nicole Larrieux
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, 11400, Uruguay
| | - Emilio L Malchiodi
- Instituto de Estudios de la Inmunidad Humoral (IDEHU/CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, 1113, Argentina
| | - Marisa M Fernández
- Instituto de Estudios de la Inmunidad Humoral (IDEHU/CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, 1113, Argentina
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, 11400, Uruguay. .,Integrative Microbiology of Zoonotic Agents, International Joint Research Unit, Department of Microbiology, Institut Pasteur, Paris, 75724, Cedex 15, France.
| |
Collapse
|
7
|
Evaluation of in silico designed inhibitors targeting MelF (Rv1936) against Mycobacterium marinum within macrophages. Sci Rep 2019; 9:10084. [PMID: 31300732 PMCID: PMC6626058 DOI: 10.1038/s41598-019-46295-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/10/2019] [Indexed: 11/09/2022] Open
Abstract
We recently identified inhibitors targeting Mycobacterium marinum MelF (Rv1936) by in silico analysis, which exhibited bacteriostatic/bactericidal activity against M. marinum and M. tuberculosis in vitro. Herein, we evaluated the effect of best four inhibitors (# 5175552, # 6513745, # 5255829, # 9125618) obtained from the ChemBridge compound libraries, on intracellular replication and persistence of bacteria within IFN-γ activated murine RAW264.7 and human THP-1 macrophages infected with M. marinum. Inhibitors # 5175552 and # 6513745 significantly reduced (p < 0.05) the intracellular replication of bacilli during day 7 post-infection (p.i.) within RAW264.7 and THP-1 macrophages infected at multiplicity of infection (MOI) of ~1.0. These observations were substantiated by electron microscopy, which revealed the protective effect of # 5175552 in clearing the bacilli inside murine macrophages. Strikingly, # 6513745 displayed synergism with isoniazid against M. marinum in murine macrophages, whereas # 5175552 significantly suppressed (p < 0.05) the persistent bacilli during day 10–14 p.i. in infected RAW264.7 and THP-1 macrophages (MOI of ~ 0.1). Moreover, # 5175552 and # 6513745 were non-cytotoxic to host macrophages at both 1X and 5X MIC. Further validation of these inhibitors against M. tuberculosis-infected macrophages and animal models has potential for development as novel anti-tubercular agents.
Collapse
|
8
|
Mehta PK, Dharra R, Kulharia M. Could mycobacterial MelF protein (Rv1936) be used as a potential drug target? Future Microbiol 2018; 13:1211-1214. [PMID: 30238773 DOI: 10.2217/fmb-2018-0168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Promod K Mehta
- Center for Biotechnology, Maharshi Dayanand University, Rohtak-124001, India
| | - Renu Dharra
- Center for Biotechnology, Maharshi Dayanand University, Rohtak-124001, India
| | - Mahesh Kulharia
- School of Basic & Applied Science, Central University of Punjab, Bathinda-151001, India
| |
Collapse
|
9
|
Tatum NJ, Liebeschuetz JW, Cole JC, Frita R, Herledan A, Baulard AR, Willand N, Pohl E. New active leads for tuberculosis booster drugs by structure-based drug discovery. Org Biomol Chem 2018; 15:10245-10255. [PMID: 29182187 DOI: 10.1039/c7ob00910k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The transcriptional repressor EthR from Mycobacterium tuberculosis, a member of the TetR family of prokaryotic homo-dimeric transcription factors, controls the expression of the mycobacterial mono-oxygenase EthA. EthA is responsible for the bio-activation of the second-line tuberculosis pro-drug ethionamide, and consequently EthR inhibitors boost drug efficacy. Here, we present a comprehensive in silico structure-based screening protocol that led to the identification of a number of novel scaffolds of EthR inhibitors in subsequent biophysical screening by thermal shift assay. Growth inhibition assays demonstrated that five of the twenty biophysical hits were capable of boosting ethionamide activity in vitro, with the best novel scaffold displaying an EC50 of 34 μM. In addition, the co-crystal structures of EthR with four new ligands at resolution ranging from 2.1 to 1.4 Å confirm the binding and inactivation mode, and will enable future lead development.
Collapse
Affiliation(s)
- Natalie J Tatum
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dharra R, Talwar S, Singh Y, Gupta R, Cirillo JD, Pandey AK, Kulharia M, Mehta PK. Rational design of drug-like compounds targeting Mycobacterium marinum MelF protein. PLoS One 2017; 12:e0183060. [PMID: 28873466 PMCID: PMC5584760 DOI: 10.1371/journal.pone.0183060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/28/2017] [Indexed: 11/19/2022] Open
Abstract
The mycobacterial mel2 locus (mycobacterial enhanced infection locus, Rv1936-1941) is Mycobacterium marinum and M. tuberculosis specific, which can withstand reactive oxygen species (ROS) and reactive nitrogen species (RNS) induced stress. A library of over a million compounds was screened using in silico virtual ligand screening (VLS) to identify inhibitors against the modeled structure of MelF protein expressed by melF of mel2 locus so that M. marinum’s ability to withstand ROS/RNS stress could be reduced. The top ranked 1000 compounds were further screened to identify 178 compounds to maximize the scaffold diversity by manually evaluating the interaction of each compound with the target site. M. marinum melF was cloned, expressed and purified as maltose binding protein (MBP)-tagged recombinant protein in Escherichia coli. After establishing the flavin dependent oxidoreductase activity of MelF (~ 84 kDa), the inhibitors were screened for the inhibition of enzyme activity of whole cell lysate (WCL) and the purified MelF. Amongst these, 16 compounds could significantly inhibit the enzyme activity of purified MelF. For the six best inhibitory compounds, the minimal inhibitory concentration (MIC) was determined to be 3.4–19.4 μM and 13.5–38.8 μM for M. marinum and M. tuberculosis, respectively. Similarly, the minimal bactericidal concentration (MBC) was determined to be 6.8–38.8 μM and 27–38.8 μM against M. marinum and M. tuberculosis, respectively. One compound each in combination with isoniazid (INH) also showed synergistic inhibitory effect against M. marinum and M. tuberculosis with no cytotoxicity in HeLa cells. Interestingly, these inhibitors did not display any non-specific protein-structure destabilizing effect. Such inhibitors targeting the anti-ROS/RNS machinery may facilitate the efficient killing of replicating and nonreplicating mycobacteria inside the host cells.
Collapse
Affiliation(s)
- Renu Dharra
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, India
| | - Sakshi Talwar
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Yogesh Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Jeffrey D. Cirillo
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Amit K. Pandey
- Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Mahesh Kulharia
- School of Basic and Applied Science, Central University of Punjab, Bathinda, India
- * E-mail: (MK); (PKM)
| | - Promod K. Mehta
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak, India
- * E-mail: (MK); (PKM)
| |
Collapse
|
11
|
Singh A, Varshney U, Vijayan M. Structure of the second Single Stranded DNA Binding protein (SSBb) from Mycobacterium smegmatis. J Struct Biol 2016; 196:448-454. [DOI: 10.1016/j.jsb.2016.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 10/21/2022]
|
12
|
Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett 2016; 27:370-386. [PMID: 28017531 DOI: 10.1016/j.bmcl.2016.11.084] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/16/2016] [Accepted: 11/27/2016] [Indexed: 01/09/2023]
Abstract
Modern chemotherapy has significantly improved patient outcomes against drug-sensitive tuberculosis. However, the rapid emergence of drug-resistant tuberculosis, together with the bacterium's ability to persist and remain latent present a major public health challenge. To overcome this problem, research into novel anti-tuberculosis targets and drug candidates is thus of paramount importance. This review article provides an overview of tuberculosis highlighting the recent advances and tools that are employed in the field of anti-tuberculosis drug discovery. The predominant focus is on anti-tuberculosis agents that are currently in the pipeline, i.e. clinical trials.
Collapse
|
13
|
Lienhardt C, Kraigsley AM, Sizemore CF. Driving the Way to Tuberculosis Elimination: The Essential Role of Fundamental Research. Clin Infect Dis 2016; 63:370-5. [PMID: 27270671 DOI: 10.1093/cid/ciw250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/14/2016] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis has impacted human health for millennia. The World Health Organization estimated that, in 2014, 9.6 million people developed tuberculosis and 1.5 million people died from the disease. In May 2014, the World Health Assembly endorsed the new "End TB Strategy" that presents a pathway to tuberculosis elimination. The strategy outlines 3 areas of emphasis, one of which is intensified research and innovation. In this article we highlight the essential role for fundamental tuberculosis research in the future of tuberculosis diagnostics, treatment, and prevention. To maximize the impact of fundamental research, we must foster collaboration among all stakeholders engaged in tuberculosis research and control to facilitate open dialogue to assure that critical gaps in outcome-oriented science are identified and addressed. We present here a framework for future discussions among scientists, physicians, research and development specialists, and public health managers for the reinforcement of national and international strategies toward tuberculosis elimination.
Collapse
Affiliation(s)
- Christian Lienhardt
- Global Tuberculosis Programme, World Health Organization, Geneva, Switzerland
| | - Alison M Kraigsley
- American Association for the Advancement of Science, Washington D.C. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christine F Sizemore
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Singh A, Bhagavat R, Vijayan M, Chandra N. A comparative analysis of the DNA recombination repair pathway in mycobacterial genomes. Tuberculosis (Edinb) 2016; 99:109-119. [PMID: 27450012 DOI: 10.1016/j.tube.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
In prokaryotes, repair by homologous recombination provides a major means to reinstate the genetic information lost in DNA damage. Recombination repair pathway in mycobacteria has multiple differences as compared to that in Escherichia coli. Of about 20 proteins known to be involved in the pathway, a set of 9 proteins, namely, RecF, RecO, RecR, RecA, SSBa, RuvA, RuvB and RuvC was found to be indispensable among the 43 mycobacterial strains. A domain level analysis indicated that most domains involved in recombination repair are unique to these proteins and are present as single copies in the genomes. Synteny analysis reveals that the gene order of proteins involved in the pathway is not conserved, suggesting that they may be regulated differently in different species. Sequence conservation among the same protein from different strains suggests the importance of RecO-RecA and RecFOR-RecA presynaptic pathways in the repair of double strand-breaks and single strand-breaks respectively. New annotations obtained from the analysis, include identification of a protein with a probable Holliday junction binding role present in 41 mycobacterial genomes and that of a RecB-like nuclease, containing a cas4 domain, present in 42 genomes. New insights into the binding of small molecules to the relevant proteins are provided by binding pocket analysis using three dimensional structural models. Analysis of the various features of the recombination repair pathway, presented here, is likely to provide a framework for further exploring stress response and emergence of drug resistance in mycobacteria.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Raghu Bhagavat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India.
| |
Collapse
|
15
|
The impact of structural genomics: the first quindecennial. ACTA ACUST UNITED AC 2016; 17:1-16. [PMID: 26935210 DOI: 10.1007/s10969-016-9201-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022]
Abstract
The period 2000-2015 brought the advent of high-throughput approaches to protein structure determination. With the overall funding on the order of $2 billion (in 2010 dollars), the structural genomics (SG) consortia established worldwide have developed pipelines for target selection, protein production, sample preparation, crystallization, and structure determination by X-ray crystallography and NMR. These efforts resulted in the determination of over 13,500 protein structures, mostly from unique protein families, and increased the structural coverage of the expanding protein universe. SG programs contributed over 4400 publications to the scientific literature. The NIH-funded Protein Structure Initiatives alone have produced over 2000 scientific publications, which to date have attracted more than 93,000 citations. Software and database developments that were necessary to handle high-throughput structure determination workflows have led to structures of better quality and improved integrity of the associated data. Organized and accessible data have a positive impact on the reproducibility of scientific experiments. Most of the experimental data generated by the SG centers are freely available to the community and has been utilized by scientists in various fields of research. SG projects have created, improved, streamlined, and validated many protocols for protein production and crystallization, data collection, and functional analysis, significantly benefiting biological and biomedical research.
Collapse
|
16
|
Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW, Fox D, Dieterich SH, Staker BL, Gardberg AS, Choi R, Hewitt SN, Napuli AJ, Myers J, Barrett LK, Zhang Y, Ferrell M, Mundt E, Thompkins K, Tran N, Lyons-Abbott S, Abramov A, Sekar A, Serbzhinskiy D, Lorimer D, Buchko GW, Stacy R, Stewart LJ, Edwards TE, Van Voorhis WC, Myler PJ. Increasing the structural coverage of tuberculosis drug targets. Tuberculosis (Edinb) 2014; 95:142-8. [PMID: 25613812 DOI: 10.1016/j.tube.2014.12.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/10/2014] [Indexed: 01/31/2023]
Abstract
High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus "homolog-rescue" strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Cα RMSD <1 Å, >85% side chain identity, and ≥80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases.
Collapse
Affiliation(s)
- Loren Baugh
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Isabelle Phan
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Darren W Begley
- Seattle Structural Genomics Center for Infectious Disease, United States; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - Matthew C Clifton
- Seattle Structural Genomics Center for Infectious Disease, United States; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - Brianna Armour
- Seattle Structural Genomics Center for Infectious Disease, United States; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease, United States; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - Brandy M Taylor
- Seattle Structural Genomics Center for Infectious Disease, United States; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - Marvin M Muruthi
- Seattle Structural Genomics Center for Infectious Disease, United States; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, United States; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - James W Fairman
- Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - David Fox
- Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - Shellie H Dieterich
- Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Anna S Gardberg
- Seattle Structural Genomics Center for Infectious Disease, United States; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States; EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA 01821, United States
| | - Ryan Choi
- Seattle Structural Genomics Center for Infectious Disease, United States; Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, 750 Republican Street, E-701, Box 358061, Seattle, WA 98109, United States
| | - Stephen N Hewitt
- Seattle Structural Genomics Center for Infectious Disease, United States; Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, 750 Republican Street, E-701, Box 358061, Seattle, WA 98109, United States
| | - Alberto J Napuli
- Seattle Structural Genomics Center for Infectious Disease, United States; Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, 750 Republican Street, E-701, Box 358061, Seattle, WA 98109, United States
| | - Janette Myers
- Seattle Structural Genomics Center for Infectious Disease, United States; Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, 750 Republican Street, E-701, Box 358061, Seattle, WA 98109, United States
| | - Lynn K Barrett
- Seattle Structural Genomics Center for Infectious Disease, United States; Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, 750 Republican Street, E-701, Box 358061, Seattle, WA 98109, United States
| | - Yang Zhang
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Micah Ferrell
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Elizabeth Mundt
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Katie Thompkins
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Ngoc Tran
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Sally Lyons-Abbott
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Ariel Abramov
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Aarthi Sekar
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Dmitri Serbzhinskiy
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Don Lorimer
- Seattle Structural Genomics Center for Infectious Disease, United States; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - Garry W Buchko
- Seattle Structural Genomics Center for Infectious Disease, United States; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Robin Stacy
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States
| | - Lance J Stewart
- Seattle Structural Genomics Center for Infectious Disease, United States; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States; Institute for Protein Design, University of Washington, Box 357350, Seattle, WA 98195, United States
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease, United States; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, United States
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, United States; Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, 750 Republican Street, E-701, Box 358061, Seattle, WA 98109, United States; Department of Global Health, University of Washington, Box 359931, Seattle, WA, 98195, United States; Department of Microbiology, University of Washington, Box 357735, Seattle, WA 98195, United States
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, United States; Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States; Department of Global Health, University of Washington, Box 359931, Seattle, WA, 98195, United States; Department of Biomedical Informatics and Medical Education, University of Washington, Box 358047, Seattle, WA 98195, United States.
| |
Collapse
|
17
|
Anbazhagan P, Harijan RK, Kiema TR, Janardan N, Murthy M, Michels PA, Juffer AH, Wierenga RK. Phylogenetic relationships and classification of thiolases and thiolase-like proteins of Mycobacterium tuberculosis and Mycobacterium smegmatis. Tuberculosis (Edinb) 2014; 94:405-12. [DOI: 10.1016/j.tube.2014.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
18
|
Abstract
Proteins are macromolecules that serve a cell’s myriad processes and functions in all living organisms via dynamic interactions with other proteins, small molecules and cellular components. Genetic variations in the protein-encoding regions of the human genome account for >85% of all known Mendelian diseases, and play an influential role in shaping complex polygenic diseases. Proteins also serve as the predominant target class for the design of small molecule drugs to modulate their activity. Knowledge of the shape and form of proteins, by means of their three-dimensional structures, is therefore instrumental to understanding their roles in disease and their potentials for drug development. In this chapter we outline, with the wide readership of non-structural biologists in mind, the various experimental and computational methods available for protein structure determination. We summarize how the wealth of structure information, contributed to a large extent by the technological advances in structure determination to date, serves as a useful tool to decipher the molecular basis of genetic variations for disease characterization and diagnosis, particularly in the emerging era of genomic medicine, and becomes an integral component in the modern day approach towards rational drug development.
Collapse
Affiliation(s)
- Nelson L.S. Tang
- Dept. of Chemical Pathology and Lab. of Genetics of Disease Suscept., The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Terence Poon
- Department of Paediatrics and Proteomics Laboratory, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
19
|
Reddy BG, Moates DB, Kim HB, Green TJ, Kim CY, Terwilliger TC, DeLucas LJ. 1.55 Å resolution X-ray crystal structure of Rv3902c from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 2014; 70:414-7. [PMID: 24699730 PMCID: PMC3976054 DOI: 10.1107/s2053230x14003793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/18/2014] [Indexed: 01/22/2023] Open
Abstract
The crystallographic structure of the Mycobacterium tuberculosis (TB) protein Rv3902c (176 residues; molecular mass of 19.8 kDa) was determined at 1.55 Å resolution. The function of Rv3902c is unknown, although several TB genes involved in bacterial pathogenesis are expressed from the operon containing the Rv3902c gene. The unique structural fold of Rv3902c contains two domains, each consisting of antiparallel β-sheets and α-helices, creating a hand-like binding motif with a small binding pocket in the palm. Structural homology searches reveal that Rv3902c has an overall structure similar to that of the Salmonella virulence-factor chaperone InvB, with an r.m.s.d. for main-chain atoms of 2.3 Å along an aligned domain.
Collapse
Affiliation(s)
- Bharat G. Reddy
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35233, USA
| | - Derek B. Moates
- Department of Biology, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35233, USA
| | - Heung-Bok Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Todd J. Green
- Department of Microbiology, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35233, USA
| | - Chang-Yub Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Lawrence J. DeLucas
- Department of Optometry, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35233, USA
| |
Collapse
|
20
|
Abstract
Efforts from the TB Structural Genomics Consortium together with those of tuberculosis structural biologists worldwide have led to the determination of about 350 structures, making up nearly a tenth of the pathogen's proteome. Given that knowledge of protein structures is essential to obtaining a high-resolution understanding of the underlying biology, it is desirable to have a structural view of the entire proteome. Indeed, structure prediction methods have advanced sufficiently to allow structural models of many more proteins to be built based on homology modeling and fold recognition strategies. By means of these approaches, structural models for about 2,877 proteins, making up nearly 70% of the Mycobacterium tuberculosis proteome, are available. Knowledge from bioinformatics has made significant inroads into an improved annotation of the M. tuberculosis genome and in the prediction of key protein players that interact in vital pathways, some of which are unique to the organism. Functional inferences have been made for a large number of proteins based on fold-function associations. More importantly, ligand-binding pockets of the proteins are identified and scanned against a large database, leading to binding site-based ligand associations and hence structure-based function annotation. Near proteome-wide structural models provide a global perspective of the fold distribution in the genome. New insights about the folds that predominate in the genome, as well as the fold combinations that make up multidomain proteins, are also obtained. This chapter describes the structural proteome, functional inferences drawn from it, and its applications in drug discovery.
Collapse
|
21
|
Arbing MA, Chan S, Harris L, Kuo E, Zhou TT, Ahn CJ, Nguyen L, He Q, Lu J, Menchavez PT, Shin A, Holton T, Sawaya MR, Cascio D, Eisenberg D. Heterologous expression of mycobacterial Esx complexes in Escherichia coli for structural studies is facilitated by the use of maltose binding protein fusions. PLoS One 2013; 8:e81753. [PMID: 24312350 PMCID: PMC3843698 DOI: 10.1371/journal.pone.0081753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022] Open
Abstract
The expression of heteroligomeric protein complexes for structural studies often requires a special coexpression strategy. The reason is that the solubility and proper folding of each subunit of the complex requires physical association with other subunits of the complex. The genomes of pathogenic mycobacteria encode many small protein complexes, implicated in bacterial fitness and pathogenicity, whose characterization may be further complicated by insolubility upon expression in Escherichia coli, the most common heterologous protein expression host. As protein fusions have been shown to dramatically affect the solubility of the proteins to which they are fused, we evaluated the ability of maltose binding protein fusions to produce mycobacterial Esx protein complexes. A single plasmid expression strategy using an N-terminal maltose binding protein fusion to the CFP-10 homolog proved effective in producing soluble Esx protein complexes, as determined by a small-scale expression and affinity purification screen, and coupled with intracellular proteolytic cleavage of the maltose binding protein moiety produced protein complexes of sufficient purity for structural studies. In comparison, the expression of complexes with hexahistidine affinity tags alone on the CFP-10 subunits failed to express in amounts sufficient for biochemical characterization. Using this strategy, six mycobacterial Esx complexes were expressed, purified to homogeneity, and subjected to crystallization screening and the crystal structures of the Mycobacterium abscessus EsxEF, M. smegmatis EsxGH, and M. tuberculosis EsxOP complexes were determined. Maltose binding protein fusions are thus an effective method for production of Esx complexes and this strategy may be applicable for production of other protein complexes.
Collapse
Affiliation(s)
- Mark A. Arbing
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sum Chan
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Liam Harris
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Emmeline Kuo
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tina T. Zhou
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christine J. Ahn
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lin Nguyen
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Qixin He
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jamie Lu
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Phuong T. Menchavez
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Annie Shin
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Thomas Holton
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael R. Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - David Eisenberg
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Premkumar L, Heras B, Duprez W, Walden P, Halili M, Kurth F, Fairlie DP, Martin JL. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1981-94. [PMID: 24100317 PMCID: PMC3792642 DOI: 10.1107/s0907444913017800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited substrate-binding specificity.
Collapse
Affiliation(s)
- Lakshmanane Premkumar
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Begoña Heras
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Wilko Duprez
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Patricia Walden
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Maria Halili
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Fabian Kurth
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Jennifer L. Martin
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| |
Collapse
|
23
|
Correale S, Ruggiero A, Capparelli R, Pedone E, Berisio R. Structures of free and inhibited forms of theL,D-transpeptidase LdtMt1fromMycobacterium tuberculosis. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1697-706. [DOI: 10.1107/s0907444913013085] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/13/2013] [Indexed: 11/10/2022]
|
24
|
Abuhammad A, Lowe ED, McDonough MA, Shaw Stewart PD, Kolek SA, Sim E, Garman EF. Structure of arylamineN-acetyltransferase fromMycobacterium tuberculosisdetermined by cross-seeding with the homologous protein fromM. marinum: triumph over adversity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1433-46. [DOI: 10.1107/s0907444913015126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022]
|
25
|
Abstract
There is an urgent need to develop new drugs for the treatment of tuberculosis, particularly against latent/persistent forms of the causative agent, Mycobacterium tuberculosis. In this issue of Chemistry & Biology, Krieger and colleagues use a structure-guided approach to develop novel inhibitors of malate synthase, a target in the glyoxylate shunt that is critical for pathogen survival in chronic infection.
Collapse
|
26
|
Duckworth BP, Nelson KM, Aldrich CC. Adenylating enzymes in Mycobacterium tuberculosis as drug targets. Curr Top Med Chem 2012; 12:766-96. [PMID: 22283817 DOI: 10.2174/156802612799984571] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
Abstract
Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including highthroughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNAsynthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl- AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases.
Collapse
|
27
|
Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol 2012; 53:303-17. [PMID: 22733623 DOI: 10.1002/jobm.201100552] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
Iron is one of the major limiting factors and essential nutrients of microbial life. Since in nature it is not readily available in the preferred form, microorganisms produce small high affinity chelating molecules called siderophores for its acquisition. Microorganisms produce a wide variety of siderophores controlled at the molecular level by different genes to accumulate, mobilize and transport iron for metabolism. Siderophores also play a critical role in the expression of virulence and development of biofilms by different microbes. Apart from maintaining microbial life, siderophores can be harnessed for the sustainability of human, animals and plants. With the advent of modern molecular tools, a major breakthrough is taking place in the understanding of the multifaceted role of siderophores in nature. This mini review is intended to provide a general overview on siderophore along with its role and applications.
Collapse
Affiliation(s)
- Ratul Saha
- Department of Microbiology and Molecular Biology, NSF International, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
28
|
Montelione GT. The Protein Structure Initiative: achievements and visions for the future. F1000 BIOLOGY REPORTS 2012; 4:7. [PMID: 22500193 PMCID: PMC3318194 DOI: 10.3410/b4-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Protein Structure Initiative (PSI) was established in 2000 by the National Institutes of General Medical Sciences with the long-term goal of providing 3D (three-dimensional) structural information for most proteins in nature. As advances in genomic sequencing, bioinformatics, homology modelling, and methods for rapid determination of 3D structures of proteins by X-ray crystallography and nuclear magnetic resonance (NMR) converged, it was proposed that our understanding of the biology of protein structure and evolution could be greatly enabled by ‘genomic-scale’ protein structure determination. Over the past 12 years, the PSI has evolved from a testing bed for new methods of sample and structure production to a core component of a wide range of biology programs.
Collapse
Affiliation(s)
- Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Northeast Structural Genomics Consortium, Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
Verspoor KM, Cohn JD, Ravikumar KE, Wall ME. Text mining improves prediction of protein functional sites. PLoS One 2012; 7:e32171. [PMID: 22393388 PMCID: PMC3290545 DOI: 10.1371/journal.pone.0032171] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 01/20/2012] [Indexed: 11/20/2022] Open
Abstract
We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions.
Collapse
Affiliation(s)
- Karin M. Verspoor
- University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Judith D. Cohn
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Komandur E. Ravikumar
- University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Michael E. Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
30
|
Manos-Turvey A, Cergol KM, Salam NK, Bulloch EMM, Chi G, Pang A, Britton WJ, West NP, Baker EN, Lott JS, Payne RJ. Synthesis and evaluation of M. tuberculosis salicylate synthase (MbtI) inhibitors designed to probe plasticity in the active site. Org Biomol Chem 2012; 10:9223-36. [DOI: 10.1039/c2ob26736e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Larsson A, Jansson A, Åberg A, Nordlund P. Efficiency of hit generation and structural characterization in fragment-based ligand discovery. Curr Opin Chem Biol 2011; 15:482-8. [PMID: 21724447 DOI: 10.1016/j.cbpa.2011.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 12/21/2022]
Abstract
Fragment-based ligand discovery constitutes a useful strategy for the generation of high affinity ligands with suitable physico-chemical properties to serve as drug leads. There is an increasing number of generic biophysical screening strategies established with the potential for accelerating the generation of useful fragment hits. Crystal structures of these hits can subsequently be used as starting points for fragment evolution to high affinity ligands. Emerging understanding of the efficiency and operative aspects of hit generation and structural characterization in FBLD suggests that this method should be well suited for academic ligand development of chemical tools and experimental therapeutics.
Collapse
Affiliation(s)
- Andreas Larsson
- School of Biological Sciences, Nanyang Technological University, 61 Nanyang Drive, Singapore 639798, Singapore
| | | | | | | |
Collapse
|
32
|
Gutka HJ, Franzblau SG, Movahedzadeh F, Abad-Zapatero C. Crystallization and preliminary X-ray characterization of the glpX-encoded class II fructose-1,6-bisphosphatase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:710-3. [PMID: 21636919 PMCID: PMC3107150 DOI: 10.1107/s1744309111014722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/19/2011] [Indexed: 11/11/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11), which is a key enzyme in gluconeogenesis, catalyzes the hydrolysis of fructose 1,6-bisphosphate to form fructose 6-phosphate and orthophosphate. The present investigation reports the crystallization and preliminary crystallographic studies of the glpX-encoded class II FBPase from Mycobacterium tuberculosis H37Rv. The recombinant protein, which was cloned using an Escherichia coli expression system, was purified and crystallized using the hanging-drop vapor-diffusion method. The crystals diffracted to a resolution of 2.7 Å and belonged to the hexagonal space group P6(1)22, with unit-cell parameters a = b = 131.3, c = 143.2 Å. The structure has been solved by molecular replacement and is currently undergoing refinement.
Collapse
Affiliation(s)
- Hiten J. Gutka
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Farahnaz Movahedzadeh
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Cele Abad-Zapatero
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|