1
|
Chen H, Zhou J, Zhao X, Liu Q, Shao L, Zhu Y, Ou Q. Characterization of multiple soluble immune checkpoints in individuals with different Mycobacterium tuberculosis infection status and dynamic changes during anti-tuberculosis treatment. BMC Infect Dis 2022; 22:543. [PMID: 35701741 PMCID: PMC9192932 DOI: 10.1186/s12879-022-07506-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immune checkpoints are crucial for the maintenance of subtle balance between self-tolerance and effector immune responses, but the role of soluble immune checkpoints (sICs) in Mycobacterium tuberculosis (M. tb) infection remains unknown. We assessed the levels of multiple sICs in individuals with distinct M. tb infection status, and their dynamic changes during anti-tuberculosis treatment. METHODS We enrolled 24 patients with pulmonary tuberculosis, among which 10 patients were diagnosed with tuberculous pleurisy (TBP), 10 individuals with latent tuberculosis infection (LTBI), and 10 healthy volunteers from Wuxi Fifth People's Hospital and Huashan Hospital between February 2019 and May 2021. Plasma concentrations of thirteen sICs were measured at enrollment and during anti-tuberculosis treatment using luminex-based multiplex assay. sICs levels in tuberculous pleural effusion (TPE) and their relations to laboratory test markers of TPE were also assessed in TBP patients. RESULTS The circulating levels of sPD-1, sPD-L1, sCTLA-4, sBTLA, sGITR, sIDO, sCD28, sCD27 and s4-1BB were upregulated in tuberculosis patients than in healthy controls. A lower sPD-L1 level was found in LTBI individuals than in tuberculosis patients. In TBP patients, the levels of sPD-1, sPD-L2, sCD28, sCD80, sCD27, sTIM-3, sLAG-3, sBTLA, s4-1BB and sIDO increased significantly in TPE than in plasma. In TPE, sBTLA and sLAG-3 correlated positively with the adenosine deaminase level. sIDO and sCD80 correlated positively with the lactate dehydrogenase level and the percentage of lymphocytes in TPE, respectively. Meanwhile, sCD27 correlated negatively with the specific gravity and protein level in TPE. In tuberculosis patients, the circulating levels of sBTLA and sPD-L1 gradually declined during anti-tuberculosis treatment. CONCLUSIONS We characterized the changing balance of sICs in M. tb infection. And our results revealed the relations of sICs to laboratory test markers and treatment responses in tuberculosis patients, indicating that certain sICs may serve as potential biomarkers for disease surveillance and prognosis of tuberculosis.
Collapse
Affiliation(s)
- Huaxin Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China.,Department of Pulmonary Diseases, Wuxi Infectious Diseases Hospital, 1215 Guangrui Road, Wuxi, 214005, China
| | - Jingyu Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinguo Zhao
- Department of Pulmonary Diseases, Wuxi Infectious Diseases Hospital, 1215 Guangrui Road, Wuxi, 214005, China
| | - Qianqian Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yehan Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China.
| | - Qinfang Ou
- Department of Pulmonary Diseases, Wuxi Infectious Diseases Hospital, 1215 Guangrui Road, Wuxi, 214005, China.
| |
Collapse
|
2
|
Qiu M, Chen Y, Ye Q. Downregulation of the PD-1/PD-Ls pathway in peripheral cells correlates with asbestosis severity. BMC Pulm Med 2021; 21:175. [PMID: 34022844 PMCID: PMC8141175 DOI: 10.1186/s12890-021-01531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/10/2021] [Indexed: 11/11/2022] Open
Abstract
Background Asbestosis and silicosis are characterized by diffuse or nodular interstitial lung fibrosis resulting from exposure to asbestos or silica dust, respectively. This study was designed to detect programmed cell death protein (PD-1)/programmed death ligands (PD-Ls) expression in patients with asbestosis and silicosis and to explore the possible clinical significance of PD-1/PD-Ls expression in patients with the two diseases. Methods Thirty patients with asbestosis, 23 patients with silicosis and 25 healthy controls were consecutively recruited and provided informed consent to participate in the study. Clinical data were collected from patients’ clinical charts. PD-1/PD-Ls expression in peripheral blood (PB) was detected using flow cytometry. Results PD-1 was expressed at significantly lower levels on CD4+ or CD8+ peripheral T cells from patients with asbestosis and silicosis than on cells from healthy controls. Similarly, significantly lower PD-L1 and PD-L2 expression was detected on CD14+ monocytes from patients with asbestosis and silicosis than on cells from healthy controls. In addition, no significant differences in PD-1, PD-L1 and PD-L2 expression were observed between the asbestosis and silicosis groups. Moreover, the proportions of PD-1+ CD4+ T cells and PD-1+ CD8+ T cells in patients with asbestosis were positively correlated with the percentage of forced vital capacity predicted. Conclusions Decreased PD-1 expression on CD4+ T or CD8+ T cells in PB was positively correlated with the asbestosis severity, implying that pulmonary fibrosis development in patients with asbestosis was positively correlated with the downregulation of the PD-1/PD-Ls pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01531-5.
Collapse
Affiliation(s)
- Meihua Qiu
- Department of Occupational Medicine and Toxicology, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium, Chao-Yang District, Beijing, China.,Department of Respiratory and Critical Care Medicine, Yantai Yuhuangding Hospital, Affiliated with the Medical College of Qingdao, Yantai, Shandong, China
| | - Yuqing Chen
- Department of Occupational Medicine and Toxicology, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium, Chao-Yang District, Beijing, China.,Department of Respiratory and Critical Care Medicine, The Fifth Hospital of Xiamen, Xiamen, Fujian, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium, Chao-Yang District, Beijing, China.
| |
Collapse
|
3
|
Kwon JS, Park JH, Kim JY, Cha HH, Kim MJ, Chong YP, Lee SO, Choi SH, Kim YS, Woo JH, Koo YS, Jeon SB, Lee SA, Kim SH. Diagnostic Usefulness of Cytokine and Chemokine Levels in the Cerebrospinal Fluid of Patients with Suspected Tuberculous Meningitis. Am J Trop Med Hyg 2020; 101:343-349. [PMID: 31264559 DOI: 10.4269/ajtmh.18-0947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we investigated the diagnostic utility of the cytokine profile of the cerebrospinal fluid (CSF) and enzyme-linked immunospot (ELISPOT) assays of patients with suspected tuberculous meningitis (TBM). We prospectively enrolled adult patients with suspected TBM, and CSF specimens were analyzed for 18 cytokines/chemokines and soluble programmed death protein 1 (PD-1) and programmed death ligand 1 (PD-L1). Enzyme-linked immunospot assays were performed on mononuclear cells from the CSF (CSF-MCs) and peripheral blood (PBMCs). A total of 87 patients with meningitis, including 42 TBM-suspected patients and 45 non-TBM patients, were enrolled. Excluding the 32 patients with possible TBM, 10 patients with TBM and 45 patients with non-TBM were finally analyzed. Levels of adenosine deaminase (ADA), interleukin 12 subunit β (IL-12p40), IL-13, macrophage inflammatory protein α (MIP-1α), and soluble PD-1 and PD-L1 in the CSF were significantly higher in the TBM group than in the non-TBM group (P < 0.05). The optimal cutoff values for the sensitivities and specificities of the test methods for diagnosing TBM with small samples of 10 cases of definite or probable TBM were as follows: ADA > 6.95 U/L, 70% and 81%; IL-12p40 > 52.04 pg/mL, 80% and 73%; IL-13 > 0.44 pg/mL, 90% and 47%; MIP-1α > 8.83 pg/mL, 80% and 62%; soluble PD-1 > 35.87 pg/mL, 80% and 63%; soluble PD-L1 > 24.19 pg/mL, 80% and 61%; CSF-MC ELISPOT > 13.5 spots/250,000 CSF-MC, 30% and 91%; and PBMC ELISPOT > 14 spots/250,000 PBMCs, 50% and 78%, respectively. Therefore, CSF IL-12p40, IL-13, MIP-1α, and soluble PD-1 and PD-L1 concentrations appear to be useful adjuncts for diagnosing TBM.
Collapse
Affiliation(s)
- Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Joung Ha Park
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hye Hee Cha
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min-Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jun Hee Woo
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yong Seo Koo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Beom Jeon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Ahm Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Jiang J, Cao Z, Qu J, Liu H, Han H, Cheng X. PD-1-expressing MAIT cells from patients with tuberculosis exhibit elevated production of CXCL13. Scand J Immunol 2020; 91:e12858. [PMID: 31833092 DOI: 10.1111/sji.12858] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
To understand functional role of PD-1-expressing MAIT cells during tuberculosis infection in humans, sorted PD-1+ and PD-1- MAIT cells from pleural effusions of patients with pleural tuberculosis were subjected to transcriptome sequencing. PD-1-expressing MAIT cells were analysed by flow cytometry and their phenotypic and functional features were investigated. Transcriptome sequencing identified 144 genes that were differentially expressed between PD-1+ and PD-1- MAIT cells from tuberculous pleural effusions and CXCL13 was the gene with highest fold difference. The level of PD-1-expressing MAIT cells was associated with extent of TB infection in humans. PD-1-expressing MAIT cells had increased production of CXCL13 and IL-21 as determined by flow cytometry. PD-1high CXCR5- MAIT cells were significantly expanded in pleural effusions from patients with pleural tuberculosis as compared with those from peripheral blood of both patients with tuberculosis and healthy controls. Although PD-1high CXCR5- MAIT cells from tuberculous pleural effusions had reduced IFN-γ level and increased expression of Tim-3 and GITR, they showed activated phenotype and had higher glucose uptake and lipid content. It is concluded that PD-1-expressing MAIT cells had reduced IFN-γ level but increased production of both CXCL13 and IL-21.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Laboratory Medicine, Shenzhen Third People's Hospital, and Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, and Affiliated Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Zhihong Cao
- Division of Research, Institute of Tuberculosis, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiuxin Qu
- Department of Laboratory Medicine, Shenzhen Third People's Hospital, and Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, and Affiliated Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Houming Liu
- Department of Laboratory Medicine, Shenzhen Third People's Hospital, and Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, and Affiliated Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Hongxing Han
- Department of Laboratory Medicine, Shenzhen Third People's Hospital, and Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, and Affiliated Hospital, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Xiaoxing Cheng
- Division of Research, Institute of Tuberculosis, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Wang Z, Arat S, Magid-Slav M, Brown JR. Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets. BMC SYSTEMS BIOLOGY 2018; 12:3. [PMID: 29321020 PMCID: PMC5763539 DOI: 10.1186/s12918-017-0524-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/22/2017] [Indexed: 01/24/2023]
Abstract
Background With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Results Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson’s disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Conclusions Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies. Electronic supplementary material The online version of this article (doi: 10.1186/s12918-017-0524-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhang Wang
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA
| | - Seda Arat
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA.,Current address: The Jackson Laboratory, Farmington, CT, 06032, USA
| | - Michal Magid-Slav
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA.
| | - James R Brown
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA.
| |
Collapse
|
6
|
Prado-Garcia H, Romero-Garcia S, Puerto-Aquino A, Rumbo-Nava U. The PD-L1/PD-1 pathway promotes dysfunction, but not "exhaustion", in tumor-responding T cells from pleural effusions in lung cancer patients. Cancer Immunol Immunother 2017; 66:765-776. [PMID: 28289860 PMCID: PMC11028517 DOI: 10.1007/s00262-017-1979-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Abstract
Malignant pleural effusions are frequent in patients with advanced stages of lung cancer and are commonly infiltrated by lymphocytes and tumor cells. CD8+ T cells from these effusions have reduced effector functions. The programmed death receptor 1(PD-1)/programmed death ligand 1 (PD-L1) pathway is involved in T-cell exhaustion, and it might be responsible for T-cell dysfunction in lung cancer patients. Here, we show that PD-L1 is expressed on tumor cell samples from malignant effusions, on lung cancer cell lines, and, interestingly, on MRC-5 lung fibroblasts. PD-L1 was up-regulated in lung cancer cell lines upon treatment with IFN-gamma, but not under hypoxic conditions, as detected by RT-qPCR and flow cytometry. Blockade of PD-L1 on tumor cells restored granzyme-B expression in allogenic CD8+ T cells in vitro. Remarkably, pleural effusion CD8+ T cells that responded to the tumor antigens MAGE-3A and WT-1 (identified as CD137+ cells) were lower in frequency than CMV pp65-responding CD8+ T cells and did not have an exhausted phenotype (PD-1+ TIM-3+). Nonetheless, tumor-responding CD8+ T cells had a memory phenotype and expressed higher levels of PD-1. A PD-L1 blocking antibody increased the expression of granzyme-B and perforin on polyclonal- and tumor-stimulated CD8+ T cells. Taken together, our data show that rather than being exhausted, tumor-responding CD8+ T cells are not completely differentiated into effector cells and are prone to negative regulation by PD-L1. Hence, our study provides evidence that lung cancer patients respond to immunotherapy due to blockade of the PD-L1/PD-1 pathway.
Collapse
Affiliation(s)
- Heriberto Prado-Garcia
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas", Calzada de Tlalpan 4502, Col. Seccion XVI, 14080, Mexico City, Mexico.
| | - Susana Romero-Garcia
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas", Calzada de Tlalpan 4502, Col. Seccion XVI, 14080, Mexico City, Mexico
| | - Alejandra Puerto-Aquino
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas", Calzada de Tlalpan 4502, Col. Seccion XVI, 14080, Mexico City, Mexico
| | - Uriel Rumbo-Nava
- Clinica de Neumo-Oncologia, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas", Calzada de Tlalpan 4502, Col. Seccion XVI, 14080, Mexico City, Mexico
| |
Collapse
|
7
|
Singh A, Mohan A, Dey AB, Mitra DK. Programmed death-1 + T cells inhibit effector T cells at the pathological site of miliary tuberculosis. Clin Exp Immunol 2017; 187:269-283. [PMID: 27665733 PMCID: PMC5217927 DOI: 10.1111/cei.12871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 01/07/2023] Open
Abstract
Optimal T cell activation is vital for the successful resolution of microbial infections. Programmed death-1 (PD-1) is a key immune check-point receptor expressed by activated T cells. Aberrant/excessive inhibition mediated by PD-1 may impair host immunity to Mycobacterium tuberculosis infection, leading to disseminated disease such as miliary tuberculosis (MTB). PD-1 mediated inhibition of T cells in pulmonary tuberculosis and TB pleurisy is reported. However, their role in MTB, particularly at the pathological site, remains to be addressed. The objective of this study was to investigate the role of PD-1-PD-ligand 1 (PD-L1) in T cell responses at the pathological site from patients of TB pleurisy and MTB as clinical models of contained and disseminated forms of tuberculosis, respectively. We examined the expression and function of PD-1 and its ligands (PD-L1-PD-L2) on host immune cells among tuberculosis patients. Bronchoalveolar lavage-derived CD3 T cells in MTB expressed PD-1 (54·2 ± 27·4%, P ≥ 0·0009) with significantly higher PD-1 ligand-positive T cells (PD-L1: 19·8 ± 11·8%; P ≥ 0·019, PD-L2: 12·6 ± 6·2%; P ≥ 0·023), CD19+ B cells (PD-L1: 14·4 ± 10·4%; P ≥ 0·042, PD-L2: 2·6 ± 1·43%; not significant) and CD14+ monocytes (PD-L1: 40·2 ± 20·1%; P ≥ 0·047, PD-L2: 22·4 ± 15·6%; P ≥ 0·032) compared with peripheral blood (PB) of MTB and healthy controls. The expression of PD-1 was associated with a diminished number of cells producing effector cytokines interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-2 and elevated apoptosis. Locally accumulated T cells were predominantly PD-1+ -PD-L1+ , and blocking this pathway restores the protective T cell response. We conclude that M. tuberculosis exploits the PD-1 pathway to evade the host immune response by altering the T helper type 1 (Th1) and Th2 balance at the pathological site of MTB, thereby favouring disease dissemination.
Collapse
Affiliation(s)
- A. Singh
- Department of Transplant Immunology and ImmunogeneticsAll India Institute of Medical SciencesNew DelhiIndia
| | - A. Mohan
- Department of MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - A. B. Dey
- Department of MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - D. K. Mitra
- Department of Transplant Immunology and ImmunogeneticsAll India Institute of Medical SciencesNew DelhiIndia
| |
Collapse
|
8
|
PD-1/PD-L pathway inhibits M.tb-specific CD4 + T-cell functions and phagocytosis of macrophages in active tuberculosis. Sci Rep 2016; 6:38362. [PMID: 27924827 PMCID: PMC5141449 DOI: 10.1038/srep38362] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
The role of the PD-1/PD-L pathway in a murine model of tuberculosis remains controversial regarding viral infections and clinical tuberculosis. We conducted a case-control study to investigate the modulating role and mechanism of the PD-1/PD-L pathway in patients with active tuberculosis. Fifty-nine participants, including 43 active tuberculosis (ATB) patients and 16 healthy controls (HC), were enrolled. Cell surface staining and flow cytometry were used to detect the expressions of PD-1 and its ligands on T cells and monocytes. Intracellular cytokine staining was used to determine the PPD-specific IFN-γ-secreting T-cell proportion. CD4+ T-cell proliferation and macrophage functions were investigated in the presence or absence of PD-1/PD-L pathway blockade. Proportions of both PD-1+CD4+ and PD-L1+CD4+ T cells in ATB patients were more significantly increased than in the HC group (P = 0.0112 and P = 0.0141, respectively). The expressions of PD-1, PD-L1, and PD-L2 on CD14+ monocytes in ATB patients were much higher than those in the HC group (P = 0.0016, P = 0.0001, and P = 0.0088, respectively). Blockade of PD-1 could significantly enhance CD4+ T-cell proliferation (P = 0.0433). Phagocytosis and intracellular killing activity of macrophages increased significantly with PD-1/PD-L pathway blockade. In conclusion, the PD-1/PD-L pathway inhibits not only M.tb-specific CD4+ T-cell-mediated immunity but also innate immunity.
Collapse
|
9
|
Shen L, Shi H, Gao Y, Ou Q, Liu Q, Liu Y, Wu J, Zhang W, Fan L, Shao L. The characteristic profiles of PD-1 and PD-L1 expressions and dynamic changes during treatment in active tuberculosis. Tuberculosis (Edinb) 2016; 101:146-150. [DOI: 10.1016/j.tube.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/29/2016] [Accepted: 10/01/2016] [Indexed: 12/15/2022]
|
10
|
Pan X, Zhong A, Xing Y, Shi M, Qian B, Zhou T, Chen Y, Zhang X. Increased soluble and membrane-bound PD-L1 contributes to immune regulation and disease progression in patients with tuberculous pleural effusion. Exp Ther Med 2016; 12:2161-2168. [PMID: 27698705 DOI: 10.3892/etm.2016.3611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
Soluble and membrane-bound programmed death ligand-1 (sPD-L1 and mPD-L1, respectively) have been demonstrated to participate in the immune suppression of non-small cell lung cancer. However, the contribution of sPD-L1 and mPD-L1 to immune regulation and disease progression in patients with pleural effusions remains unknown. The present study evaluated the levels of sPD-L1 and membrane-bound PD-1/PD-L1 in the peripheral blood and pleural effusions of patients with tuberculous pleural effusion (TPE), malignant pleural effusion (MPE) and non-tuberculous non-malignant pleural effusion (n-TB n-M). Furthermore, selected T lymphocytes and cluster of differentiation (CD)14+ monocytes were co-cultured to investigate the potential effect of the PD-1/PD-L1 pathway in TPE. Levels of sPD-L1 and PD-L1 on CD14+ monocytes were increased in the TPE group, as compared with the MPE and n-TB n-M groups. Furthermore, sPD-L1 levels and the expression levels of PD-L1 on CD14+ monocytes were demonstrated to be positively correlated with interferon (IFN)-γ concentration in pleural effusions. Therefore, IFN-γ may increase the expression of PD-L1 on CD14+ monocytes in vitro. Cell counting kit-8 analysis demonstrated that anti-PD-L1 antibody was able to partially reverse the proliferation of T lymphocytes in the co-culture system. The results of the present study indicated that sPD-L1 or mPD-L1 are associated with the immune regulation and disease progression of TPE, and may serve as possible biomarkers of TPE. Furthermore, sPD-L1 and the PD-1/PD-L1 pathway of TPE may be associated with the Th1 immune response; therefore, an anti-PD-1/PD-L1 pathway suggests a potential immune therapy strategy for the treatment of TPE.
Collapse
Affiliation(s)
- Xue Pan
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Anyuan Zhong
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yufei Xing
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Minhua Shi
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Bin Qian
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Tong Zhou
- Department of Respiration, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yongjing Chen
- Department of Immunology, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China; Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu 200241, P.R. China
| | - Xueguang Zhang
- Department of Immunology, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China; Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu 200241, P.R. China
| |
Collapse
|