1
|
Machnik K, Smoliński J, Paściak M. Evaluation of protein extraction protocols for MALDI-TOF Biotyper analysis of mycobacteria. J Microbiol Methods 2024; 227:107052. [PMID: 39384072 DOI: 10.1016/j.mimet.2024.107052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Infections caused by Mycobacterium tuberculosis and nontuberculous mycobacteria represent a significant global threat and medical concern. Therefore, accurate and reliable methods must be employed to identify mycobacteria rapidly. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a technique that compares the cellular protein profiles of unknown isolates with reference mass spectra in a database to identify microorganisms. However, the thick and waxy lipid layer, which is rich in mycolic acids and is present in mycobacterial cells, makes protein extraction challenging. To identify the optimal protocol for correctly identifying bacilli using MALDI-TOF mass spectrometry, this study compared four different cellular protein extraction methods. Four strains of M. bovis BCG were selected as representatives of slow-growing mycobacteria, while three strains of fast-growing mycobacteria were also included: M. peregrinum, M. smegmatis, and M. farcinogenes. The extraction method that proved most effective was the extraction of inactivated cells with chloroform and methanol, which partially delipidates the cells. These cells were then extracted with formic acid, as is standard practice for protein extraction. The advantage of this method is that it allows the parallel analysis of cellular lipids and proteins from a single sample. It is therefore important to optimize mycobacterial protein extraction for MALDI-TOF MS analysis in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Katarzyna Machnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland.
| | - Jakub Smoliński
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland.
| | - Mariola Paściak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
2
|
Gonzalo X, Yrah S, Broda A, Laurenson I, Claxton P, Kostrzewa M, Drobniewski F, Larrouy-Maumus G. Performance of lipid fingerprint by routine matrix-assisted laser desorption/ionization time of flight for the diagnosis of Mycobacterium tuberculosis complex species. Clin Microbiol Infect 2023; 29:387.e1-387.e6. [PMID: 36270589 DOI: 10.1016/j.cmi.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Rapid detection of bacterial pathogens at species and sub-species levels is crucial for appropriate treatment, infection control, and public health management. Currently, one of the challenges in clinical microbiology is the discrimination of mycobacterial sub-species within the M. tuberculosis complex (MTBC). Our objective was to evaluate the ability of a biosafe mycobacterial lipid-based approach to identify MTBC cultures and sub-species. METHODS A blinded study was conducted using 90 mycobacterial clinical isolate strains comprising MTBC strains sub-cultured in Middlebrook 7H11 medium supplemented with 10% oleic-acid, dextrose, catalase growth supplement and incubated for up to 6 weeks at 37°C and using the following seven reference strains (M. tuberculosis H37Rv, M canettii, M. africanum, M. pinnipedii, M. caprae, M. bovis, and M. bovis BCG) grown under the same conditions, to set the reference lipid database and test it against the 90 MTBC clinical isolates. Cultured mycobacteria were heat-inactivated and loaded onto the matrix-assisted laser desorption/ionization target followed by the addition of the matrix. Acquisition of the data was performed using the positive ion mode. RESULTS Based on the identification of clear and defined lipid signatures from the seven reference strains, the method that we developed was fast (<10 minutes) and produced interpretable profiles for all but four isolates, caused by poor ionization giving an n = 86 with interpretable spectra. The sensitivity and specificity of the matrix-assisted laser desorption/ionization time of flight were 94.4 (95% CI, 86.4-98.5) and 94.4 (95% CI, 72.7-99.9), respectively. CONCLUSIONS Mycobacterial lipid profiling provides a means of rapid, safe, and accurate discrimination of species within the MTBC.
Collapse
Affiliation(s)
- Ximena Gonzalo
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shih Yrah
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Agnieszka Broda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ian Laurenson
- Scottish Mycobacteria Reference Laboratory, Edinburgh, United Kingdom
| | - Pauline Claxton
- Scottish Mycobacteria Reference Laboratory, Edinburgh, United Kingdom
| | | | - Francis Drobniewski
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Sy I, Conrad L, Becker SL. Recent Advances and Potential Future Applications of MALDI-TOF Mass Spectrometry for Identification of Helminths. Diagnostics (Basel) 2022; 12:3035. [PMID: 36553043 PMCID: PMC9777230 DOI: 10.3390/diagnostics12123035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Helminth infections caused by nematodes, trematodes, and cestodes are major neglected tropical diseases and of great medical and veterinary relevance. At present, diagnosis of helminthic diseases is mainly based on microscopic observation of different parasite stages, but microscopy is associated with limited diagnostic accuracy. Against this background, recent studies described matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry as a potential, innovative tool for helminth identification and differentiation. MALDI-TOF mass spectrometry is based on the analysis of spectra profiles generated from protein extracts of a given pathogen. It requires an available spectra database containing reference spectra, also called main spectra profiles (MSPs), which are generated from well characterized specimens. At present, however, there are no commercially available databases for helminth identification using this approach. In this narrative review, we summarize recent developments and published studies between January 2019 and September 2022 that report on the use of MALDI-TOF mass spectrometry for helminths. Current challenges and future research needs are identified and briefly discussed.
Collapse
Affiliation(s)
- Issa Sy
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Lucie Conrad
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Sören L. Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
4
|
Feucherolles M, Frache G. MALDI Mass Spectrometry Imaging: A Potential Game-Changer in a Modern Microbiology. Cells 2022; 11:cells11233900. [PMID: 36497158 PMCID: PMC9738593 DOI: 10.3390/cells11233900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is routinely implemented as the reference method for the swift and straightforward identification of microorganisms. However, this method is not flawless and there is a need to upgrade the current methodology in order to free the routine lab from incubation time and shift from a culture-dependent to an even faster independent culture system. Over the last two decades, mass spectrometry imaging (MSI) gained tremendous popularity in life sciences, including microbiology, due to its ability to simultaneously detect biomolecules, as well as their spatial distribution, in complex samples. Through this literature review, we summarize the latest applications of MALDI-MSI in microbiology. In addition, we discuss the challenges and avenues of exploration for applying MSI to solve current MALDI-TOF MS limits in routine and research laboratories.
Collapse
|
5
|
Weng Y, Shepherd D, Liu Y, Krishnan N, Robertson BD, Platt N, Larrouy-Maumus G, Platt FM. Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria. Nat Commun 2022; 13:5320. [PMID: 36085278 PMCID: PMC9463166 DOI: 10.1038/s41467-022-32553-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) survives and replicates within host macrophages (MΦ) and subverts multiple antimicrobial defense mechanisms. Previously, we reported that lipids shed by pathogenic mycobacteria inhibit NPC1, the lysosomal membrane protein deficient in the lysosomal storage disorder Niemann-Pick disease type C (NPC). Inhibition of NPC1 leads to a drop in lysosomal calcium levels, blocking phagosome-lysosome fusion leading to mycobacterial survival. We speculated that the production of specific cell wall lipid(s) that inhibit NPC1 could have been a critical step in the evolution of pathogenicity. We therefore investigated whether lipid extracts from clinical Mtb strains from multiple Mtb lineages, Mtb complex (MTBC) members and non-tubercular mycobacteria (NTM) inhibit the NPC pathway. We report that inhibition of the NPC pathway was present in all clinical isolates from Mtb lineages 1, 2, 3 and 4, Mycobacterium bovis and the NTM, Mycobacterium abscessus and Mycobacterium avium. However, lipid extract from Mycobacterium canettii, which is considered to resemble the common ancestor of the MTBC did not inhibit the NPC1 pathway. We conclude that the evolution of NPC1 inhibitory mycobacterial cell wall lipids evolved early and post divergence from Mycobacterium canettii-related mycobacteria and that this activity contributes significantly to the promotion of disease.
Collapse
Affiliation(s)
- Yuzhe Weng
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
6
|
“Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022; 23:ijms23179601. [PMID: 36077000 PMCID: PMC9455953 DOI: 10.3390/ijms23179601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of “-omics” approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.
Collapse
|
7
|
The key factors contributing to the risk, diagnosis and treatment of non-tuberculous mycobacterial opportunistic infections. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The incidence and prevalence of diseases caused by non-tuberculous mycobacteria (NTM) have been steadily increasing worldwide. NTM are environmental saprophytic organisms; however, a few strains are known to produce diseases in humans affecting pulmonary and extra-pulmonary sites. Although the environment is a major source of NTM infection, recent studies have shown that person-to-person dissemination could be an important transmission route for these microorganisms. Structural and functional lung defects and immunodeficiency are major risk factors for acquiring NTM infections. Diagnosis of NTM diseases is very complex owing to the necessity of distinguishing between a true pathogen and an environmental contaminant. Identification at the species level is critical due to differences in the antibiotic susceptibility patterns of various NTM strains. Such identification is mainly achieved by molecular methods; additionally, mass spectrometry (e.g., MALDI-TOF) is useful for NTM species determination. Natural resistance of NTM species to a wide spectrum of antibiotics makes prescribing treatment for NTM diseases very difficult. NTM therapy usually takes more than one year and requires multi-drug regimens, yet the outcome often remains poor. Therefore, alternatives to antibiotic therapy treatment methods is an area under active exploration. NTM infections are an active global health problem imposing the necessity for better diagnostic tools and more effective treatment methods.
Collapse
|
8
|
Ozana V, Hruška K. Instrumental analytical tools for mycobacteria characterisation. CZECH JOURNAL OF FOOD SCIENCES 2021; 39:235-264. [DOI: 10.17221/69/2021-cjfs] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Larrouy-Maumus G. Shotgun Bacterial Lipid A Analysis Using Routine MALDI-TOF Mass Spectrometry. Methods Mol Biol 2021; 2306:275-283. [PMID: 33954953 DOI: 10.1007/978-1-0716-1410-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Detection of bacterial lipids and particularly the lipid A, the lipid anchor of the lipopolysaccharide, can be very challenging and requires a certain level of expertise. Here, this chapter describes a straightforward and simple method for the analysis of bacterial lipid A. In addition, such approach, lipid fingerprint, has the potential to be applied to other bacteria such as mycobacteria.
Collapse
Affiliation(s)
- Gérald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|
10
|
Layre E. Targeted Lipidomics of Mycobacterial Lipids and Glycolipids. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2314:549-577. [PMID: 34235670 DOI: 10.1007/978-1-0716-1460-0_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decades of study have highlighted the richness and uniqueness of the repertoire of lipid and glycolipid families produced by mycobacteria. Many of these families potently regulate host immune responses, in stimulatory or suppressive ways. Thus, the global study of this repertoire in different genetic backgrounds or under model conditions of infection is gaining interest. Despite the difficulties associated with the specificities of this repertoire, the field of mass spectrometry-based lipidomics of mycobacteria has recently made considerable progress, particularly at the analytical level. There is still considerable scope for further progress, especially with regard to the development of an efficient bioinfomatics pipeline for the analysis of the large datasets generated. This chapter describes an HPLC-MS methodology allowing the simultaneous screening of more than 20 of the lipid families produced by mycobacteria and provides recommendations to analyze the generated data given the state-of-the-art.
Collapse
Affiliation(s)
- Emilie Layre
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
11
|
Jia Khor M, Broda A, Kostrzewa M, Drobniewski F, Larrouy-Maumus G. An Improved Method for Rapid Detection of Mycobacterium abscessus Complex Based on Species-Specific Lipid Fingerprint by Routine MALDI-TOF. Front Chem 2021; 9:715890. [PMID: 34386482 PMCID: PMC8353234 DOI: 10.3389/fchem.2021.715890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 01/09/2023] Open
Abstract
Rapid diagnostics of bacterial infection is the key to successful recovery and eradication of the disease. Currently, identification of bacteria is based on the detection of highly abundant proteins, mainly ribosomal proteins, by routine MALDI-TOF mass spectrometry. However, relying solely on proteins is limited in subspecies typing for some pathogens. This is the case for, for example, the mycobacteria belonging to the Mycobacterium abscessus (MABS) complex, which is classified into three subspecies, namely, M. abscessus subsp. abscessus, M. abscessus subsp. bolletii, and M. abscessus subsp. massiliense. Being able to detect bacteria accurately and rapidly at the subspecies level could not only reliably identify the pathogen causing the disease but also enable better antibiotic stewardship. For instance, M. abscessus subsp. abscessus and M. abscessus subsp. bolletii possess a functional erm41 (erythromycin ribosomal methylation gene 41) gene, whilst M. abscessus subsp. massiliense does not, resulting in differences in macrolide antibiotic (e.g., clarithromycin and azithromycin) susceptibilities. This presents a challenge for physicians when designing an appropriate treatment regimen. To address this challenge, in addition to proteins, species-specific lipids have now been considered as a game changer in clinical microbiology diagnostics. However, their extraction can be time-consuming, and analysis requires the use of apolar toxic organic solvents (e.g., chloroform). Here, we present a new method to accurately detect species and subspecies, allowing the discrimination of the mycobacteria within the MABS complex and relying on the use of ethanol. We found that a combination of the matrix named super-DHB with 25% ethanol with a bacterial suspension at McFarland 20 gave robust and reproducible data, allowing the discrimination of the bacteria within the MABS complex strains tested in this study (n = 9). Further investigations have to be conducted to validate the method on a larger panel of strains for its use in diagnostic laboratories.
Collapse
Affiliation(s)
- Min Jia Khor
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Agnieszka Broda
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Francis Drobniewski
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
13
|
Performance of lipid fingerprint-based MALDI-ToF for the diagnosis of mycobacterial infections. Clin Microbiol Infect 2021; 27:912.e1-912.e5. [PMID: 32861860 PMCID: PMC8186428 DOI: 10.1016/j.cmi.2020.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Bacterial diagnosis of mycobacteria is often challenging because of the variability of the sensitivity and specificity of the assay used, and it can be expensive to perform accurately. Although matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has become the workhorse of clinical laboratories, the current MALDI methodology (which is based on cytosolic protein profiling) for mycobacteria is still challenging due to the number of steps involved (up to seven) and potential biosafety concerns. Knowing that mycobacteria produce surface-exposed species-specific lipids, we here hypothesized that the detection of those molecules could offer a rapid, reproducible and robust method for mycobacterial identification. METHODS We evaluated the performance of an alternative methodology based on characterized species-specific lipid profiling of intact bacteria, without any sample preparation, by MALDI MS; it uses MALDI-time-of-flight (ToF) MS combined with a specific matrix (super-2,5-dihydroxybenzoic acid solubilized in an apolar solvent system) to analyse lipids of intact heat-inactivated mycobacteria. Cultured mycobacteria are heat-inactivated and loaded directly onto the MALDI target followed by addition of the matrix. Acquisition of the data is done in both positive and negative ion modes. Blinded studies were performed using 273 mycobacterial strains comprising both the Mycobacterium tuberculosis (Mtb) complex and non-tuberculous mycobacteria (NTMs) subcultured in Middlebrook 7H9 media supplemented with 10% OADC (oleic acid/dextrose/catalase) growth supplement and incubated for up to 2 weeks at 37°C. RESULTS The method we have developed is fast (<10 mins) and highly sensitive (<1000 bacteria required); 96.7% of the Mtb complex strains (204/211) were correctly assigned as MTB complex and 91.7% (22/24) NTM species were correctly assigned based only on intact bacteria species-specific lipid profiling by MALDI-ToF MS. CONCLUSIONS Intact bacterial lipid profiling provides a biosafe and unique route for rapid and accurate mycobacterial identification.
Collapse
|
14
|
Solntceva V, Kostrzewa M, Larrouy-Maumus G. Detection of Species-Specific Lipids by Routine MALDI TOF Mass Spectrometry to Unlock the Challenges of Microbial Identification and Antimicrobial Susceptibility Testing. Front Cell Infect Microbiol 2021; 10:621452. [PMID: 33634037 PMCID: PMC7902069 DOI: 10.3389/fcimb.2020.621452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
MALDI-TOF mass spectrometry has revolutionized clinical microbiology diagnostics by delivering accurate, fast, and reliable identification of microorganisms. It is conventionally based on the detection of intracellular molecules, mainly ribosomal proteins, for identification at the species-level and/or genus-level. Nevertheless, for some microorganisms (e.g., for mycobacteria) extensive protocols are necessary in order to extract intracellular proteins, and in some cases a protein-based approach cannot provide sufficient evidence to accurately identify the microorganisms within the same genus (e.g., Shigella sp. vs E. coli and the species of the M. tuberculosis complex). Consequently lipids, along with proteins are also molecules of interest. Lipids are ubiquitous, but their structural diversity delivers complementary information to the conventional protein-based clinical microbiology matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) based approaches currently used. Lipid modifications, such as the ones found on lipid A related to polymyxin resistance in Gram-negative pathogens (e.g., phosphoethanolamine and aminoarabinose), not only play a role in the detection of microorganisms by routine MALDI-TOF mass spectrometry but can also be used as a read-out of drug susceptibility. In this review, we will demonstrate that in combination with proteins, lipids are a game-changer in both the rapid detection of pathogens and the determination of their drug susceptibility using routine MALDI-TOF mass spectrometry systems.
Collapse
Affiliation(s)
- Vera Solntceva
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Abstract
Over the last few decades, MS-based lipidomics has emerged as a powerful tool to study lipids in biological systems. This success is driven by the constant demand for complete and reliable data. The improvement of MS-based lipidomics will continue to be dependent on the advances in the technology of mass spectrometry and related techniques including separation and bioinformatics, and more importantly, on gaining insight into the knowledge of lipid chemistry essential to develop methodology for lipid analysis. It is hoped that the protocols in this book, collected from experts in their fields, can offer the beginner and the advanced user alike, useful tips toward successful lipidomic analysis.
Collapse
Affiliation(s)
- Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
Saromi K, England P, Tang W, Kostrzewa M, Corran A, Woscholski R, Larrouy-Maumus G. Rapid glycosyl-inositol-phospho-ceramide fingerprint from filamentous fungal pathogens using the MALDI Biotyper Sirius system. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8904. [PMID: 32700347 DOI: 10.1002/rcm.8904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Glycosyl-inositol-phospho-ceramides (GIPCs) or glycosylphosphatidylinositol-anchored fungal polysaccharides are known to be major lipids in plant and fungal plasma membranes and to play an important role in stress adaption. However, their analysis remains challenging due to the several steps involved for their extractions and purifications prior to mass spectrometric analysis. To address this challenge, we developed a rapid and sensitive method to identify GIPCs from the four common fungal plant pathogens Botrytis cinerea, Fusarium graminearium, Neurospora crassa and Ustilago maydis. METHODS Fungal plant pathogens were cultured, harvested, heat-inactivated and washed three times with double-distilled water. Intact fungi were deposited on a matrix-assisted laser desorption ionization (MALDI) target plate, mixed with the matrix consisting of a 9:1 mixture of 2,5-dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid solubilized at 10 mg/mL in chloroform-methanol (9:1 v/v) and analyzed using a Bruker MALDI Biotyper Sirius system in the linear negative ion mode. Mass spectra were acquired from m/z 700 to 2000. RESULTS MALDI time-of-flight (TOF) mass spectrometric analysis of cultured fungi showed clear signature of GIPCs in B. cinerea, F. graminearium, N. crassa and U. maydis. CONCLUSIONS We have demonstrated that routine MALDI-TOF in the linear negative ion mode combined with an apolar solvent system to solubilize the matrix is applicable to the detection of filamentous fungal GIPCs.
Collapse
Affiliation(s)
- Kofo Saromi
- Department of Chemistry, Faculty of Natural Sciences and Institute of Chemical Biology (ICB), Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Philippa England
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Wenhao Tang
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | | | - Andy Corran
- Syngenta Group, Bioscience, Jealott's Hill Research Station, Bracknell RG42 6EY, UK
| | - Rudiger Woscholski
- Department of Chemistry, Faculty of Natural Sciences and Institute of Chemical Biology (ICB), Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
17
|
TbD1 deletion as a driver of the evolutionary success of modern epidemic Mycobacterium tuberculosis lineages. Nat Commun 2020; 11:684. [PMID: 32019932 PMCID: PMC7000671 DOI: 10.1038/s41467-020-14508-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) strains are classified into different phylogenetic lineages (L), three of which (L2/L3/L4) emerged from a common progenitor after the loss of the MmpS6/MmpL6-encoding Mtb-specific deletion 1 region (TbD1). These TbD1-deleted “modern” lineages are responsible for globally-spread tuberculosis epidemics, whereas TbD1-intact “ancestral” lineages tend to be restricted to specific geographical areas, such as South India and South East Asia (L1) or East Africa (L7). By constructing and characterizing a panel of recombinant TbD1-knock-in and knock-out strains and comparison with clinical isolates, here we show that deletion of TbD1 confers to Mtb a significant increase in resistance to oxidative stress and hypoxia, which correlates with enhanced virulence in selected cellular, guinea pig and C3HeB/FeJ mouse infection models, the latter two mirroring in part the development of hypoxic granulomas in human disease progression. Our results suggest that loss of TbD1 at the origin of the L2/L3/L4 Mtb lineages was a key driver for their global epidemic spread and outstanding evolutionary success. Mycobacterium tuberculosis (Mtb) modern strains emerged from a common progenitor after the loss of Mtb-specific deletion 1 region (TbD1). Here, the authors show that deletion of TbD1 correlates with enhanced Mtb virulence in animal models, mirroring the development of hypoxic granulomas in human disease progression.
Collapse
|
18
|
Rebollo-Ramirez S, Krokowski S, Lobato-Márquez D, Thomson M, Pennisi I, Mostowy S, Larrouy-Maumus G. Intact Cell Lipidomics Reveal Changes to the Ratio of Cardiolipins to Phosphatidylinositols in Response to Kanamycin in HeLa and Primary Cells. Chem Res Toxicol 2018; 31:688-696. [PMID: 29947513 PMCID: PMC6103485 DOI: 10.1021/acs.chemrestox.8b00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Indexed: 01/03/2023]
Abstract
Antimicrobial resistance is a major threat the world is currently facing. Development of new antibiotics and the assessment of their toxicity represent important challenges. Current methods for addressing antibiotic toxicity rely on measuring mitochondrial damage using ATP and/or membrane potential as a readout. In this study, we propose an alternative readout looking at changes in the lipidome on intact and unprocessed cells by matrix-assisted laser desorption ionization mass spectrometry. As a proof of principle, we evaluated the impact of known antibiotics (levofloxacin, ethambutol, and kanamycin) on the lipidome of HeLa cells and mouse bone marrow-derived macrophages. Our methodology revealed that clinically relevant concentrations of kanamycin alter the ratio of cardiolipins to phosphatidylinositols. Unexpectedly, only kanamycin had this effect even though all antibiotics used in this study led to a decrease in the maximal mitochondrial respiratory capacity. Altogether, we report that intact cell-targeted lipidomics can be used as a qualitative method to rapidly assess the toxicity of aminoglycosides in HeLa and primary cells. Moreover, these results demonstrate there is no direct correlation between the ratio of cardiolipins to phosphatidylinositols and the maximal mitochondrial respiratory capacity.
Collapse
Affiliation(s)
- Sonia Rebollo-Ramirez
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| | - Sina Krokowski
- MRC
Centre for Molecular Bacteriology and Infection, Department of Medicine,
Section of Microbiology, Imperial College
London, London W12 0NN, U.K.
- Department
of Immunology and Infection, London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Damian Lobato-Márquez
- MRC
Centre for Molecular Bacteriology and Infection, Department of Medicine,
Section of Microbiology, Imperial College
London, London W12 0NN, U.K.
- Department
of Immunology and Infection, London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Michael Thomson
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| | - Ivana Pennisi
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| | - Serge Mostowy
- MRC
Centre for Molecular Bacteriology and Infection, Department of Medicine,
Section of Microbiology, Imperial College
London, London W12 0NN, U.K.
- Department
of Immunology and Infection, London School
of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, U.K.
| | - Gerald Larrouy-Maumus
- MRC
Centre for Molecular Bacteriology and Infection, Department of Life
Sciences, Faculty of Natural Sciences, Imperial
College London, London SW7 2AZ, U.K.
| |
Collapse
|
19
|
Blanc L, Lenaerts A, Dartois V, Prideaux B. Visualization of Mycobacterial Biomarkers and Tuberculosis Drugs in Infected Tissue by MALDI-MS Imaging. Anal Chem 2018; 90:6275-6282. [PMID: 29668262 PMCID: PMC5956283 DOI: 10.1021/acs.analchem.8b00985] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
MALDI mass-spectrometry
imaging (MALDI-MSI) is a technique capable
of the label-free identification and visualization of analytes in
tissue sections. We have previously applied MALDI-MSI to the study
of the spatial distribution of tuberculosis (TB) drugs in necrotic
lung granulomas characteristic of pulmonary TB disease, revealing
heterogeneous and often suboptimal drug distributions. To investigate
the impact of differential drug distributions at sites of infection,
we sought to image mycobacterial biomarkers to coregister drugs and
bacteria in lesion sections. The traditional method of visualizing Mycobacterium tuberculosis inside lesions is acid-fast staining
and microscopy. Directly analyzing and visualizing mycobacteria-specific
lipid markers by MALDI-MSI provides detailed molecular information
on bacterial distributions within granulomas, complementary to high-spatial-resolution
staining and microscopy approaches. Moreover, spatial monitoring of
molecular changes occurring in bacteria during granuloma development
can potentially contribute to a greater understanding of pulmonary-TB
pathogenesis. In this study, we developed a MALDI-MSI method to detect
and visualize specific glycolipids of mycobacteria within TB lesions.
The biomarker signal correlated well with the bacteria visualized
by IHC and acid-fast staining. This observation was seen in samples
collected from multiple animal models. Although individual bacteria
could not be visualized because of the limit of spatial resolution
(50 μm), bacterial clusters were clearly detected and heterogeneously
distributed throughout lesions. The ability to visualize drugs, metabolites,
and bacterial biomarkers by MALDI-MSI enabled direct colocalization
of drugs with specific bacterial target populations (identifiable
by distinct metabolic markers). Future applications include assessing
drug activity in lesions by visualizing drug-mediated lipid changes
and other drug-induced mycobacterial metabolic responses.
Collapse
Affiliation(s)
- Landry Blanc
- Public Health Research Institute, New Jersey Medical School , Rutgers, The State University of New Jersey , Newark , New Jersey 07103 , United States
| | - Anne Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School , Rutgers, The State University of New Jersey , Newark , New Jersey 07103 , United States.,Department of Medicine, New Jersey Medical School , Rutgers, The State University of New Jersey , Newark , New Jersey 07103 , United States
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey Medical School , Rutgers, The State University of New Jersey , Newark , New Jersey 07103 , United States
| |
Collapse
|
20
|
Manikandan M, Deenadayalan A, Vimala A, Gopal J, Chun S. Clinical MALDI mass spectrometry for tuberculosis diagnostics: Speculating the methodological blueprint and contemplating the obligation to improvise. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
C5aR contributes to the weak Th1 profile induced by an outbreak strain of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2017; 103:16-23. [DOI: 10.1016/j.tube.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/21/2023]
|
22
|
Karger A. Current developments to use linear MALDI-TOF spectra for the identification and typing of bacteria and the characterization of other cells/organisms related to infectious diseases. Proteomics Clin Appl 2016; 10:982-993. [PMID: 27400768 DOI: 10.1002/prca.201600038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
Within the past few years identification of bacteria by MALDI-TOF MS has become a standard technique in bacteriological laboratories for good reasons. MALDI-TOF MS identification is rapid, robust, automatable, and the per-sample costs are low. Yet, the spectra are very informative and the reliable identification of bacterial species is usually possible. Recently, new MS-based approaches for the identification of bacteria are emerging that are based on the detailed analysis of the bacterial proteome by high-resolution MS. These "proteotyping" approaches are highly discriminative and outperform MALDI-TOF MS-based identification in terms of specificity, but require a laborious proteomic workflow and far more expertise and sophisticated instrumentation than identification on basis of MALDI-TOF MS spectra, which can be obtained with relative simple and uncostly linear MALDI-TOF mass spectrometers. Thus MALDI-TOF MS identification of bacteria remains an attractive option for routine diagnostics. Additionally, MALDI-TOF MS identification protocols have been extended and improved in many respects making linear MALDI-TOF MS a versatile tool that can be useful beyond the identification of a bacterial species, e.g. for the characterization of leucocytes and arthropod vectors of infectious diseases. This review focuses on such improvements and extensions of the typical MALDI-TOF MS workflow in the field of infectious diseases.
Collapse
Affiliation(s)
- Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, , Federal Research Institute for Animal Health Südufer, Greifswald-Insel Riems, Germany.
| |
Collapse
|
23
|
Clonal Diversification and Changes in Lipid Traits and Colony Morphology in Mycobacterium abscessus Clinical Isolates. J Clin Microbiol 2015; 53:3438-47. [PMID: 26292297 DOI: 10.1128/jcm.02015-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 11/20/2022] Open
Abstract
The smooth-to-rough colony morphology shift in Mycobacterium abscessus has been implicated in loss of glycopeptidolipid (GPL), increased pathogenicity, and clinical decline in cystic fibrosis (CF) patients. However, the evolutionary phenotypic and genetic changes remain obscure. Serial isolates from nine non-CF patients with persistent M. abscessus infection were characterized by colony morphology, lipid profile via thin-layer chromatography and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), sequencing of eight genes in the GPL locus, and expression level of fadD23, a key gene involved in the biosynthesis of complex lipids. All 50 isolates were typed as M. abscessus subspecies abscessus and were clonally related within each patient. Rough isolates, all lacking GPL, predominated at later disease stages, some showing variation within rough morphology. While most (77%) rough isolates harbored detrimental mutations in mps1 and mps2, 13% displayed previously unreported mutations in mmpL4a and mmpS4, the latter yielding a putative GPL precursor. Two isolates showed no deleterious mutations in any of the eight genes sequenced. Mixed populations harboring different GPL locus mutations were detected in 5 patients, demonstrating clonal diversification, which was likely overlooked by conventional acid-fast bacillus (AFB) culture methods. Our work highlights applications of MALDI-TOF MS beyond identification, focusing on mycobacterial lipids relevant in virulence and adaptation. Later isolates displayed accumulation of triacylglycerol and reduced expression of fadD23, sometimes preceding rough colony onset. Our results indicate that clonal diversification and a shift in lipid metabolism, including the loss of GPL, occur during chronic lung infection with M. abscessus. GPL loss alone may not account for all traits associated with rough morphology.
Collapse
|