1
|
Ahmed S, Chowdhury S, Gomez J, Hung DT, Parish T. Benzene Amide Ether Scaffold is Active against Non-replicating and Intracellular Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:1981-1992. [PMID: 37708378 PMCID: PMC10580325 DOI: 10.1021/acsinfecdis.3c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/16/2023]
Abstract
New drugs to treat tuberculosis which target intractable bacterial populations are required to develop shorter and more effective treatment regimens. The benzene amide ether scaffold has activity against intracellular Mycobacterium tuberculosis, but low activity against extracellular, actively replicating M. tuberculosis. We determined that these molecules have bactericidal activity against non-replicating M. tuberculosis but not actively replicating bacteria. Exposure to compounds depleted ATP levels in non-replicating bacteria and increased the oxygen consumption rate; a subset of molecules led to the accumulation of intrabacterial reactive oxygen species. A comprehensive screen of M. tuberculosis strains identified a number of under-expressing strains as more sensitive to compounds under replicating conditions including QcrA and QcrB hypomorphs. We determined the global gene expression profile after compound treatment for both replicating and nutrient-starved M. tuberculosis. We saw compound-dependent changes in the expression of genes involved in energy metabolism under both conditions. Taken together, our data suggest that the scaffold targets respiration in M. tuberculosis.
Collapse
Affiliation(s)
- Sara Ahmed
- TB
Discovery Research, Infectious Disease Research
Institute, Seattle, Washington 98104, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Sultan Chowdhury
- TB
Discovery Research, Infectious Disease Research
Institute, Seattle, Washington 98104, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - James Gomez
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Deborah T. Hung
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Tanya Parish
- TB
Discovery Research, Infectious Disease Research
Institute, Seattle, Washington 98104, United States
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| |
Collapse
|
2
|
Santos NCDS, Scodro RBDL, Sampiron EG, Ieque AL, Carvalho HCD, Santos TDS, Ghiraldi Lopes LD, Campanerut-Sá PAZ, Siqueira VLD, Caleffi-Ferracioli KR, Teixeira JJV, Cardoso RF. Minimum Bactericidal Concentration Techniques in Mycobacterium tuberculosis: A Systematic Review. Microb Drug Resist 2020; 26:752-765. [PMID: 31977277 DOI: 10.1089/mdr.2019.0191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Minimum bactericidal concentration (MBC) assay is an accepted parameter for evaluating new antimicrobial agents, and it is frequently used as a research tool to provide a prediction of bacterial eradication. To the best of our knowledge, there is no standardization among researchers regarding the technique used to detect a drug's MBC in Mycobacterium tuberculosis. Thus, the aim of this systematic review is to discuss the available literature in determining a drug's MBC in M. tuberculosis, to find the most commonly used technique and standardize the process. A broad and rigorous literature search of three electronic databases (PubMed, Web of Knowledge, and LILACS) was performed according to the PRISMA statement. We considered studies that were published from January 1, 1990 to February 19, 2019. Google Scholar was also searched to increase the number of publications. We searched for articles using the MeSH terms "microbiological techniques," "Mycobacterium," "antibacterial agents." In addition, free terms were used in the search. The search yielded 6,674 publications. After filter application, 5,348 publications remained. Of these, we evaluated the full text of 187 publications. By applying the inclusion criteria, 69 studies were included in the present systematic review. In the literature analyzed, a great variety in the techniques used to determine a drug's MBC in M. tuberculosis was observed. The most common variability is related to the culture media used, culture incubation time, and the percentage of bacterial death for the drug to be considered as bactericidal. The most commonly used technique for drug's MBC determination was carried out using the drug's minimum inhibitory concentration (MIC) assay. Aliquots from prior MIC values were subcultured in Middlebrook agar and incubated for 4 weeks at 35°C for determining the colony forming unit (CFU) with relevance to detect 99.9% bacilli killed or reduction in 3 log10 viable bacilli.
Collapse
Affiliation(s)
| | - Regiane Bertin de Lima Scodro
- Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | | | | | | | - Thais da Silva Santos
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil
| | - Luciana Dias Ghiraldi Lopes
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Paula Aline Zanetti Campanerut-Sá
- Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Vera Lucia Dias Siqueira
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Jorge Juarez Vieira Teixeira
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| |
Collapse
|
3
|
Chen C, Han X, Yan Q, Wang C, Jia L, Taj A, Zhao L, Ma Y. The Inhibitory Effect of GlmU Acetyltransferase Inhibitor TPSA on Mycobacterium tuberculosis May Be Affected Due to Its Methylation by Methyltransferase Rv0560c. Front Cell Infect Microbiol 2019; 9:251. [PMID: 31380295 PMCID: PMC6652808 DOI: 10.3389/fcimb.2019.00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium tuberculosis bifunctional enzyme GlmU is a novel target for anti-TB drugs and is involved in glycosyl donor UDP-N-acetylglucosamine biosynthesis. Here, we found that TPSA (2-[5-(2-{[4-(2-thienyl)-2-pyrimidinyl]sulfanyl}acetyl)-2-thienyl]acetic acid) was a novel inhibitor for GlmU acetyltransferase activity (IC50: 5.3 μM). The interaction sites of GlmU and TPSA by molecular docking were confirmed by site-directed mutagenesis. TPSA showed an inhibitory effect on Mtb H37Ra growth and intracellular H37Ra in macrophage cells (MIC: 66.5 μM). To investigate why TPSA at a higher concentration (66.5 μM) was able to inhibit H37Ra growth, proteome and transcriptome of H37Ra treated with TPSA were analyzed. The expression of two methyltransferases MRA_0565 (Rv0558) and MRA_0567 (Rv0560c) were markedly increased. TPSA was pre-incubated with purified Rv0558 and Rv0560c in the presence of S-adenosylmethionine (methyl donor) respectively, resulting in its decreased inhibitory effect of GlmU on acetyltransferase activity. The inhibition of TPSA on growth of H37Ra with overexpressed Rv0558 and Rv0560c was reduced. These implied that methyltransferases could modify TPSA. The methylation of TPSA catalyzed by Rv0560c was subsequently confirmed by LC-MS. Therefore, TPSA as a GlmU acetyltransferase activity inhibitor may offer a structural basis for new anti-tuberculosis drugs. TPSA needs to be modified further by some groups to prevent its methylation by methyltransferases.
Collapse
Affiliation(s)
- Changming Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiuyan Han
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lizhe Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Howe MD, Kordus SL, Cole MS, Bauman AA, Aldrich CC, Baughn AD, Minato Y. Methionine Antagonizes para-Aminosalicylic Acid Activity via Affecting Folate Precursor Biosynthesis in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2018; 8:399. [PMID: 30483484 PMCID: PMC6240602 DOI: 10.3389/fcimb.2018.00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/23/2018] [Indexed: 12/23/2022] Open
Abstract
para-Aminosalicylic acid (PAS) is a second-line anti-tubercular drug that is used for the treatment of drug-resistant tuberculosis (TB). PAS efficacy in the treatment of TB is limited by its lower potency against Mycobacterium tuberculosis relative to many other drugs in the TB treatment arsenal. It is known that intrinsic metabolites, such as, para-aminobenzoic acid (PABA) and methionine, antagonize PAS and structurally related anti-folate drugs. While the basis for PABA-mediated antagonism of anti-folates is understood, the mechanism for methionine-based antagonism remains undefined. In the present study, we used both targeted and untargeted approaches to identify factors associated with methionine-mediated antagonism of PAS activity. We found that synthesis of folate precursors as well as a putative amino acid transporter, designated MetM, play crucial roles in this process. Disruption of metM by transposon insertion resulted in a ≥30-fold decrease in uptake of methionine in M. bovis BCG, indicating that metM is the major facilitator of methionine transport. We also discovered that intracellular biotin confers intrinsic PAS resistance in a methionine-independent manner. Collectively, our results demonstrate that methionine-mediated antagonism of anti-folate drugs occurs through sustained production of folate precursors.
Collapse
Affiliation(s)
- Michael D Howe
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Shannon L Kordus
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Malcolm S Cole
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Allison A Bauman
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Yusuke Minato
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
5
|
Gamngoen R, Putim C, Salee P, Phunpae P, Butr-Indr B. A comparison of Rv0559c and Rv0560c expression in drug-resistant Mycobacterium tuberculosis in response to first-line antituberculosis drugs. Tuberculosis (Edinb) 2017. [PMID: 29523329 DOI: 10.1016/j.tube.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug resistance to Mycobacterium tuberculosis is a major health problem worldwide. Mycobacterium tuberculosis can progress to be mono-drug resistant or multi-drug resistant by improper treatment. The chemical stress of M. tuberculosis was performed in this study. Rv0559c is an unknown secreted protein. Rv0560c is a putative benzoquinone methyltransferase of M. tuberculosis cell. Rv0559c gene is located downstream of Rv0560c gene. Both genes respond to salicylate stress. Drug susceptible, isoniazid resistant, rifampicin resistant and multi-drug resistant phenotypes of M. tuberculosis clinical isolates were used to determine the expression of Rv0559c and Rv0560c by qRT-PCR. In all of mycobacteria strains there was up-regulation in both genes when stressed with isoniazid. This study determined the expression of both genes, which may play important roles in the drug resistance mechanism of mycobacteria.
Collapse
Affiliation(s)
- Ratikorn Gamngoen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chanyanuch Putim
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Parichat Salee
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ponrut Phunpae
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bordin Butr-Indr
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|