1
|
Meyer FM, Bramkamp M. Cell wall synthesizing complexes in Mycobacteriales. Curr Opin Microbiol 2024; 79:102478. [PMID: 38653035 DOI: 10.1016/j.mib.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Members of the order Mycobacteriales are distinguished by a characteristic diderm cell envelope, setting them apart from other Actinobacteria species. In addition to the conventional peptidoglycan cell wall, these organisms feature an extra polysaccharide polymer composed of arabinose and galactose, termed arabinogalactan. The nonreducing ends of arabinose are covalently linked to mycolic acids (MAs), forming the immobile inner leaflet of the highly hydrophobic MA membrane. The contiguous outer leaflet of the MA membrane comprises trehalose mycolates and various lipid species. Similar to all actinobacteria, Mycobacteriales exhibit apical growth, facilitated by a polar localized elongasome complex. A septal cell envelope synthesis machinery, the divisome, builds instead of the cell wall structures during cytokinesis. In recent years, a growing body of knowledge has emerged regarding the cell wall synthesizing complexes of Mycobacteriales., focusing particularly on three model species: Corynebacterium glutamicum, Mycobacterium smegmatis, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Fabian M Meyer
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany.
| |
Collapse
|
2
|
Sundaram K, Vajravelu LK. Functional Analysis of Genes in Mycobacterium tuberculosis Action Against Autophagosome-Lysosome Fusion. Indian J Microbiol 2024; 64:367-375. [PMID: 39011011 PMCID: PMC11246336 DOI: 10.1007/s12088-024-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/10/2024] [Indexed: 07/17/2024] Open
Abstract
Tuberculosis is a lethal disease that is one of the world's top ten death-associated infections in humans; Mycobacterium tuberculosis causes tuberculosis, and this bacterium is linked to the lysis of autophagolysosomal fusion action, a self-defense mechanism of its own. Thus, Cytoplasmic bacilli are sequestered by autophagy and transported to lysosomes to be inactivated to destroy intracellular bacteria. Besides this, a macrophage can limit intracellular Mycobacterium by using a type of autophagy, selective autophagy, a cell that marks undesirable ubiquitin existence in cytosolic cargo, acting as a "eat me" sensor in conjunction with cellular homeostasis. Mycobacterium tuberculosis genes of the PE_PGRS protein family inhibit autophagy, increase mycobacterial survival, and lead to latent tuberculosis infection associated with miRNAs. In addition, the family of autophagy-regulated (ATG) gene members are involved in autophagy and controls the initiation, expansion, maturation, and fusion of autophagosomes with lysosomes, among other signaling events that control autophagy flux and reduce inflammatory responses and forward to promote cellular proliferation. In line with the formation of caseous necrosis in macrophages by Mycobacterium tuberculosis and their action on the lysis of autophagosome fusion, it leads to latent tuberculosis infection. Therefore, we aimed to comprehensively analyses the autophagy and self-defense mechanism of Mycobacterium tuberculosis, which is to be gratified future research on novel therapeutic tools and diagnostic markers against tuberculosis.
Collapse
Affiliation(s)
- Karthikeyan Sundaram
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, Tamilnadu 603203 India
| | - Leela Kagithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kattangulathur, Chennai, Tamilnadu 603203 India
| |
Collapse
|
3
|
Ostaszewski M, Niarakis A, Mazein A, Kuperstein I, Phair R, Orta‐Resendiz A, Singh V, Aghamiri SS, Acencio ML, Glaab E, Ruepp A, Fobo G, Montrone C, Brauner B, Frishman G, Monraz Gómez LC, Somers J, Hoch M, Kumar Gupta S, Scheel J, Borlinghaus H, Czauderna T, Schreiber F, Montagud A, Ponce de Leon M, Funahashi A, Hiki Y, Hiroi N, Yamada TG, Dräger A, Renz A, Naveez M, Bocskei Z, Messina F, Börnigen D, Fergusson L, Conti M, Rameil M, Nakonecnij V, Vanhoefer J, Schmiester L, Wang M, Ackerman EE, Shoemaker JE, Zucker J, Oxford K, Teuton J, Kocakaya E, Summak GY, Hanspers K, Kutmon M, Coort S, Eijssen L, Ehrhart F, Rex DAB, Slenter D, Martens M, Pham N, Haw R, Jassal B, Matthews L, Orlic‐Milacic M, Senff Ribeiro A, Rothfels K, Shamovsky V, Stephan R, Sevilla C, Varusai T, Ravel J, Fraser R, Ortseifen V, Marchesi S, Gawron P, Smula E, Heirendt L, Satagopam V, Wu G, Riutta A, Golebiewski M, Owen S, Goble C, Hu X, Overall RW, Maier D, Bauch A, Gyori BM, Bachman JA, Vega C, Grouès V, Vazquez M, Porras P, Licata L, Iannuccelli M, Sacco F, Nesterova A, Yuryev A, de Waard A, Turei D, Luna A, Babur O, et alOstaszewski M, Niarakis A, Mazein A, Kuperstein I, Phair R, Orta‐Resendiz A, Singh V, Aghamiri SS, Acencio ML, Glaab E, Ruepp A, Fobo G, Montrone C, Brauner B, Frishman G, Monraz Gómez LC, Somers J, Hoch M, Kumar Gupta S, Scheel J, Borlinghaus H, Czauderna T, Schreiber F, Montagud A, Ponce de Leon M, Funahashi A, Hiki Y, Hiroi N, Yamada TG, Dräger A, Renz A, Naveez M, Bocskei Z, Messina F, Börnigen D, Fergusson L, Conti M, Rameil M, Nakonecnij V, Vanhoefer J, Schmiester L, Wang M, Ackerman EE, Shoemaker JE, Zucker J, Oxford K, Teuton J, Kocakaya E, Summak GY, Hanspers K, Kutmon M, Coort S, Eijssen L, Ehrhart F, Rex DAB, Slenter D, Martens M, Pham N, Haw R, Jassal B, Matthews L, Orlic‐Milacic M, Senff Ribeiro A, Rothfels K, Shamovsky V, Stephan R, Sevilla C, Varusai T, Ravel J, Fraser R, Ortseifen V, Marchesi S, Gawron P, Smula E, Heirendt L, Satagopam V, Wu G, Riutta A, Golebiewski M, Owen S, Goble C, Hu X, Overall RW, Maier D, Bauch A, Gyori BM, Bachman JA, Vega C, Grouès V, Vazquez M, Porras P, Licata L, Iannuccelli M, Sacco F, Nesterova A, Yuryev A, de Waard A, Turei D, Luna A, Babur O, Soliman S, Valdeolivas A, Esteban‐Medina M, Peña‐Chilet M, Rian K, Helikar T, Puniya BL, Modos D, Treveil A, Olbei M, De Meulder B, Ballereau S, Dugourd A, Naldi A, Noël V, Calzone L, Sander C, Demir E, Korcsmaros T, Freeman TC, Augé F, Beckmann JS, Hasenauer J, Wolkenhauer O, Wilighagen EL, Pico AR, Evelo CT, Gillespie ME, Stein LD, Hermjakob H, D'Eustachio P, Saez‐Rodriguez J, Dopazo J, Valencia A, Kitano H, Barillot E, Auffray C, Balling R, Schneider R. COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms. Mol Syst Biol 2021; 17:e10387. [PMID: 34664389 PMCID: PMC8524328 DOI: 10.15252/msb.202110387] [Show More Authors] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
Collapse
Affiliation(s)
- Marek Ostaszewski
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Anna Niarakis
- Université Paris‐SaclayLaboratoire Européen de Recherche pour la Polyarthrite rhumatoïde ‐ GenhotelUniv EvryEvryFrance
- Lifeware GroupInria Saclay‐Ile de FrancePalaiseauFrance
| | - Alexander Mazein
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Inna Kuperstein
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Robert Phair
- Integrative Bioinformatics, Inc.Mountain ViewCAUSA
| | - Aurelio Orta‐Resendiz
- Institut PasteurUniversité de Paris, Unité HIVInflammation et PersistanceParisFrance
- Bio Sorbonne Paris CitéUniversité de ParisParisFrance
| | - Vidisha Singh
- Université Paris‐SaclayLaboratoire Européen de Recherche pour la Polyarthrite rhumatoïde ‐ GenhotelUniv EvryEvryFrance
| | - Sara Sadat Aghamiri
- Inserm‐ Institut national de la santé et de la recherche médicaleParisFrance
| | - Marcio Luis Acencio
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Andreas Ruepp
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Gisela Fobo
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Corinna Montrone
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Barbara Brauner
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Goar Frishman
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Luis Cristóbal Monraz Gómez
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Julia Somers
- Department of Molecular and Medical GeneticsOregon Health & Sciences UniversityPortlandORUSA
| | - Matti Hoch
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | | | - Julia Scheel
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | - Hanna Borlinghaus
- Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
| | - Tobias Czauderna
- Faculty of Information TechnologyDepartment of Human‐Centred ComputingMonash UniversityClaytonVic.Australia
| | - Falk Schreiber
- Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
- Faculty of Information TechnologyDepartment of Human‐Centred ComputingMonash UniversityClaytonVic.Australia
| | | | | | - Akira Funahashi
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Yusuke Hiki
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Noriko Hiroi
- Graduate School of Media and GovernanceResearch Institute at SFCKeio UniversityKanagawaJapan
| | - Takahiro G Yamada
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial‐Resistant PathogensInstitute for Bioinformatics and Medical Informatics (IBMI)University of TübingenTübingenGermany
- Department of Computer ScienceUniversity of TübingenTübingenGermany
- German Center for Infection Research (DZIF), partner siteTübingenGermany
| | - Alina Renz
- Computational Systems Biology of Infections and Antimicrobial‐Resistant PathogensInstitute for Bioinformatics and Medical Informatics (IBMI)University of TübingenTübingenGermany
- Department of Computer ScienceUniversity of TübingenTübingenGermany
| | - Muhammad Naveez
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
- Institute of Applied Computer SystemsRiga Technical UniversityRigaLatvia
| | - Zsolt Bocskei
- Sanofi R&DTranslational SciencesChilly‐MazarinFrance
| | - Francesco Messina
- Dipartimento di Epidemiologia Ricerca Pre‐Clinica e Diagnostica AvanzataNational Institute for Infectious Diseases 'Lazzaro Spallanzani' I.R.C.C.S.RomeItaly
- COVID‐19 INMI Network Medicine for IDs Study GroupNational Institute for Infectious Diseases 'Lazzaro Spallanzani' I.R.C.C.SRomeItaly
| | - Daniela Börnigen
- Bioinformatics Core FacilityUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Liam Fergusson
- Royal (Dick) School of Veterinary MedicineThe University of EdinburghEdinburghUK
| | - Marta Conti
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Marius Rameil
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Vanessa Nakonecnij
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Jakob Vanhoefer
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Leonard Schmiester
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
- Center for MathematicsChair of Mathematical Modeling of Biological SystemsTechnische Universität MünchenGarchingGermany
| | - Muying Wang
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
| | - Emily E Ackerman
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
| | - Jason E Shoemaker
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | | | | | | | | | | | - Kristina Hanspers
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | - Martina Kutmon
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtThe Netherlands
| | - Susan Coort
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Lars Eijssen
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht University Medical CentreMaastrichtThe Netherlands
| | | | - Denise Slenter
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Marvin Martens
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Nhung Pham
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Robin Haw
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | - Bijay Jassal
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | | | | | - Andrea Senff Ribeiro
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- Universidade Federal do ParanáCuritibaBrasil
| | - Karen Rothfels
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | | | - Ralf Stephan
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | - Cristoffer Sevilla
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Thawfeek Varusai
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Jean‐Marie Ravel
- INSERM UMR_S 1256Nutrition, Genetics, and Environmental Risk Exposure (NGERE)Faculty of Medicine of NancyUniversity of LorraineNancyFrance
- Laboratoire de génétique médicaleCHRU NancyNancyFrance
| | - Rupsha Fraser
- Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Vera Ortseifen
- Senior Research Group in Genome Research of Industrial MicroorganismsCenter for BiotechnologyBielefeld UniversityBielefeldGermany
| | - Silvia Marchesi
- Department of Surgical ScienceUppsala UniversityUppsalaSweden
| | - Piotr Gawron
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Ewa Smula
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Laurent Heirendt
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Venkata Satagopam
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Guanming Wu
- Department of Medical Informatics and Clinical EpidemiologyOregon Health & Science UniversityPortlandORUSA
| | - Anders Riutta
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | | | - Stuart Owen
- Department of Computer ScienceThe University of ManchesterManchesterUK
| | - Carole Goble
- Department of Computer ScienceThe University of ManchesterManchesterUK
| | - Xiaoming Hu
- Heidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Technische Universität DresdenDresdenGermany
- Institute for BiologyHumboldt University of BerlinBerlinGermany
| | | | | | - Benjamin M Gyori
- Harvard Medical SchoolLaboratory of Systems PharmacologyBostonMAUSA
| | - John A Bachman
- Harvard Medical SchoolLaboratory of Systems PharmacologyBostonMAUSA
| | - Carlos Vega
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Valentin Grouès
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | | | - Pablo Porras
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Luana Licata
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | | | - Francesca Sacco
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | | | | | | | - Denes Turei
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Augustin Luna
- cBio Center, Divisions of Biostatistics and Computational BiologyDepartment of Data SciencesDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Ozgun Babur
- Computer Science DepartmentUniversity of Massachusetts BostonBostonMAUSA
| | | | - Alberto Valdeolivas
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Marina Esteban‐Medina
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
| | - Maria Peña‐Chilet
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
- Bioinformatics in Rare Diseases (BiER)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)FPS, Hospital Virgen del RocíoSevillaSpain
| | - Kinza Rian
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
| | - Tomáš Helikar
- Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | | | - Dezso Modos
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Agatha Treveil
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Marton Olbei
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | | | - Stephane Ballereau
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Aurélien Dugourd
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Institute of Experimental Medicine and Systems BiologyFaculty of Medicine, RWTHAachen UniversityAachenGermany
| | | | - Vincent Noël
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Laurence Calzone
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Chris Sander
- cBio Center, Divisions of Biostatistics and Computational BiologyDepartment of Data SciencesDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Emek Demir
- Department of Molecular and Medical GeneticsOregon Health & Sciences UniversityPortlandORUSA
| | | | - Tom C Freeman
- The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Franck Augé
- Sanofi R&DTranslational SciencesChilly‐MazarinFrance
| | | | - Jan Hasenauer
- Helmholtz Zentrum München – German Research Center for Environmental HealthInstitute of Computational BiologyNeuherbergGermany
- Interdisciplinary Research Unit Mathematics and Life SciencesUniversity of BonnBonnGermany
| | - Olaf Wolkenhauer
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | - Egon L Wilighagen
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Alexander R Pico
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | - Chris T Evelo
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtThe Netherlands
| | - Marc E Gillespie
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- St. John’s University College of Pharmacy and Health SciencesQueensNYUSA
| | - Lincoln D Stein
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Henning Hermjakob
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | | | | | - Joaquin Dopazo
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
- Bioinformatics in Rare Diseases (BiER)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)FPS, Hospital Virgen del RocíoSevillaSpain
- FPS/ELIXIR‐esHospital Virgen del RocíoSevillaSpain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Hiroaki Kitano
- Systems Biology InstituteTokyoJapan
- Okinawa Institute of Science and Technology Graduate SchoolOkinawaJapan
| | - Emmanuel Barillot
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Charles Auffray
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Rudi Balling
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | | |
Collapse
|
4
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
5
|
Gregoire SA, Byam J, Pavelka MS. galK-based suicide vector mediated allelic exchange in Mycobacterium abscessus. MICROBIOLOGY-SGM 2017; 163:1399-1408. [PMID: 28933689 DOI: 10.1099/mic.0.000528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium abscessus is a fast-growing environmental organism and an important emerging pathogen. It is highly resistant to many antibiotics and undergoes a smooth to rough colony morphology change that appears to be important for pathogenesis. Smooth environmental strains have a glycopeptidolipid (GPL) on the surface, while certain types of clinical strains are often rough and lack this GPL, due to mutations in biosynthetic genes or the mmpL4b transporter gene. We report here the development and evaluation of an allelic exchange system for unmarked alleles in M. abscessus ATCC19977, using a suicide vector bearing the E. coli galK gene and 2-deoxygalactose counterselection. We describe here two variant galK suicide vectors, and demonstrate their utility in constructing a variety of mutants with deletion alleles of the mmpL4b GPL transporter gene, the mbtH GPL biosynthesis gene, the known β-lactamase gene MAB_2875 and a putative β-lactamase gene, MAB_2833. We also show that a novel allele of the E. coli aacC4 gene, conferring apramycin resistance (aacC41), can be used as a selectable marker in M. abscessus ATCC19977 at single copy.
Collapse
Affiliation(s)
- Stacy A Gregoire
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joel Byam
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martin S Pavelka
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
6
|
Kokoczka R, Schuessler DL, Early JV, Parish T. Mycobacterium tuberculosis Rv0560c is not essential for growth in vitro or in macrophages. Tuberculosis (Edinb) 2016; 102:3-7. [PMID: 28061949 DOI: 10.1016/j.tube.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis Rv0560c, a putative benzoquinone methyl transferase, is heavily induced in response to salicylate exposure. It has some similarity to Escherichia coli UbiG, although its role in ubiquinone or menaquinone synthesis is not clear, since M. tuberculosis is not known to produce ubiquinone. We constructed an unmarked in-frame deletion of Rv0560c in M. tuberculosis to determine its role in vitro. Deletion of Rv0560c in M. tuberculosis had no effect on growth in medium containing salicylate or in its ability to grow in macrophages. In addition, no change to compound sensitivity, as determined by minimum inhibitory concentrations, for a range of compounds targeting respiration was noted. Plumbagin, ethambutol and CCCP had the same minimum bactericidal concentration against the deletion and wild-type strains. Taken together these data show that Rv0560c is dispensable under in vitro conditions in both axenic and macrophage culture and suggest that the role of Rv0560c may be in an alternate biosynthetic pathway of menaquinone which is only used under specific growth conditions.
Collapse
Affiliation(s)
- Rachel Kokoczka
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, United States
| | - Dorothée L Schuessler
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, E1 2AD, UK
| | - Julie V Early
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, United States
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, United States; Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, E1 2AD, UK.
| |
Collapse
|
7
|
The RipA and RipB Peptidoglycan Endopeptidases Are Individually Nonessential to Mycobacterium smegmatis. J Bacteriol 2016; 198:1464-75. [PMID: 26977111 DOI: 10.1128/jb.00059-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/23/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mycobacteria possess a series of Rip peptidoglycan endopeptidases that have been characterized in various levels of detail. The RipA and RipB proteins have been extensively studied and are DL-endopeptidases, and RipA has been considered essential to Mycobacterium smegmatis and Mycobacterium tuberculosis We show here that the ripA and ripB genes are individually dispensable in M. smegmatis and that at least one of the genes must be expressed for viability. We characterized strains carrying in-frame deletion mutations of ripA and ripB and found that both mutant strains exhibited increased susceptibility to a limited number of antibiotics and to detergent but that only the ΔripA mutant displayed hypersusceptibility to lysozyme. We also constructed and characterized ΔripD and ΔripAΔripD mutants and found that the single mutant had only an intermediate lysozyme hypersusceptibility phenotype compared to that of wild-type cells while loss of ripD in the ΔripA background partially rescued the antibiotic and lysozyme phenotypes of the ΔripA mutant. IMPORTANCE We show that the RipA endopeptidase, which has been considered essential for cell division in certain mycobacteria, is not essential but that at least it or a similar protein, RipB, must be expressed by the bacteria for viability. This work is the first description of strains carrying single deletion mutations of RipA, RipB, and a novel endopeptidase-like protein, RipD.
Collapse
|
8
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
9
|
Abstract
The complex cell envelope is a hallmark of mycobacteria and is anchored by the peptidoglycan layer, which is similar to that of Escherichia coli and a number of other bacteria but with modifications to the monomeric units and other structural complexities that are likely related to a role for the peptidoglycan in stabilizing the mycolyl-arabinogalactan-peptidoglycan complex (MAPc). In this article, we will review the genetics of several aspects of peptidoglycan biosynthesis in mycobacteria, including the production of monomeric precursors in the cytoplasm, assembly of the monomers into the mature wall, cell wall turnover, and cell division. Finally, we will touch upon the resistance of mycobacteria to β-lactam antibiotics, an important class of drugs that, until recently, have not been extensively exploited as potential antimycobacterial agents. We will also note areas of research where there are still unanswered questions.
Collapse
|
10
|
Garay CD, Dreyfuss JM, Galagan JE. Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis. BMC SYSTEMS BIOLOGY 2015; 9:57. [PMID: 26377923 PMCID: PMC4574064 DOI: 10.1186/s12918-015-0206-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (MTB) is the causal agent of the disease tuberculosis (TB). Metabolic adaptations are thought to be critical to the survival of MTB during pathogenesis. Computational tools that can be used to study MTB metabolism in silico and prioritize resource-intensive experimental work could significantly accelerate research. RESULTS We have developed E-Flux-MFC, an enhancement of our original E-Flux method that enables the prediction of changes in the production of external and internal metabolites corresponding to gene expression measurements. We have used this method to simulate the changes in the metabolic state of Mycobacterium tuberculosis (MTB). We have validated the accuracy of E-Flux-MFC for predicting changes in lipids and metabolites during a hypoxia time course using previously published metabolomics and transcriptomics data. We have further validated the accuracy of the method for predicting changes in MTB lipids following the deletion and induction of two well-studied transcription factors (TFs). We have applied the method to predict the metabolic impact of the induction of each of the approximately 180 MTB TFs using a previously generated and publically available expression data set. CONCLUSIONS E-flux-MFC can be used to study global changes in MTB metabolites from gene expression data associated with environmental and genetic perturbations. The application of this method to a data set of MTB TF perturbations provides a resource for studying the large number of TFs whose functions remain unknown. Most TFs impact metabolites indirectly through the propagation of gene expression changes through the regulatory network rather than through their direct regulons. E-Flux-MFC is also applicable to any organism for which accurate metabolic models are available.
Collapse
Affiliation(s)
- Christopher D Garay
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Jonathan M Dreyfuss
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. .,Joslin Diabetes Center, Boston, MA, 02215, USA.
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA. .,Graduate Program in Bioinformatics, Boston University, Boston, MA, 02215, USA. .,National Emerging Infectious Diseases Laboratories, Boston, MA, 02118, USA.
| |
Collapse
|
11
|
Mendum TA, Wu H, Kierzek AM, Stewart GR. Lipid metabolism and Type VII secretion systems dominate the genome scale virulence profile of Mycobacterium tuberculosis in human dendritic cells. BMC Genomics 2015; 16:372. [PMID: 25956932 PMCID: PMC4425887 DOI: 10.1186/s12864-015-1569-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/23/2015] [Indexed: 12/20/2022] Open
Abstract
Background Mycobacterium tuberculosis continues to kill more people than any other bacterium. Although its archetypal host cell is the macrophage, it also enters, and survives within, dendritic cells (DCs). By modulating the behaviour of the DC, M. tuberculosis is able to manipulate the host’s immune response and establish an infection. To identify the M. tuberculosis genes required for survival within DCs we infected primary human DCs with an M. tuberculosis transposon library and identified mutations with a reduced ability to survive. Results Parallel sequencing of the transposon inserts of the surviving mutants identified a large number of genes as being required for optimal intracellular fitness in DCs. Loci whose mutation attenuated intracellular survival included those involved in synthesising cell wall lipids, not only the well-established virulence factors, pDIM and cord factor, but also sulfolipids and PGL, which have not previously been identified as having a direct virulence role in cells. Other attenuated loci included the secretion systems ESX-1, ESX-2 and ESX-4, alongside many PPE genes, implicating a role for ESX-5. In contrast the canonical ESAT-6 family of ESX substrates did not have intra-DC fitness costs suggesting an alternative ESX-1 associated virulence mechanism. With the aid of a gene-nutrient interaction model, metabolic processes such as cholesterol side chain catabolism, nitrate reductase and cysteine-methionine metabolism were also identified as important for survival in DCs. Conclusion We conclude that many of the virulence factors required for survival in DC are shared with macrophages, but that survival in DCs also requires several additional functions, such as cysteine-methionine metabolism, PGLs, sulfolipids, ESX systems and PPE genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1569-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tom A Mendum
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Huihai Wu
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Andrzej M Kierzek
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Graham R Stewart
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| |
Collapse
|
12
|
Linderman JJ, Cilfone NA, Pienaar E, Gong C, Kirschner DE. A multi-scale approach to designing therapeutics for tuberculosis. Integr Biol (Camb) 2015; 7:591-609. [PMID: 25924949 DOI: 10.1039/c4ib00295d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Approximately one third of the world's population is infected with Mycobacterium tuberculosis. Limited information about how the immune system fights M. tuberculosis and what constitutes protection from the bacteria impact our ability to develop effective therapies for tuberculosis. We present an in vivo systems biology approach that integrates data from multiple model systems and over multiple length and time scales into a comprehensive multi-scale and multi-compartment view of the in vivo immune response to M. tuberculosis. We describe computational models that can be used to study (a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) oral and inhaled antibiotics, and
Collapse
Affiliation(s)
- Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Metabolism underpins the physiology and pathogenesis of Mycobacterium tuberculosis. However, although experimental mycobacteriology has provided key insights into the metabolic pathways that are essential for survival and pathogenesis, determining the metabolic status of bacilli during different stages of infection and in different cellular compartments remains challenging. Recent advances-in particular, the development of systems biology tools such as metabolomics-have enabled key insights into the biochemical state of M. tuberculosis in experimental models of infection. In addition, their use to elucidate mechanisms of action of new and existing antituberculosis drugs is critical for the development of improved interventions to counter tuberculosis. This review provides a broad summary of mycobacterial metabolism, highlighting the adaptation of M. tuberculosis as specialist human pathogen, and discusses recent insights into the strategies used by the host and infecting bacillus to influence the outcomes of the host-pathogen interaction through modulation of metabolic functions.
Collapse
Affiliation(s)
- Digby F Warner
- Medical Research Council/National Health Laboratory Services/University of Cape Town Molecular Mycobacteriology Research Unit and Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Division of Medical Microbiology, University of Cape Town, Rondebosch 7700, South Africa
| |
Collapse
|
14
|
Asención Diez MD, Demonte AM, Syson K, Arias DG, Gorelik A, Guerrero SA, Bornemann S, Iglesias AA. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj 2014; 1850:13-21. [PMID: 25277548 PMCID: PMC4331664 DOI: 10.1016/j.bbagen.2014.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022]
Abstract
Background Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. Results In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. Conclusions Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. General significance This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen. Nucleotide-glucose synthesis in Mycobacterium tuberculosis was analyzed. The characterization of four enzymes involved in glucose-1P partitioning is reported. Mycobacterial ADP-glucose pyrophosphorylase is allosterically regulated. Trehalose-6P synthase exhibits higher catalytic efficiency for ADP-glucose. Trehalose-6P synthase is activated by fructose-6P.
Collapse
Affiliation(s)
- Matías D Asención Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Ana M Demonte
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Andrii Gorelik
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Sergio A Guerrero
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
15
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
16
|
Ramirez MV, Dawson CC, Crew R, England K, Slayden RA. MazF6 toxin of Mycobacterium tuberculosis demonstrates antitoxin specificity and is coupled to regulation of cell growth by a Soj-like protein. BMC Microbiol 2013; 13:240. [PMID: 24172039 PMCID: PMC3834876 DOI: 10.1186/1471-2180-13-240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/24/2013] [Indexed: 09/03/2023] Open
Abstract
Background Molecular programs employed by Mycobacterium tuberculosis (Mtb) for the establishment of non-replicating persistence (NRP) are poorly understood. In order to investigate mechanisms regulating entry into NRP, we asked how cell cycle regulation is linked to downstream adaptations that ultimately result in NRP. Based on previous reports and our recent studies, we reason that, in order to establish NRP, cells are halted in the cell cycle at the point of septum formation by coupled regulatory mechanisms. Results Using bioinformatic consensus modeling, we identified an alternative cell cycle regulatory element, SojMtb encoded by rv1708. SojMtb coordinates a regulatory mechanism involving cell cycle control at the point of septum formation and elicits the induction of the MazF6 toxin. MazF6 functions as an mRNA interferase leading to bacteriostasis that can be prevented by interaction with its cognate antitoxin, MazE6. Further, MazEF6 acts independently of other Maz family toxin:antitoxin pairs. Notably, sojMtb and mazEF6 transcripts where identified at 20, 40 and 100 days post-infection in increasing abundance indicating a role in adaption during chronic infection. Conclusions Here we present the first evidence of a coupled regulatory system in which cell cycle regulation via SojMtb is linked to downstream adaptations that are facilitated through the activity of the MazEF6 TA pair.
Collapse
Affiliation(s)
| | | | | | | | - Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
17
|
Shrinking the FadE proteome of Mycobacterium tuberculosis: insights into cholesterol metabolism through identification of an α2β2 heterotetrameric acyl coenzyme A dehydrogenase family. J Bacteriol 2013; 195:4331-41. [PMID: 23836861 DOI: 10.1128/jb.00502-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ability of the pathogen Mycobacterium tuberculosis to metabolize steroids like cholesterol and the roles that these compounds play in the virulence and pathogenesis of this organism are increasingly evident. Here, we demonstrate through experiments and bioinformatic analysis the existence of an architecturally distinct subfamily of acyl coenzyme A (acyl-CoA) dehydrogenase (ACAD) enzymes that are α2β2 heterotetramers with two active sites. These enzymes are encoded by two adjacent ACAD (fadE) genes that are regulated by cholesterol. FadE26-FadE27 catalyzes the dehydrogenation of 3β-hydroxy-chol-5-en-24-oyl-CoA, an analog of the 5-carbon side chain cholesterol degradation intermediate. Genes encoding the α2β2 heterotetrameric ACAD structures are present in multiple regions of the M. tuberculosis genome, and subsets of these genes are regulated by four different transcriptional repressors or activators: KstR1 (also known as KstR), KstR2, Mce3R, and SigE. Homologous ACAD gene pairs are found in other Actinobacteria, as well as Proteobacteria. Their structures and genomic locations suggest that the α2β2 heterotetrameric structural motif has evolved to enable catalysis of dehydrogenation of steroid- or polycyclic-CoA substrates and that they function in four subpathways of cholesterol metabolism.
Collapse
|
18
|
Cai L, Zhao X, Jiang T, Qiu J, Owusu L, Ma Y, Wang B, Xin Y. Prokaryotic Expression, Identification and Bioinformatics Analysis of the Mycobacterium tuberculosis Rv3807c Gene Encoding the Putative Enzyme Committed to Decaprenylphosphoryl-d-arabinose Synthesis. Indian J Microbiol 2013; 54:46-51. [PMID: 24426166 DOI: 10.1007/s12088-013-0418-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/21/2013] [Indexed: 11/25/2022] Open
Abstract
Decaprenylphosphoryl-d-arabinofuranosyl (DPA), the immediate donor for the polymerized d-Araf residues of mycobacterial arabinan, is synthesized from 5-phosphoribose-1-diphosphate (PRPP) in three-step reactions. (i) PRPP is transferred to decaprenyl-phosphate (DP) to form decaprenylphosphoryl-d-5-phosphoribose (DPPR). (ii) DPPR is dephosphorylated to form decaprenylphosphoryl-d-ribose (DPR). (iii) DPR is formed to DPA by the epimerase. Mycobacterium tuberculosis Rv3806c and heteromeric Rv3790/Rv3791 have been identified as the PRPP: decaprenyl-phosphate 5-phosphoribosyltransferase and the epimerase respectively. Rv3807c, however, as the candidate of phospholipid phosphatase, catalyzing the biosynthesis of decapreny-l-phosphoryl-ribose (DPR) from decaprenylphosphoryl-β-d-5-phosphoribose by dephosphorylating, has no direct experimental evidence of its essentiality in any species of mycobacterium. In this study, Rv3807c gene was amplified from the genome of M. tuberculosis H37Rv by PCR, and was successfully expressed in Escherichia coli BL21 (DE3) via the recombinant plasmid pColdII-Rv3807c. The resulting protein with the 6× His-tag was identified by SDS-PAGE and Western blotting. The protein was predicted through bioinformatics to contain three transmembrane domains, the N-terminal peptide, and a core structure with phosphatidic acid phosphatase type2/haloperoxidase. This study provides biochemical and bioinformatics evidence for the importance of Rv3807c in mycobacteria, and further functional studies will be conducted for validating Rv3807c as a promising phospholipid phosphatase in the synthetic pathway of DPA.
Collapse
Affiliation(s)
- Lina Cai
- Department of Biotechnology, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Xiaojiao Zhao
- TB Laboratory of Shenyang Chest Hospital, Shenyang, 110044 People's Republic of China
| | - Tao Jiang
- Department of Biotechnology, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Juanjuan Qiu
- Department of Biotechnology, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Lawrence Owusu
- Department of Biotechnology, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Bo Wang
- Department of Pathology, Dalian Medical University, Dalian, 116044 People's Republic of China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian, 116044 People's Republic of China
| |
Collapse
|
19
|
Carere J, McKenna SE, Kimber MS, Seah SYK. Characterization of an aldolase-dehydrogenase complex from the cholesterol degradation pathway of Mycobacterium tuberculosis. Biochemistry 2013; 52:3502-11. [PMID: 23614353 DOI: 10.1021/bi400351h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
HsaF and HsaG are an aldolase and dehydrogenase from the cholesterol degradation pathway of Mycobacterium tuberculosis. HsaF could be heterologously expressed and purified as a soluble dimer, but the enzyme was inactive in the absence of HsaG. HsaF catalyzes the aldol cleavage of 4-hydroxy-2-oxoacids to produce pyruvate and an aldehyde. The enzyme requires divalent metals for activity, with a preference for Mn(2+). The Km values for 4-hydroxy-2-oxoacids were about 20-fold lower than observed for the aldolase homologue, BphI from the polychlorinated biphenyl degradation pathway. Acetaldehyde and propionaldehyde were channeled directly to the dehydrogenase, HsaG, without export to the bulk solvent where they were transformed to acyl-CoA in an NAD(+) and coenzyme A dependent reaction. HsaG is able to utilize aldehydes up to five carbons in length as substrates, with similar catalytic efficiencies. The HsaF-HsaG complex was crystallized and its structure was determined to a resolution of 1.93 Å. Substitution of serine 41 in HsaG with isoleucine or aspartate resulted in about 35-fold increase in Km for CoA but only 4-fold increase in Km dephospho-CoA, suggesting that this residue interacts with the 3'-ribose phosphate of CoA. A second protein annotated as a 4-hydroxy-2-oxopentanoic acid aldolase in M. tuberculosis (MhpE, Rv3469c) was expressed and purified, but was found to lack aldolase activity. Instead this enzyme was found to possess oxaloacetate decarboxylase activity, consistent with the conservation (with the 4-hydroxy-2-oxoacid aldolases) of residues involved in pyruvate enolate stabilization.
Collapse
Affiliation(s)
- Jason Carere
- Department of Molecular and Cellular Biology, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|