1
|
Patel KI, Saha N, Dhameliya TM, Chakraborti AK. Recent advancements in the quest of benzazoles as anti-Mycobacterium tuberculosis agents. Bioorg Chem 2025; 155:108093. [PMID: 39764919 DOI: 10.1016/j.bioorg.2024.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
Tuberculosis (TB) remains a global health challenge, claiming numerous lives each year, despite recent advancements in drug discovery and treatment strategies. Current TB treatment typically involves long-duration chemotherapy regimens that are often accompanied by adverse effects. The introduction of new anti-TB drugs, such as Bedaquiline, Delamanid, and Pretomanid, offers hope for more effective treatment, although challenges persist keeping the quest to find new anti-TB chemotypes an incessant exercise of medicinal chemists. Towards this initiative, the benzazoles continue to draw attention and have been recognised as new anti-TB scaffolds. Benzazole-containing compounds emerged as new chemotypes with potential to offer a versatile platform for new anti-TB drug design to generate new leads for further optimization. The elucidation of their chemical properties, biological effects, and potential mechanisms of action, would lead to identify innovative candidates for TB therapy. As medicinal chemists delve deeper into the SARs and mechanisms of action of benzazole derivatives, new opportunities for creating effective and safe anti-TB medications arise. This review highlights the potential impact of benzazole-based compounds on the search for new therapeutic agents against tuberculosis, emphasizing the importance of continued research and innovation in the field.
Collapse
Affiliation(s)
- Kshitij I Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Nirjhar Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382 481, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India; School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India.
| |
Collapse
|
2
|
Monteiro KLC, Silva ON, Dos Santos Nascimento IJ, Mendonça Júnior FJB, Aquino PGV, da Silva-Júnior EF, de Aquino TM. Medicinal Chemistry of Inhibitors Targeting Resistant Bacteria. Curr Top Med Chem 2022; 22:1983-2028. [PMID: 35319372 DOI: 10.2174/1568026622666220321124452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Osmar Nascimento Silva
- Faculty of Pharmacy, University Center of Anápolis, Unievangélica, 75083-515, Anápolis, Goiás, Brazil
| | - Igor José Dos Santos Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | | | | | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
3
|
Kumar A, Karkara BB, Panda G. Novel candidates in the clinical development pipeline for TB drug development and their Synthetic Approaches. Chem Biol Drug Des 2021; 98:787-827. [PMID: 34397161 DOI: 10.1111/cbdd.13934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is an infection caused by Mycobacterium tuberculosis (Mtb) and one of the deadliest infectious diseases in the world. Mtb has the ability to become dormant within the host and to develop resistance. Hence, new antitubercular agents are required to overcome problems in the treatment of multidrug resistant-Tb (MDR-Tb) and extensively drug resistant-Tb (XDR-Tb) along with shortening the treatment time. Several efforts are being made to develop very effective new drugs for Tb, within the pharmaceutical industry, the academia, and through public private partnerships. This review will address the anti-tubercular activities, biological target, mode of action, synthetic approaches and thoughtful concept for the development of several new drugs currently in the clinical trial pipeline (up to October 2019) for tuberculosis. The aim of this review may be very useful in scheming new chemical entities (NCEs) for Mtb.
Collapse
Affiliation(s)
- Amit Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| | - Bidhu Bhusan Karkara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India.,Department of Pharmaceutical Science, Vignan's Foundation for Science, Technology and Research University, Guntur, 522213, AP, India
| | - Gautam Panda
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
| |
Collapse
|
4
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Babes EE, Brisc C, Stoicescu M, Toma MM, Sava C, Bungau SG. Bioinformatics Accelerates the Major Tetrad: A Real Boost for the Pharmaceutical Industry. Int J Mol Sci 2021; 22:6184. [PMID: 34201152 PMCID: PMC8227524 DOI: 10.3390/ijms22126184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/01/2023] Open
Abstract
With advanced technology and its development, bioinformatics is one of the avant-garde fields that has managed to make amazing progress in the pharmaceutical-medical field by modeling the infrastructural dimensions of healthcare and integrating computing tools in drug innovation, facilitating prevention, detection/more accurate diagnosis, and treatment of disorders, while saving time and money. By association, bioinformatics and pharmacovigilance promoted both sample analyzes and interpretation of drug side effects, also focusing on drug discovery and development (DDD), in which systems biology, a personalized approach, and drug repositioning were considered together with translational medicine. The role of bioinformatics has been highlighted in DDD, proteomics, genetics, modeling, miRNA discovery and assessment, and clinical genome sequencing. The authors have collated significant data from the most known online databases and publishers, also narrowing the diversified applications, in order to target four major areas (tetrad): DDD, anti-microbial research, genomic sequencing, and miRNA research and its significance in the management of current pandemic context. Our analysis aims to provide optimal data in the field by stratification of the information related to the published data in key sectors and to capture the attention of researchers interested in bioinformatics, a field that has succeeded in advancing the healthcare paradigm by introducing developing techniques and multiple database platforms, addressed in the manuscript.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram 122413, India;
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
5
|
Makarov V, Salina E, Reynolds RC, Kyaw Zin PP, Ekins S. Molecule Property Analyses of Active Compounds for Mycobacterium tuberculosis. J Med Chem 2020; 63:8917-8955. [PMID: 32259446 DOI: 10.1021/acs.jmedchem.9b02075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) continues to claim the lives of around 1.7 million people per year. Most concerning are the reports of multidrug drug resistance. Paradoxically, this global health pandemic is demanding new therapies when resources and interest are waning. However, continued tuberculosis drug discovery is critical to address the global health need and burgeoning multidrug resistance. Many diverse classes of antitubercular compounds have been identified with activity in vitro and in vivo. Our analyses of over 100 active leads are representative of thousands of active compounds generated over the past decade, suggests that they come from few chemical classes or natural product sources. We are therefore repeatedly identifying compounds that are similar to those that preceded them. Our molecule-centered cheminformatics analyses point to the need to dramatically increase the diversity of chemical libraries tested and get outside of the historic Mtb property space if we are to generate novel improved antitubercular leads.
Collapse
Affiliation(s)
- Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Elena Salina
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Robert C Reynolds
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, NP 2540 J, 1720 Second Avenue South, Birmingham, Alabama 35294-3300, United States
| | - Phyo Phyo Kyaw Zin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, North Carolina 27606, United States
| |
Collapse
|
6
|
Yazisiz H, Hircin Cenger D, Uçarman N, Altin S. The molecular patterns of resistance to anti-tuberculosis drugs: an analysis from Istanbul, Turkey. J Chemother 2020; 32:66-74. [PMID: 31986985 DOI: 10.1080/1120009x.2020.1716477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Resistances to anti-tuberculosis (TB) drugs are related to the mutations in the genome of the Mycobacterium tuberculosis complex (MTBC). To expose the genomic mutations that cause anti-TB drug resistance. The GenoType MTBDRplus and MTBDRsl assays were used to detect genetic mutations. In this study of 1329 MTBC isolates, the sensitivities and specificities of genotypic methods for the detection of isoniazid (INH), rifampicin (RIF), ethambutol (EMB), and multi-drug resistance were 0.77, 0.84, 0.65, 0.89 and 0.99, 0.98, 0.67, 0.94, respectively. MUT3 mutations (S531L) of the rpoB gene for RIF resistance and MUT1 mutations (S315T1 and C15T) of the katG and inhA genes for INH resistance were dominant. The most frequently observed mutations that created resistance to fluoroquinolones (FLQ) were MUT3C (D94G) of the gyrA gene. The predominant mutations of EMB resistance were MUT1B (M306V) of the embB gene. Aminoglycosides/cyclic peptides (AG/CP) resistance was rare. The molecular mechanisms of anti-TB drugs resistance in MTBC strains found in Istanbul are similar to those in the literature.
Collapse
Affiliation(s)
- Hatice Yazisiz
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Derya Hircin Cenger
- Clinic of Infectious Diseases and Clinical Microbiology, Istanbul Yedikule Chest Diseases and Chest Surgery Training and Research Hospital, Istanbul, Turkey
| | - Nilay Uçarman
- Public Health Agency of Turkey, National Tuberculosis Reference Laboratory, Ankara, Turkey
| | - Sedat Altin
- Clinic of Chest Diseases, Istanbul Yedikule Chest Diseases and Chest Surgery Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Anthwal D, Lavania S, Gupta RK, Verma A, Myneedu VP, Sharma PP, Verma H, Malhotra V, Gupta A, Gupta NK, Sarin R, Haldar S, Tyagi JS. Development and evaluation of novel bio-safe filter paper-based kits for sputum microscopy and transport to directly detect Mycobacterium tuberculosis and associated drug resistance. PLoS One 2019; 14:e0220967. [PMID: 31408508 PMCID: PMC6692035 DOI: 10.1371/journal.pone.0220967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/26/2019] [Indexed: 11/18/2022] Open
Abstract
India has the highest burden of Tuberculosis (TB) and multidrug-resistant TB (MDR-TB) worldwide. Innovative technology is the need of the hour to identify these cases that remain either undiagnosed or inadequately diagnosed due to the unavailability of appropriate tools at primary healthcare settings. We developed and evaluated 3 kits, namely ‘TB Detect’ (containing BioFM-Filter device), ‘TB Concentration and Transport’ (containing Trans-Filter device) and ‘TB DNA Extraction’ kits. These kits enable bio-safe equipment-free concentration of sputum on filters and improved fluorescence microscopy at primary healthcare centres, ambient temperature transport of dried inactivated sputum filters to central laboratories and molecular detection of drug resistance by PCR and DNA sequencing (Mol-DST). In a 2-site evaluation (n = 1190 sputum specimens) on presumptive TB patients, BioFM-Filter smear exhibited a significant increase in positivity of 7% and 4% over ZN smear and LED-FM smear (p<0.05), respectively and an increment in smear grade status (1+ or 2+ to 3+) of 16% over ZN smear and 20% over LED-FM smear. The sensitivity of Mol-DST in presumptive MDR-TB and XDR-TB cases (n = 148) was 90% for Rifampicin (95% confidence interval [CI], 78–96%), 84% for Isoniazid (95% CI, 72–92%), 83% for Fluoroquinolones (95% CI, 66–93%) and 75% for Aminoglycosides (95% CI, 35–97%), using phenotypic DST as the reference standard. Test specificity was 88–93% and concordance was ~89–92% (κ value 0.8–0.9). The patient-friendly kits described here address several of the existing challenges and are designed to provide ‘Universal Access’ to rapid TB diagnosis, including drug-resistant disease. Their utility was demonstrated by application to sputum at 2 sites in India. Our findings pave the way for larger studies in different point-of-care settings, including high-density urban areas and remote geographical locations.
Collapse
Affiliation(s)
- Divya Anthwal
- Center for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad, India
| | - Surabhi Lavania
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rakesh Kumar Gupta
- Center for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad, India
| | - Ajoy Verma
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Mehrauli, New Delhi, India
| | - Vithal Prasad Myneedu
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Mehrauli, New Delhi, India
| | - Prem Prakash Sharma
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Mehrauli, New Delhi, India
| | | | | | - Ashawant Gupta
- Advanced Microdevices Pvt Ltd, Industrial Area, Ambala Cantt, India
| | | | - Rohit Sarin
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Mehrauli, New Delhi, India
- * E-mail: (JST); (SH); (RS)
| | - Sagarika Haldar
- Center for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad, India
- * E-mail: (JST); (SH); (RS)
| | - Jaya Sivaswami Tyagi
- Center for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Expressway, Faridabad, India
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- * E-mail: (JST); (SH); (RS)
| |
Collapse
|
8
|
Importance of Detection of Isoniazid and Rifampicin Mono Drug Resistance and Determining Rate of MDR-TB in Smear Positive Sputum Samples from a Tertiary Care Hospital of West U.P. India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Aher RB, Roy K. Computational Approaches as Rational Decision Support Systems for Discovering Next-Generation Antitubercular Agents: Mini-Review. Curr Comput Aided Drug Des 2019; 15:369-383. [PMID: 30706823 DOI: 10.2174/1573409915666190130153214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Abstract
Tuberculosis, malaria, dengue, chikungunya, leishmaniasis etc. are a large group of neglected tropical diseases that prevail in tropical and subtropical countries, affecting one billion people every year. Minimal funding and grants for research on these scientific problems challenge many researchers to find a different way to reduce the extensive time and cost involved in the drug discovery cycle of these problems. Computer-aided drug design techniques have already been proved successful in the discovery of new molecules rationally by reducing the time and cost involved in the development of drugs. In the current minireview, we are highlighting on the molecular modeling studies published during 2010-2018 for target specific antitubercular agents. This review includes the studies of Structure-Based (SB) and Ligand-Based (LB) modeling and those involving Machine Learning (ML) techniques against different antitubercular targets such as dihydrofolate reductase (DHFR), enoyl Acyl Carrier Protein (ACP) reductase (InhA), catalase-peroxidase (KatG), enzyme antigen 85C, protein tyrosine phosphatases (PtpA and PtpB), dUTPase, thioredoxin reductase (MtTrxR), etc. The information presented in this review will help the researchers to get acquainted with the recent progress in the modeling studies of antitubercular agents.
Collapse
Affiliation(s)
- Rahul Balasaheb Aher
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
10
|
Dhiman R, Singh R. Recent advances for identification of new scaffolds and drug targets for Mycobacterium tuberculosis. IUBMB Life 2018; 70:905-916. [PMID: 29761628 DOI: 10.1002/iub.1863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/07/2018] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is a leading cause of mortality and morbidity with an estimated 1.7 billion people latently infected with the pathogen worldwide. Clinically, TB infection presents itself as an asymptomatic infection, which gradually manifests to life threatening disease. The emergence of various drug resistant strains of Mycobacterium tuberculosis and lengthy duration of chemotherapy are major challenges in the field of TB drug development. Hence, there is an urgent need to develop scaffolds that possess a novel mechanism of action, can shorten the duration of therapy, and are active against both drug resistant and susceptible strains. In this review, we will discuss recent progress made in the field of TB drug development with emphasis on screening methods and drug targets from M. tuberculosis. The current review provides insights into mechanism of action of new scaffolds that are being evaluated in various stages of clinical trials. © 2018 IUBMB Life, 70(9):905-916, 2018.
Collapse
Affiliation(s)
- Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana, India
| |
Collapse
|
11
|
Comprehensive Analysis and Comparison on the Codon Usage Pattern of Whole Mycobacterium tuberculosis Coding Genome from Different Area. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3574976. [PMID: 29854746 PMCID: PMC5964552 DOI: 10.1155/2018/3574976] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/25/2018] [Accepted: 03/28/2018] [Indexed: 11/18/2022]
Abstract
Phenomenon of unequal use of synonymous codons in Mycobacterium tuberculosis is common. Codon usage bias not only plays an important regulatory role at the level of gene expression, but also helps in improving the accuracy and efficiency of translation. Meanwhile, codon usage pattern of Mycobacterium tuberculosis genome is important for interpreting evolutionary characteristics in species. In order to investigate the codon usage pattern of the Mycobacterium tuberculosis genome, 12 Mycobacterium tuberculosis genomes from different area are downloaded from the GeneBank. The correlations between G3, GC12, whole GC content, codon adaptation index, codon bias index, and so on of Mycobacterium tuberculosis genomes are calculated. The ENC-plot, relationship between A3/(A3 + T3) and G3/(G3 + C3), GC12 versus GC3 plot, and the RSCU of overall/separated genomes all show that the codon usage bias exists in all 12 Mycobacterium tuberculosis genomes. Lastly, relationship between CBI and the equalization of ENC shows a strong negative correlation between them. The relationship between protein length and GC content (GC3 and GC12) shows that more obvious differences in the GC content may be in shorter protein. These results show that codon usage bias existing in the Mycobacterium tuberculosis genomes could be used for further study on their evolutionary phenomenon.
Collapse
|
12
|
Agarwal S, Verma E, Kumar V, Lall N, Sau S, Iyer AK, Kashaw SK. An integrated computational approach of molecular dynamics simulations, receptor binding studies and pharmacophore mapping analysis in search of potent inhibitors against tuberculosis. J Mol Graph Model 2018; 83:17-32. [PMID: 29753941 DOI: 10.1016/j.jmgm.2018.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022]
Abstract
Tuberculosis is an infectious chronic disease caused by obligate pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Although many first and second line drugs are available for its treatment, but their irrational use has adversely lead to the emerging cases of multiple drug resistant and extensively drug-resistant tuberculosis. Therefore, there is an intense need to develop novel potent analogues for its treatment. This has prompted us to develop potent analogues against TB. The Mycobacterium tuberculosis genome provides us with number of validated targets to combat against TB. Study of Mtb genome disclosed six epoxide hydrolases (A to F) which convert harmful epoxide into diols and act as a potential drug target for rational drug design. Our current strategy is to develop such analogues which inhibits epoxide hydrolase enzyme present in Mtb genome. To achieve this, we adopted an integrated computational approach involving QSAR, pharmacophore mapping, molecular docking and molecular dynamics simulation studies. The approach envisaged vital information about the role of molecular descriptors, essential pharmacophoric features and binding energy for compounds to bind into the active site of epoxide hydrolase. Molecular docking analysis revealed that analogues exhibited significant binding to Mtb epoxide hydrolase. Further, three docked complexes 2s, 37s and 15s with high, moderate and low docking scores respectively were selected for molecular dynamics simulation studies. RMSD analysis revealed that all complexes are stable with average RMSD below 2 Å throughout the 10 ns simulations. The B-factor analysis showed that the active site residues of epoxide hydrolase are flexible enough to interact with inhibitor. Moreover, to confirm the binding of these urea derivatives, MM-GBSA binding energy analysis were performed. The calculations showed that 37s has more binding affinity (ΔGtotal = -52.24 kcal/mol) towards epoxide hydrolase compared to 2s (ΔGtotal = -51.70 kcal/mol) and 15s (ΔGtotal = -49.97 kcal/mol). The structural features inferred in our study may provide the future directions to the scientists towards the discovery of new chemical entity exhibiting anti-TB property.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Ekta Verma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Vivek Kumar
- Department of Plant and Soil Sciences, University of Pretoria, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, South Africa
| | - Samaresh Sau
- Use-inspired Biomaterials & integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Karmanos Cancer Institute, Detroit, MI, USA
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India.
| |
Collapse
|
13
|
Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother 2018; 73:1138-1151. [PMID: 29360989 PMCID: PMC5909630 DOI: 10.1093/jac/dkx506] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Drug-resistant TB (DR-TB) remains a significant challenge in TB treatment and control programmes worldwide. Advances in sequencing technology have significantly increased our understanding of the mechanisms of resistance to anti-TB drugs. This review provides an update on advances in our understanding of drug resistance mechanisms to new, existing drugs and repurposed agents. Recent advances in WGS technology hold promise as a tool for rapid diagnosis and clinical management of TB. Although the standard approach to WGS of Mycobacterium tuberculosis is slow due to the requirement for organism culture, recent attempts to sequence directly from clinical specimens have improved the potential to diagnose and detect resistance within days. The introduction of new databases may be helpful, such as the Relational Sequencing TB Data Platform, which contains a collection of whole-genome sequences highlighting key drug resistance mutations and clinical outcomes. Taken together, these advances will help devise better molecular diagnostics for more effective DR-TB management enabling personalized treatment, and will facilitate the development of new drugs aimed at improving outcomes of patients with this disease.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Santhuri Rambaran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council (SAMRC) - CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
14
|
Maningi NE, Malinga LA, Antiabong JF, Lekalakala RM, Mbelle NM. Comparison of line probe assay to BACTEC MGIT 960 system for susceptibility testing of first and second-line anti-tuberculosis drugs in a referral laboratory in South Africa. BMC Infect Dis 2017; 17:795. [PMID: 29282012 PMCID: PMC5745758 DOI: 10.1186/s12879-017-2898-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 12/10/2017] [Indexed: 12/31/2022] Open
Abstract
Background The incidence of multidrug-resistant tuberculosis (MDR-TB) is increasing and the emergence of extensively drug-resistant tuberculosis (XDR-TB) is a major challenge. Controlling resistance, reducing transmission and improving treatment outcomes in MDR/XDR-TB patients is reliant on susceptibility testing. Susceptibility testing using phenotypic methods is labour intensive and time-consuming. Alternative methods, such as molecular assays are easier to perform and have a rapid turn-around time. The World Health Organization (WHO) has endorsed the use of line probe assays (LPAs) for first and second line diagnostic screening of MDR/XDR-TB. Methods We compared the performance of LPAs to BACTEC MGIT 960 system for susceptibility testing of bacterial resistance to first-line drugs: rifampicin (RIF), isoniazid (INH), ethambutol (EMB), and second-line drugs ofloxacin (OFL) and kanamycin (KAN). One hundred (100) consecutive non-repeat Mycobacterium tuberculosis cultures, resistant to either INH or RIF or both, as identified by BACTEC MGIT 960 were tested. All isoniazid resistant cultures (n = 97) and RIF resistant cultures (n = 90) were processed with Genotype®MTBDRplus and Genotype®MTBDRsl line probe assays (LPAs). The agar proportion method was employed to further analyze discordant LPAs and the MGIT 960 isolates. Results The Genotype ®MTBDRplus (version 2) sensitivity, specificity, PPV and NPV from culture isolates were as follows: RIF, 100%, 87.9, 58.3% and 100%; INH, 100%, 94.4%, 93.5% and 100%. The sensitivity, specificity PPV and NPV for Genotype ® MTBDRsl (version 1 and 2) from culture isolates were as follows: EMB, 60.0%, 89.2%, 68.2% and 85.3%; OFL, 100%, 91.4%, 56.2% and 100%; KAN, 100%, 97.7%, 60.0% and 100%. Line probe assay showed an excellent agreement (k = 0.93) for INH susceptibility testing when compared to MGIT 960 system while there was good agreement (k = 0.6–0.7) between both methods for RIF, OFL, KAN testing and moderate agreement for EMB (k = 0.5). A high RIF mono-resistance (MGIT 960 33/97 and LPA 43/97) was observed. Conclusion LPAs are an efficient and reliable rapid molecular DST assay for rapid susceptibility screening of MDR and XDR-TB. Using LPAs in high MDR/XDR burden countries allows for appropriate and timely treatment, which will reduce transmission rates, morbidity and improve treatment outcomes in patients.
Collapse
Affiliation(s)
- Nontuthuko E Maningi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa.
| | - Lesibana A Malinga
- Tuberculosis Platform, South African Medical Research Council, Pretoria, South Africa
| | - John F Antiabong
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Ruth M Lekalakala
- Tshwane Division, National Health Laboratory Services, Pretoria, South Africa
| | - Nontombi M Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa.,Tshwane Division, National Health Laboratory Services, Pretoria, South Africa
| |
Collapse
|
15
|
Lavania S, Anthwal D, Bhalla M, Singh N, Haldar S, Tyagi JS. Direct detection of Mycobacterium tuberculosis rifampin resistance in bio-safe stained sputum smears. PLoS One 2017; 12:e0189149. [PMID: 29216262 PMCID: PMC5720740 DOI: 10.1371/journal.pone.0189149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/20/2017] [Indexed: 11/19/2022] Open
Abstract
Direct smear microscopy of sputum forms the mainstay of TB diagnosis in resource-limited settings. Stained sputum smear slides can serve as a ready-made resource to transport sputum for molecular drug susceptibility testing. However, bio-safety is a major concern during transport of sputum/stained slides and for laboratory workers engaged in processing Mycobacterium tuberculosis infected sputum specimens. In this study, a bio-safe USP (Universal Sample Processing) concentration-based sputum processing method (Bio-safe method) was assessed on 87 M. tuberculosis culture positive sputum samples. Samples were processed for Ziehl-Neelsen (ZN) smear, liquid culture and DNA isolation. DNA isolated directly from sputum was subjected to an IS6110 PCR assay. Both sputum DNA and DNA extracted from bio-safe ZN concentrated smear slides were subjected to rpoB PCR and simultaneously assessed by DNA sequencing for determining rifampin (RIF) resistance. All sputum samples were rendered sterile by Bio-safe method. Bio-safe smears exhibited a 5% increment in positivity over direct smear with a 14% increment in smear grade status. All samples were positive for IS6110 and rpoB PCR. Thirty four percent samples were RIF resistant by rpoB PCR product sequencing. A 100% concordance (κ value = 1) was obtained between sequencing results derived from bio-safe smear slides and bio-safe sputum. This study demonstrates that Bio-safe method can address safety issues associated with sputum processing, provide an efficient alternative to sample transport in the form of bio-safe stained concentrated smear slides and can also provide information on drug (RIF) resistance by direct DNA sequencing.
Collapse
Affiliation(s)
- Surabhi Lavania
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- School of Biotechnology, Gautam Buddha University, Yamuna Express way, Greater Noida, Uttar Pradesh, India
| | - Divya Anthwal
- Center for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Express way, Faridabad, India
| | - Manpreet Bhalla
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Mehrauli, New Delhi, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Yamuna Express way, Greater Noida, Uttar Pradesh, India
| | - Sagarika Haldar
- Center for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Express way, Faridabad, India
- * E-mail: , (JST); (SH)
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
- Center for Bio-design and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad–Gurgaon Express way, Faridabad, India
- * E-mail: , (JST); (SH)
| |
Collapse
|
16
|
Barthod L, Lopez JG, Curti C, Bornet C, Roche M, Montana M, Vanelle P. News on therapeutic management of MDR-tuberculosis: a literature review. J Chemother 2017. [DOI: 10.1080/1120009x.2017.1338845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Christophe Curti
- APHM, Service Central de la Qualité et de l'Information Pharmaceutiques (SCQIP), Marseille, France
- Aix Marseille Université, CNRS, ICR, Marseille, France
| | | | - Manon Roche
- APHM, Service Central de la Qualité et de l'Information Pharmaceutiques (SCQIP), Marseille, France
- Aix Marseille Université, CNRS, ICR, Marseille, France
| | - Marc Montana
- Aix Marseille Université, CNRS, ICR, Marseille, France
- APHM, Hôpital Timone, Oncopharma, Marseille, France
| | - Patrice Vanelle
- APHM, Service Central de la Qualité et de l'Information Pharmaceutiques (SCQIP), Marseille, France
- Aix Marseille Université, CNRS, ICR, Marseille, France
| |
Collapse
|
17
|
Abrams AJ, Trees DL. Genomic sequencing of Neisseria gonorrhoeae to respond to the urgent threat of antimicrobial-resistant gonorrhea. Pathog Dis 2017; 75:3106325. [PMID: 28387837 PMCID: PMC6956991 DOI: 10.1093/femspd/ftx041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/04/2017] [Indexed: 01/02/2023] Open
Abstract
The development of resistance of Neisseria gonorrhoeae to available first-line antibiotics, including penicillins, tetracyclines, fluoroquinolones and cephalosporins, has led to the circulation of multidrug-resistant gonorrhea at a global scale. Advancements in high-throughput whole-genome sequencing (WGS) provide useful tools that can be used to enhance gonococcal detection, treatment and management capabilities, which will ultimately aid in the control of antimicrobial resistant gonorrhea worldwide. In this minireview, we discuss the application of WGS of N. gonorrhoeae to strain typing, phylogenomic, molecular surveillance and transmission studies. We also examine the application of WGS analyses to the public health sector as well as the potential usage of WGS-based transcriptomic and epigenetic methods to identify novel gonococcal resistance mechanisms.
Collapse
Affiliation(s)
- A. Jeanine Abrams
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA 30333, USA
| | - David L. Trees
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, US Department of Health and Human Services, Atlanta, GA 30333, USA
| |
Collapse
|
18
|
Brindha S, Sundaramurthi JC, Velmurugan D, Vincent S, Gnanadoss JJ. Docking-based virtual screening of known drugs against murE of Mycobacterium tuberculosis towards repurposing for TB. Bioinformation 2016; 12:359-367. [PMID: 28275291 PMCID: PMC5312000 DOI: 10.6026/97320630012368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/08/2016] [Indexed: 01/04/2023] Open
Abstract
Repurposing has gained momentum globally and become an alternative avenue for drug discovery because of its better success rate,
and reduced cost, time and issues related to safety than the conventional drug discovery process. Several drugs have already been
successfully repurposed for other clinical conditions including drug resistant tuberculosis (DR-TB). Though TB can be cured
completely with the use of currently available anti-tubercular drugs, emergence of drug resistant strains of Mycobacterium tuberculosis
and the huge death toll globally, together necessitate urgently newer and effective drugs for TB. Therefore, we performed virtual
screening of 1554 FDA approved drugs against murE, which is essential for peptidoglycan biosynthesis of M. tuberculosis. We used
Glide and AutoDock Vina for virtual screening and applied rigid docking algorithm followed by induced fit docking algorithm in
order to enhance the quality of the docking prediction and to prioritize drugs for repurposing. We found 17 drugs binding strongly
with murE and three of them, namely, lymecycline, acarbose and desmopressin were consistently present within top 10 ranks by both
Glide and AutoDock Vina in the induced fit docking algorithm, which strongly indicates that these three drugs are potential
candidates for further studies towards repurposing for TB.
Collapse
Affiliation(s)
| | | | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai - 600025, Tamil Nadu, India
| | - Savariar Vincent
- Loyola College, Nungambakkam, Chennai - 600034, Tamil Nadu, India
| | | |
Collapse
|