1
|
Isaei E, Sobhanipoor MH, Rahimlou M, Firouzeh N. The application of aptamer in tuberculosis diagnosis: a systematic review. Trop Dis Travel Med Vaccines 2024; 10:25. [PMID: 39674868 DOI: 10.1186/s40794-024-00235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024] Open
Abstract
Tuberculosis represents a significant menace to health, leading to millions of cases and fatalities each year. Traditional diagnostic methods, while effective, have limitations, necessitating improved tools. Aptamers possessing remarkable specificity single-stranded DNA or RNA molecules promising in TB diagnosis due to their adaptability and precise biomarker detection capabilities. In this study, we aimed to evaluate the research on aptamer applications in TB diagnosis, evaluating the efficacy, limitations, and future prospects. The present systematic review study followed PRISMA guidelines, including peer-reviewed studies on aptamer efficacy in TB diagnosis. Eligibility criteria covered experimental and human studies on TB diagnosis, prognosis, progression, and treatment response. Of 1165 identified studies, 35 met inclusion criteria. Aptamers were utilized for MTB and mycobacterial antigen detection, showcasing notable sensitivity and specificity. Targeted antigens included ESAT-6, HspX, MPT 64, and IFN-γ. Various aptamer-based assays, such as electrochemical, fluorescent, and immunosensors, demonstrated effectiveness. Multiplex assays, particularly for IFN-γ, showed enhanced diagnostic accuracy. Aptamer-based assays exhibited discrimination between active TB and other conditions, showcasing their diagnostic value. Aptamers, especially in conjunction with nanomaterials, show promise in developing advanced TB biosensors with superior detection capabilities. Cost-effective devices with heightened sensitivity for clinical and screening use are crucial for TB control, emphasizing the need for ongoing research in this field.
Collapse
Affiliation(s)
- Elham Isaei
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mehran Rahimlou
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nima Firouzeh
- Vector-Borne Disease Research Center, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| |
Collapse
|
2
|
Shaik J, Pillay M, Jeena P. A Review Of Host-Specific Diagnostic And Surrogate Biomarkers In Children With Pulmonary Tuberculosis. Paediatr Respir Rev 2024; 52:44-50. [PMID: 38521643 DOI: 10.1016/j.prrv.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Tuberculosis (TB) is one of the most common causes of mortality globally with a steady rise in paediatric cases in the past decade. Laboratory methods of diagnosing TB and monitoring response to treatment have limitations. Current research focuses on interrogating host- and/or pathogen-specific biomarkers to address this problem. METHODS We reviewed the literature on host-specific biomarkers in TB to determine their value in diagnosis and treatment response in TB infected and HIV/TB co-infected children on anti-tuberculosis treatment. RESULTS AND CONCLUSION While no single host-specific biomarker has been identified for diagnosis or treatment responses in children, several studies suggest predictive biosignatures for disease activity. Alarmingly, current data on host-specific biomarkers for diagnosing and assessing anti-tuberculosis treatment in TB/HIV co-infected children is inadequate. Various factors affecting host-specific biomarker responses should be considered in interpreting findings and designing future studies within specific clinical settings.
Collapse
Affiliation(s)
- Junaid Shaik
- Department of Paediatrics and Child Health, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4000, South Africa; Faculty of Health Sciences, Durban University of Technology, Steve Biko Road, Berea, Durban, 4000, South Africa.
| | - Manormoney Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4000, South Africa
| | - Prakash Jeena
- Department of Paediatrics and Child Health, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4000, South Africa
| |
Collapse
|
3
|
Nikolaev VV, Lepekhina TB, Alliluev AS, Bidram E, Sokolov PM, Nabiev IR, Kistenev YV. Quantum Dot-Based Nanosensors for In Vitro Detection of Mycobacterium tuberculosis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1553. [PMID: 39404280 PMCID: PMC11478040 DOI: 10.3390/nano14191553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Despite the existing effective treatment methods, tuberculosis (TB) is the second most deadly infectious disease, its carriers in the latent and active phases accounting for more than 20% of the world population. An effective method for controlling TB and reducing TB mortality is regular population screening aimed at diagnosing the latent form of TB and taking preventive and curative measures. Numerous methods allow diagnosing TB by directly detecting Mycobacterium tuberculosis (M.tb) biomarkers, including M.tb DNA, proteins, and specific metabolites or antibodies produced by the host immune system in response to M.tb. PCR, ELISA, immunofluorescence and immunochemical analyses, flow cytometry, and other methods allow the detection of M.tb biomarkers or the host immune response to M.tb by recording the optical signal from fluorescent or colorimetric dyes that are components of the diagnostic systems. Current research in biosensors is aimed at increasing the sensitivity of detection, a promising approach being the use of fluorescent quantum dots as brighter and more photostable optical tags. Here, we review current methods for the detection of M.tb biomarkers using quantum dot-based nanosensors and summarize data on the M.tb biomarkers whose detection can be made considerably more sensitive by using these sensors.
Collapse
Affiliation(s)
- Viktor V. Nikolaev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| | - Tatiana B. Lepekhina
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| | - Alexander S. Alliluev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
- Tomsk Phthisiopulmonology Medical Center, Rosa Luxemburg St., 634009 Tomsk, Russia
| | - Elham Bidram
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Pavel M. Sokolov
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor R. Nabiev
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Laboratoire BioSpecT (BioSpectroscopie Translationnelle), Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| |
Collapse
|
4
|
Krivošová M, Dohál M, Mäsiarová S, Pršo K, Gondáš E, Murín R, Fraňová S, Porvazník I, Solovič I, Mokrý J. Exploring cytokine dynamics in tuberculosis: A comparative analysis of patients and controls with insights from three-week antituberculosis intervention. PLoS One 2024; 19:e0305158. [PMID: 39208230 PMCID: PMC11361567 DOI: 10.1371/journal.pone.0305158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/26/2024] [Indexed: 09/04/2024] Open
Abstract
Despite developing new diagnostics, drugs, and vaccines, treating tuberculosis (TB) remains challenging. Monitoring inflammatory markers can contribute to more precise diagnostics of TB, identifying its active and latent forms, or monitoring its treatment success. We assessed alterations in plasma levels of 48 cytokines in 20 patients (17 males) with active pulmonary TB compared to age-matched healthy controls (n = 18). Blood samples were collected from individuals hospitalised with TB prior to commencing antibiotic therapy, after the first week, and following the third week. The majority of patients received treatment with a combination of four first-line antituberculosis drugs: rifampicin, isoniazid, ethambutol, and pyrazinamide. Plasmatic cytokine levels from patients three times and controls were analyzed using a Bio-Plex Pro Human Cytokine Screening Panel. The results showed significantly higher levels of 31 cytokines (p<0.05) than healthy controls. Three-week therapy duration showed significantly decreased levels of nine cytokines: interferon alpha-2 (IFN-α2), interleukin (IL) 1 alpha (IL-1α), IL-1 receptor antagonist (IL-1ra), IL-6, IL-10, IL-12 p40, IL-17, leukemia inhibitory factor (LIF), and tumor necrosis factor alpha (TNF-α). Out of these, only levels of IL-1α and IL-6 remained significantly elevated compared to controls. Moreover, we have found a negative correlation of 18 cytokine levels with BMI of the patients but no correlation with age. Our results showed a clinical potential for monitoring the levels of specific inflammatory markers after a short treatment duration. The reduction in cytokine levels throughout the course of therapy could indicate treatment success but should be confirmed in studies with more individuals involved and a longer observation period.
Collapse
Affiliation(s)
- Michaela Krivošová
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University Bratislava, Martin, Slovak Republic
| | - Matúš Dohál
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University Bratislava, Martin, Slovak Republic
| | - Simona Mäsiarová
- Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Comenius University Bratislava, Martin, Slovak Republic
| | - Kristián Pršo
- Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Comenius University Bratislava, Martin, Slovak Republic
| | - Eduard Gondáš
- Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Comenius University Bratislava, Martin, Slovak Republic
| | - Radovan Murín
- Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry, Comenius University Bratislava, Martin, Slovakia
| | - Soňa Fraňová
- Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Comenius University Bratislava, Martin, Slovak Republic
| | - Igor Porvazník
- National Institute for Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovak Republic
- Faculty of Health, Catholic University, Ružomberok, Slovak Republic
| | - Ivan Solovič
- National Institute for Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovak Republic
- Faculty of Health, Catholic University, Ružomberok, Slovak Republic
| | - Juraj Mokrý
- Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Comenius University Bratislava, Martin, Slovak Republic
| |
Collapse
|
5
|
Ghermi M, Messedi M, Adida C, Belarbi K, Djazouli MEA, Berrazeg ZI, Kallel Sellami M, Ghezini Y, Louati M. TubIAgnosis: A machine learning-based web application for active tuberculosis diagnosis using complete blood count data. Digit Health 2024; 10:20552076241278211. [PMID: 39224791 PMCID: PMC11367613 DOI: 10.1177/20552076241278211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Tuberculosis remains a major global health challenge, with delayed diagnosis contributing to increased transmission and disease burden. While microbiological tests are the gold standard for confirming active tuberculosis, many cases lack microbiological evidence, necessitating additional clinical and laboratory data for diagnosis. The complete blood count (CBC), an inexpensive and widely available test, could provide a valuable tool for tuberculosis diagnosis by analyzing disturbances in blood parameters. This study aimed to develop and evaluate a machine learning (ML)-based web application, TubIAgnosis, for diagnosing active tuberculosis using CBC data. Methods We conducted a retrospective case-control study using data from 449 tuberculosis patients and 1200 healthy controls in Oran, Algeria, from January 2016 to April 2023. Eight ML algorithms were trained on 18 CBC parameters and demographic data. Model performance was evaluated using balanced accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve (AUC). Results The best-performing model, Extreme Gradient Boosting (XGB), achieved a balanced accuracy of 83.3%, AUC of 89.4%, sensitivity of 83.3%, and specificity of 83.3% on the testing dataset. Platelet-to-lymphocyte ratio was the most influential parameter in this ML predictive model. The best performing model (XGB) was made available online as a web application called TubIAgnosis, which is available free of charge at https://yh5f0z-ghermi-mohamed.shinyapps.io/TubIAgnosis/. Conclusions TubIAgnosis, a ML-based web application utilizing CBC data, demonstrated promising performance for diagnosing active tuberculosis. This accessible and cost-effective tool could complement existing diagnostic methods, particularly in resource-limited settings. Prospective studies are warranted to further validate and refine this approach.
Collapse
Affiliation(s)
- Mohamed Ghermi
- Biology of Microorganisms and Biotechnology Laboratory, University of Oran1 Ahmed Ben Bella, Oran, Algeria
- Biotechnology Department, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Meriam Messedi
- Molecular Bases of Human Diseases (LR19ES13), Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Chahira Adida
- Biotechnology Department, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Kada Belarbi
- Biotechnology Department, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Mohamed El Amine Djazouli
- Occupational Medicine Service, Oran University Hospital Center, Faculty of Medicine, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Zahia Ibtissem Berrazeg
- Occupational Medicine Service, Oran University Hospital Center, Faculty of Medicine, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | | | - Younes Ghezini
- Occupational Medicine Service, Oran University Hospital Center, Faculty of Medicine, University of Oran1 Ahmed Ben Bella, Oran, Algeria
| | - Mahdi Louati
- National School of Electronics and Telecommunications of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
6
|
Tayal D, Sethi P, Jain P. Point-of-care test for tuberculosis: a boon in diagnosis. Monaldi Arch Chest Dis 2023; 94. [PMID: 37114932 DOI: 10.4081/monaldi.2023.2528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Rapid diagnosis of tuberculosis (TB) is an effective measure to eradicate this infectious disease worldwide. Traditional methods for screening TB patients do not provide an immediate diagnosis and thus delay treatment. There is an urgent need for the early detection of TB through point-of-care tests (POCTs). Several POCTs are widely available at primary healthcare facilities that assist in TB screening. In addition to the currently used POCTs, advancements in technology have led to the discovery of newer methods that provide accurate and fast information independent of access to laboratory facilities. In the present article, the authors tried to include and describe the potential POCTs for screening TB in patients. Several molecular diagnostic tests, such as nucleic acid amplification tests, including GeneXpert and TB-loop-mediated isothermal amplification, are currently being used as POCTs. Besides these methods, the pathogenic component of Mycobacterium tuberculosis can also be utilized as a biomarker for screening purposes through immunological assays. Similarly, the host immune response to infection has also been utilized as a marker for the diagnosis of TB. These novel biomarkers might include Mtb85, interferon-γ inducible protein-10, volatile organic compounds, acute-phase proteins, etc. Radiological tests have also been observed as POCTs in the TB screening POCT panel. Various POCTs are performed on samples other than sputum, which further eases the screening process. These POCTs should not require large-scale manpower and infrastructure. Hence, POCT should be able to identify patients with M. tuberculosis infection at the primary healthcare level only. There are several other advanced techniques that have been proposed as future POCTs and have been discussed in the present article.
Collapse
Affiliation(s)
- Devika Tayal
- Department of Biochemistry, National Institute of Tuberculosis and Respiratory Disease, New Delhi.
| | - Prabhpreet Sethi
- Department of Pulmonary Medicine, National Institute of Tuberculosis and Respiratory Disease, New Delhi.
| | - Prerna Jain
- Department of Biochemistry, National Institute of Tuberculosis and Respiratory Disease, New Delhi.
| |
Collapse
|
7
|
Chin KL, Anibarro L, Sarmiento ME, Acosta A. Challenges and the Way forward in Diagnosis and Treatment of Tuberculosis Infection. Trop Med Infect Dis 2023; 8:tropicalmed8020089. [PMID: 36828505 PMCID: PMC9960903 DOI: 10.3390/tropicalmed8020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Globally, it is estimated that one-quarter of the world's population is latently infected with Mycobacterium tuberculosis (Mtb), also known as latent tuberculosis infection (LTBI). Recently, this condition has been referred to as tuberculosis infection (TBI), considering the dynamic spectrum of the infection, as 5-10% of the latently infected population will develop active TB (ATB). The chances of TBI development increase due to close contact with index TB patients. The emergence of multidrug-resistant TB (MDR-TB) and the risk of development of latent MDR-TB has further complicated the situation. Detection of TBI is challenging as the infected individual does not present symptoms. Currently, there is no gold standard for TBI diagnosis, and the only screening tests are tuberculin skin test (TST) and interferon gamma release assays (IGRAs). However, these tests have several limitations, including the inability to differentiate between ATB and TBI, false-positive results in BCG-vaccinated individuals (only for TST), false-negative results in children, elderly, and immunocompromised patients, and the inability to predict the progression to ATB, among others. Thus, new host markers and Mtb-specific antigens are being tested to develop new diagnostic methods. Besides screening, TBI therapy is a key intervention for TB control. However, the long-course treatment and associated side effects result in non-adherence to the treatment. Additionally, the latent MDR strains are not susceptible to the current TBI treatments, which add an additional challenge. This review discusses the current situation of TBI, as well as the challenges and efforts involved in its control.
Collapse
Affiliation(s)
- Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Correspondence: (K.L.C.); (L.A.); (A.A.)
| | - Luis Anibarro
- Tuberculosis Unit, Infectious Diseases and Internal Medicine Department, Complexo Hospitalario Universitario de Pontevedra, 36071 Pontevedra, Spain
- Immunology Research Group, Galicia Sur Health Research Institute (IIS-GS), 36312 Vigo, Spain
- Correspondence: (K.L.C.); (L.A.); (A.A.)
| | - Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: (K.L.C.); (L.A.); (A.A.)
| |
Collapse
|
8
|
Sivakumaran D, Jenum S, Srivastava A, Steen VM, Vaz M, Doherty TM, Ritz C, Grewal HMS. Host blood-based biosignatures for subclinical TB and incipient TB: A prospective study of adult TB household contacts in Southern India. Front Immunol 2023; 13:1051963. [PMID: 36713386 PMCID: PMC9876034 DOI: 10.3389/fimmu.2022.1051963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
A large proportion of the global tuberculosis (TB) burden is asymptomatic and not detectable by symptom-based screening, driving the TB epidemic through continued M. tuberculosis transmission. Currently, no validated tools exist to diagnose incipient and subclinical TB. Nested within a large prospective study in household contacts of pulmonary TB cases in Southern India, we assessed 35 incipient TB and 12 subclinical TB cases, along with corresponding household active TB cases (n=11), and household controls (n=39) using high throughput methods for transcriptional and protein profiling. We split the data into training and test sets and applied a support vector machine classifier followed by a Lasso regression model to identify signatures. The Lasso regression model identified an 11-gene signature (ABLIM2, C20orf197, CTC-543D15.3, CTD-2503O16.3, HLADRB3, METRNL, RAB11B-AS1, RP4-614C10.2, RNA5SP345, RSU1P1, and UACA) that distinguished subclinical TB from incipient TB with a very good discriminatory power by AUCs in both training and test sets. Further, we identified an 8-protein signature comprising b-FGF, IFNγ, IL1RA, IL7, IL12p70, IL13, PDGF-BB, and VEGF that differentiated subclinical TB from incipient TB with good and moderate discriminatory power by AUCs in the training and test sets, respectively. The identified 11-gene signature discriminated well between the distinct stages of the TB disease spectrum, with very good discriminatory power, suggesting it could be useful for predicting TB progression in household contacts. However, the high discriminatory power could partly be due to over-fitting, and validation in other studies is warranted to confirm the potential of the immune biosignatures for identifying subclinical TB.
Collapse
Affiliation(s)
- Dhanasekaran Sivakumaran
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Aashish Srivastava
- Genome Core Facility, Clinical Laboratory (K2), Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Vidar M. Steen
- Genome Core Facility, Clinical Laboratory (K2), Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Mario Vaz
- Department of Physiology, St. John’s Medical College and Division of Health and Humanities, St. John’s Research Institute, Koramangala, Bangalore, India
| | | | - Christian Ritz
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Harleen M. S. Grewal
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Differential expression of host protein biomarkers among symptomatic clinic attendees finally diagnosed with tuberculosis and other respiratory diseases with or without latent Mycobacterium tuberculosis infection. Immunol Lett 2023; 253:8-18. [PMID: 36463987 DOI: 10.1016/j.imlet.2022.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND There is a need for new tools for the diagnosis of tuberculosis (TB) amongst patients who present at primary health care centers with symptoms suggestive of TB. OBJECTIVES To assess the abilities of selected blood-based host biomarkers to discriminate between patients who self-presented with symptoms suggestive of TB and were subsequently diagnosed with pulmonary tuberculosis (PTB), other respiratory diseases (ORD) with latent Mycobacterium tuberculosis infection (ORD_LTBI) or ORD without latent infection (ORD_NoLTBI). METHODS Presumptive TB patients (n = 161) were enrolled at a TB Clinic in Kampala, Uganda, and blood was collected. Participants were later classified as having PTB or ORD using standard microbiological confirmatory tests. Patients with ORD were subsequently classified as having LTBI or no LTBI using the QuantiFERON Gold-plus test. The concentrations of 27 host biomarkers were evaluated in patient sera using the Luminex platform, followed by an evaluation of their abilities to discriminate between PTB, ORD_LTBI, and ORD_NoLTBI. RESULTS Multiple host biomarkers including IP10, IL6, IL2, IL1β, TNFα, IFNγ, and IL12p70, were significantly different between patients with PTB (n = 55), ORDs (n = 106), and between PTB and the two ORD sub-groups. A bio-signature comprising IP10, IL6, TNFα IL1β, IL1ra, and IL12p70 best diagnosed PTB disease, with an area under the ROC curve of 90. CONCLUSION We identified host biomarkers that discriminated between different M.tb infection states amongst patients who presented with symptoms requiring investigation for TB. The biomarkers that showed diagnostic potential in our study may be considered as additional candidate markers for future active PTB rapid screening tests.
Collapse
|
10
|
Griffiths JS, Orr SJ, Morton CO, Loeffler J, White PL. The Use of Host Biomarkers for the Management of Invasive Fungal Disease. J Fungi (Basel) 2022; 8:jof8121307. [PMID: 36547640 PMCID: PMC9784708 DOI: 10.3390/jof8121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Invasive fungal disease (IFD) causes severe morbidity and mortality, and the number of IFD cases is increasing. Exposure to opportunistic fungal pathogens is inevitable, but not all patients with underlying diseases increasing susceptibility to IFD, develop it. IFD diagnosis currently uses fungal biomarkers and clinical risk/presentation to stratify high-risk patients and classifies them into possible, probable, and proven IFD. However, the fungal species responsible for IFD are highly diverse and present numerous diagnostic challenges, which culminates in the empirical anti-fungal treatment of patients at risk of IFD. Recent studies have focussed on host-derived biomarkers that may mediate IFD risk and can be used to predict, and even identify IFD. The identification of novel host genetic variants, host gene expression changes, and host protein expression (cytokines and chemokines) associated with increased risk of IFD has enhanced our understanding of why only some patients at risk of IFD actually develop disease. Furthermore, these host biomarkers when incorporated into predictive models alongside conventional diagnostic techniques enhance predictive and diagnostic results. Once validated in larger studies, host biomarkers associated with IFD may optimize the clinical management of populations at risk of IFD. This review will summarise the latest developments in the identification of host biomarkers for IFD, their use in predictive modelling and their potential application/usefulness for informing clinical decisions.
Collapse
Affiliation(s)
- James S. Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Selinda J. Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Würzburg, 97070 Würzburg, Germany
| | - P. Lewis White
- Public Health Wales, Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
- Correspondence:
| |
Collapse
|
11
|
Epidemiological and Cytokine Profile of Patients with Pulmonary and Extrapulmonary Tuberculosis in a Population of the Brazilian Amazon. Microorganisms 2022; 10:microorganisms10102075. [PMID: 36296351 PMCID: PMC9609616 DOI: 10.3390/microorganisms10102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Several factors are associated with the development of different clinical forms of tuberculosis (TB). The present study evaluated epidemiological variables and cytokine levels in samples from 89 patients with TB (75 with pulmonary TB and 14 with extrapulmonary TB) and 45 controls. Cytokines were measured by flow cytometry (Human Th1/Th2/Th17 Cytometric Bead Array kit). The TB group had a higher frequency of individuals who were 39 years of age or older, married, with primary education or illiterate and had a lower family income (p < 0.05). All individuals with extrapulmonary TB reported that they were not working, and the main reasons were related to disease symptoms or treatment. The levels of IFN-γ (OR = 4.06) and IL-4 (OR = 2.62) were more likely to be elevated in the TB group (p = 0.05), and IFN-γ levels were lower in patients with extrapulmonary TB compared to those with pulmonary TB (OR = 0.11; p = 0.0050). The ROC curve was applied to investigate the diagnostic accuracy of IFN-γ levels between the different clinical forms of tuberculosis, resulting in high AUC (0.8661; p < 0.0001), sensitivity (93.85%) and specificity median (65.90%), suggesting that IFN-γ levels are useful to differentiate pulmonary TB from extrapulmonary TB. The dysregulation of pro- and anti-inflammatory cytokine levels represent a risk for the development of TB and contribute to the pathogenesis of the disease, especially variation in IFN-γ levels, which may determine protection or risk for extrapulmonary TB.
Collapse
|
12
|
Imoto S, Suzukawa M, Takeda K, Motohashi T, Nagase M, Enomoto Y, Kawasaki Y, Nakano E, Watanabe M, Shimada M, Takada K, Watanabe S, Nagase T, Ohta K, Teruya K, Nagai H. Evaluation of tuberculosis diagnostic biomarkers in immunocompromised hosts based on cytokine levels in QuantiFERON-TB Gold Plus. Tuberculosis (Edinb) 2022; 136:102242. [PMID: 35944309 DOI: 10.1016/j.tube.2022.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022]
Abstract
Tuberculosis (TB) remains a serious health concern globally. QuantiFERON-TB (QFT) is a diagnostic tool for TB detection, and its sensitivity is reduced in immunocompromised hosts with low T lymphocyte counts or abnormal T cell function. This study aimed to evaluate the correlation between T cell and cytokine levels in patients with active TB using QFT-Plus. Forty-five patients with active TB were enrolled, and the cytokines in QFT-Plus tube supernatants were quantified using the MAGPIX System. CD4+ T cell count negatively correlated with patient age (p < 0.001, r = -0.51). The levels of TB1-responsive interleukin-1 receptor antagonist (IL-1Ra) and IL-2 correlated with CD4+ T cell count, whereas the levels of TB2-responsive IL-1Ra and IFN-γ-induced protein 10 correlated with both CD4+ and CD8+ T cell counts. Cytokines that correlated with CD4+ and CD8+ T cell counts might not be suitable TB diagnostic biomarkers in immunocompromised hosts. Notably, cytokines that did not correlate with the T cell counts, such as monocyte chemoattractant protein-1, might be candidate biomarkers for TB in immunocompromised hosts. Our findings might help improve TB diagnosis, which could enable prompt treatment and minimize poor disease outcomes.
Collapse
Affiliation(s)
- Sahoko Imoto
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan.
| | - Keita Takeda
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Takumi Motohashi
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Maki Nagase
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Yu Enomoto
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Yuichiro Kawasaki
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Eri Nakano
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Masato Watanabe
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Masahiro Shimada
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Kazufumi Takada
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shizuka Watanabe
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, 193-0834, Japan
| | - Katsuji Teruya
- National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Hideaki Nagai
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| |
Collapse
|
13
|
Saluzzo F, Denkinger CM, Cirillo DM. Improving interferon-γ release assay interpretation: are IP-10 and MIG the solution? Eur Respir J 2022; 60:60/2/2200697. [PMID: 35948350 DOI: 10.1183/13993003.00697-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Francesca Saluzzo
- IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Claudia M Denkinger
- Division of Infectious Diseases and Tropical Medicine, Center of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
14
|
Abstract
Interleukin-1 (IL-1) is a key player in the immune response to pathogens due to its role in promoting inflammation and recruiting immune cells to the site of infection. In tuberculosis (TB), tight regulation of IL-1 responses is critical to ensure host resistance to infection while preventing immune pathology. In the mouse model of Mycobacterium tuberculosis infection, both IL-1 absence and overproduction result in exacerbated disease and mortality. In humans, several polymorphisms in the IL1B gene have been associated with increased susceptibility to TB. Importantly, M. tuberculosis itself has evolved several strategies to manipulate and regulate host IL-1 responses for its own benefit. Given all this, IL-1 appears as a promising target for host-directed therapies in TB. However, for that to succeed, more detailed knowledge on the biology and mechanisms of action of IL-1 in vivo, together with a deep understanding of how host-M. tuberculosis interactions modulate IL-1, is required. Here, we discuss the most recent advances in the biology and therapeutic potential of IL-1 in TB as well as the outstanding questions that remain to be answered.
Collapse
|
15
|
Januarie KC, Uhuo OV, Iwuoha E, Feleni U. Recent advances in the detection of interferon-gamma as a TB biomarker. Anal Bioanal Chem 2021; 414:907-921. [PMID: 34665279 PMCID: PMC8523729 DOI: 10.1007/s00216-021-03702-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is one of the main infectious diseases worldwide and accounts for many deaths. It is caused by Mycobacterium tuberculosis usually affecting the lungs of patients. Early diagnosis and treatment are essential to control the TB epidemic. Interferon-gamma (IFN-γ) is a cytokine that plays a part in the body’s immune response when fighting infection. Current conventional antibody-based TB sensing techniques which are commonly used include enzyme-linked immunosorbent assay (ELISA) and interferon-gamma release assays (IGRAs). However, these methods have major drawbacks, such as being time-consuming, low sensitivity, and inability to distinguish between the different stages of the TB disease. Several electrochemical biosensor systems have been reported for the detection of interferon-gamma with high sensitivity and selectivity. Microfluidic techniques coupled with multiplex analysis in regular format and as lab-on-chip platforms have also been reported for the detection of IFN-γ. This article is a review of the techniques for detection of interferon-gamma as a TB disease biomarker. The objective is to provide a concise assessment of the available IFN-γ detection techniques (including conventional assays, biosensors, microfluidics, and multiplex analysis) and their ability to distinguish the different stages of the TB disease.
Collapse
Affiliation(s)
- Kaylin Cleo Januarie
- SensorLab (University of the Western Cape Sensor Laboratories), University of the Western Cape, 4th Floor Chemical Sciences Building, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa.
| | - Onyinyechi V Uhuo
- SensorLab (University of the Western Cape Sensor Laboratories), University of the Western Cape, 4th Floor Chemical Sciences Building, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Emmanuel Iwuoha
- SensorLab (University of the Western Cape Sensor Laboratories), University of the Western Cape, 4th Floor Chemical Sciences Building, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park, Johannesburg, 1710, South Africa.
| |
Collapse
|
16
|
Luo Y, Xue Y, Mao L, Lin Q, Tang G, Song H, Liu W, Tong S, Hou H, Huang M, Ouyang R, Wang F, Sun Z. Activation Phenotype of Mycobacterium tuberculosis-Specific CD4 + T Cells Promoting the Discrimination Between Active Tuberculosis and Latent Tuberculosis Infection. Front Immunol 2021; 12:721013. [PMID: 34512645 PMCID: PMC8426432 DOI: 10.3389/fimmu.2021.721013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Rapid and effective discrimination between active tuberculosis (ATB) and latent tuberculosis infection (LTBI) remains a challenge. There is an urgent need for developing practical and affordable approaches targeting this issue. Methods Participants with ATB and LTBI were recruited at Tongji Hospital (Qiaokou cohort) and Sino-French New City Hospital (Caidian cohort) based on positive T-SPOT results from June 2020 to January 2021. The expression of activation markers including HLA-DR, CD38, CD69, and CD25 was examined on Mycobacterium tuberculosis (MTB)-specific CD4+ T cells defined by IFN-γ, TNF-α, and IL-2 expression upon MTB antigen stimulation. Results A total of 90 (40 ATB and 50 LTBI) and another 64 (29 ATB and 35 LTBI) subjects were recruited from the Qiaokou cohort and Caidian cohort, respectively. The expression patterns of Th1 cytokines including IFN-γ, TNF-α, and IL-2 upon MTB antigen stimulation could not differentiate ATB patients from LTBI individuals well. However, both HLA-DR and CD38 on MTB-specific cells showed discriminatory value in distinguishing between ATB patients and LTBI individuals. As for developing a single candidate biomarker, HLA-DR had the advantage over CD38. Moreover, HLA-DR on TNF-α+ or IL-2+ cells had superiority over that on IFN-γ+ cells in differentiating ATB patients from LTBI individuals. Besides, HLA-DR on MTB-specific cells defined by multiple cytokine co-expression had a higher ability to discriminate patients with ATB from LTBI individuals than that of MTB-specific cells defined by one kind of cytokine expression. Specially, HLA-DR on TNF-α+IL-2+ cells produced an AUC of 0.901 (95% CI, 0.833–0.969), with a sensitivity of 93.75% (95% CI, 79.85–98.27%) and specificity of 72.97% (95% CI, 57.02–84.60%) as a threshold of 44% was used. Furthermore, the performance of HLA-DR on TNF-α+IL-2+ cells for differential diagnosis was obtained with validation cohort data: 90.91% (95% CI, 72.19–97.47%) sensitivity and 68.97% (95% CI, 50.77–82.73%) specificity. Conclusions We demonstrated that HLA-DR on MTB-specific cells was a potentially useful biomarker for accurate discrimination between ATB and LTBI.
Collapse
Affiliation(s)
- Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Lin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Song
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Tong
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Huang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renren Ouyang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Stein CM, Benchek P, Bartlett J, Igo RP, Sobota RS, Chervenak K, Mayanja-Kizza H, von Reyn CF, Lahey T, Bush WS, Boom WH, Scott WK, Marsit C, Sirugo G, Williams SM. Methylome-wide Analysis Reveals Epigenetic Marks Associated With Resistance to Tuberculosis in Human Immunodeficiency Virus-Infected Individuals From East Africa. J Infect Dis 2021; 224:695-704. [PMID: 33400784 DOI: 10.1093/infdis/jiaa785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is the most deadly infectious disease globally and is highly prevalent in the developing world. For individuals infected with both Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV), the risk of active TB is 10% or more annually. Previously, we identified in a genome-wide association study (GWAS) a region on chromosome 5 associated with resistance to TB, which included epigenetic marks that could influence gene regulation. We hypothesized that HIV-infected individuals exposed to Mtb who remain disease free carry epigenetic changes that strongly protect them from active TB. METHODS We conducted a methylome-wide study in HIV-infected, TB-exposed cohorts from Uganda and Tanzania and integrated data from our GWAS. RESULTS We identified 3 regions of interest that included markers that were differentially methylated between TB cases and controls with latent TB infection: chromosome 1 (RNF220, P = 4 × 10-5), chromosome 2 (between COPS8 and COL6A3, P = 2.7 × 10-5), and chromosome 5 (CEP72, P = 1.3 × 10-5). These methylation results co-localized with associated single-nucleotide polymorphisms (SNPs), methylation QTLs, and methylation × SNP interaction effects. These markers were in regions with regulatory markers for cells involved in TB immunity and/or lung. CONCLUSIONS Epigenetic regulation is a potential biologic factor underlying resistance to TB in immunocompromised individuals that can act in conjunction with genetic variants.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Penelope Benchek
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jacquelaine Bartlett
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rafal S Sobota
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Keith Chervenak
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Harriet Mayanja-Kizza
- Department of Medicine and Mulago Hospital, School of Medicine, Makerere University, Kampala, Uganda
| | - C Fordham von Reyn
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Timothy Lahey
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - W Henry Boom
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - William K Scott
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Carmen Marsit
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Giorgio Sirugo
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Pan X, Kaminga AC, Wen SW, Liu A. Chemokines in Prediabetes and Type 2 Diabetes: A Meta-Analysis. Front Immunol 2021; 12:622438. [PMID: 34054797 PMCID: PMC8161229 DOI: 10.3389/fimmu.2021.622438] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background A growing number of studies found inconsistent results on the role of chemokines in the progression of type 2 diabetes (T2DM) and prediabetes (PDM). The purpose of this meta-analysis was to summarize the results of previous studies on the association between the chemokines system and T2DM/PDM. Methods We searched in the databases, PubMed, Web of Science, Embase and Cochrane Library, for eligible studies published not later than March 1, 2020. Data extraction was performed independently by 2 reviewers, on a standardized, prepiloted form. Group differences in chemokines concentrations were summarized using the standardized mean difference (SMD) with a 95% confidence interval (CI), calculated by performing a meta-analysis using the random-effects model. Results We identified 98 relevant studies that investigated the association between 32 different chemokines and T2DM/PDM. Altogether, these studies involved 14,708 patients and 14,574 controls. Results showed that the concentrations of CCL1, CCL2, CCL4, CCL5, CCL11, CXCL8, CXCL10 and CX3CL1 in the T2DM patients were significantly higher than that in the controls, while no difference in these concentrations was found between the PDM patients and controls. Conclusion Progression of T2DM may be associated with elevated concentrations of chemokines. Meta-Analysis Registration PROSPERO, identifier CRD42019148305.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Shi Wu Wen
- OMNI Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Obstetrics and Gynaecology and School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, ON, Canada
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
19
|
Druszczynska M, Seweryn M, Wawrocki S, Kowalewska-Pietrzak M, Pankowska A, Rudnicka W. Cytokine Biosignature of Active and Latent Mycobacterium Tuberculosis Infection in Children. Pathogens 2021; 10:pathogens10050517. [PMID: 33923293 PMCID: PMC8145955 DOI: 10.3390/pathogens10050517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
None of the currently used diagnostic tools are efficient enough in diagnosing Mycobacterium tuberculosis (M.tb) infection in children. The study was aimed to identify cytokine biosignatures characterizing active and latent tuberculosis (TB) in children. Using a multiplex bead-based technology, we analyzed the levels of 53 Th17-related cytokines and inflammatory mediators in sera from 216 BCG-vaccinated children diagnosed with active TB (TB) or latent TB (LTBI) as well as uninfected controls (HC). Children with active TB, compared to HC children, showed reduced serum levels of IL-17A, MMP-2, OPN, PTX-3, and markedly elevated concentrations of APRIL/TNFSF13. IL-21, sCD40L, MMP-2, and IL-8 were significantly differentially expressed in the comparisons between groups: (1) HC versus TB and LTBI (jointly), and (2) TB versus LTBI. The panel consisting of APRIL/TNFSF13, sCD30/TNFRSF8, IFN-α2, IFN-γ, IL-2, sIL-6Rα, IL-8, IL-11, IL-29/IFN-λ1, LIGHT/TNFSF14, MMP-1, MMP-2, MMP-3, osteocalcin, osteopontin, TSLP, and TWEAK/TNFSF12 possessed a discriminatory potential for the differentiation between TB and LTBI children. Serum-based host biosignatures carry the potential to aid the diagnosis of childhood M.tb infections. The proposed panels of markers allow distinguishing not only children infected with M.tb from uninfected individuals but also children with active TB from those with latent TB.
Collapse
Affiliation(s)
- Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Im-munology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (S.W.); (W.R.)
- Correspondence: ; Tel.: +48-42-635-44-70
| | - Michal Seweryn
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Sebastian Wawrocki
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Im-munology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (S.W.); (W.R.)
| | - Magdalena Kowalewska-Pietrzak
- Regional Specialized Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Lodz, Okolna 181, 91-520 Lodz, Poland; (M.K.-P.); (A.P.)
| | - Anna Pankowska
- Regional Specialized Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Lodz, Okolna 181, 91-520 Lodz, Poland; (M.K.-P.); (A.P.)
| | - Wieslawa Rudnicka
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Im-munology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (S.W.); (W.R.)
| |
Collapse
|
20
|
McInally S, Wall K, Yu T, Tirouvanziam R, Kilembe W, Gilmour J, Allen SA, Hunter E. Elevated levels of inflammatory plasma biomarkers are associated with risk of HIV infection. Retrovirology 2021; 18:8. [PMID: 33731158 PMCID: PMC7968240 DOI: 10.1186/s12977-021-00552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine if individuals, from HIV-1 serodiscordant couple cohorts from Rwanda and Zambia, who become HIV-positive have a distinct inflammatory biomarker profile compared to individuals who remain HIV-negative, we compared levels of biomarkers in plasma of HIV-negative individuals who either seroconverted (pre-infection) and became HIV-positive or remained HIV-negative (uninfected). RESULTS We observed that individuals in the combined cohort, as well as those in the individual country cohorts, who later became HIV-1 infected had significantly higher baseline levels of multiple inflammatory cytokines/chemokines compared to individuals who remained HIV-negative. Genital inflammation/ulceration or schistosome infections were not associated with this elevated profile. Defined levels of ITAC and IL-7 were significant predictors of later HIV acquisition in ROC predictive analyses, whereas the classical Th1 and Th2 inflammatory cytokines such as IL-12 and interferon-γ or IL-4, IL-5 and Il-13 were not. CONCLUSIONS Overall, the data show a significant association between increased plasma biomarkers linked to inflammation and immune activation and HIV acquisition and suggests that pre-existing conditions that increase systemic biomarkers represent a factor for increased risk of HIV infection.
Collapse
Affiliation(s)
- Samantha McInally
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Kristin Wall
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tianwei Yu
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong Province, China
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Center of CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | - Jill Gilmour
- Faculty of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Susan A Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, USA. .,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Anderson RP, Goel G, Hardy MY, Russell AK, Wang S, Szymczak E, Zhang R, Goldstein KE, Neff K, Truitt KE, Williams LJ, Dzuris JL, Tye-Din JA. Whole blood interleukin-2 release test to detect and characterize rare circulating gluten-specific T cell responses in coeliac disease. Clin Exp Immunol 2021; 204:321-334. [PMID: 33469922 DOI: 10.1111/cei.13578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Whole blood cytokine release assays (CRA) assessing cellular immunity to gluten could simplify the diagnosis and monitoring of coeliac disease (CD). We aimed to determine the effectiveness of electrochemiluminescence CRA to detect responses to immunodominant gliadin peptides. HLA-DQ2·5+ CD adults (cohort 1, n = 6; cohort 2, n = 12) and unaffected controls (cohort 3, n = 9) were enrolled. Cohort 1 had 3-day gluten challenge (GC). Blood was collected at baseline, and for cohort 1 also at 3 h, 6 h and 6 days after commencing 3-day GC. Gliadin peptide-stimulated proliferation, interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) and 14- and 3-plex electrochemiluminescence CRA were performed. Poisson distribution analysis was used to estimate responding cell frequencies. In cohort 1, interleukin (IL)-2 dominated the gliadin peptide-stimulated cytokine release profile in whole blood. GC caused systemic IL-2 release acutely and increased gliadin peptide-stimulated IFN-γ ELISPOT and whole blood CRA responses. Whole blood CRA after GC was dominated by IL-2, but also included IFN-γ, C-X-C motif chemokine ligand 10/IFN-γ-induced protein 10 (CXCL10/IP-10), CXCL9/monokine induced by IFN-γ (MIG), IL-10, chemokine (C-C motif) ligand 3/macrophage inflammatory protein 1-alpha (CCL3/MIP-1α), TNF-α and IL-8/CXCL8. In cohorts 2 and 3, gliadin peptide-stimulated whole blood IL-2 release was 100% specific and 92% sensitive for CD patients on a gluten-free diet; the estimated frequency of cells in CD blood secreting IL-2 to α-gliadin peptide was 0·5 to 11 per ml. Whole blood IL-2 release successfully mapped human leucocyte antigen (HLA)-DQ2·5-restricted epitopes in an α-gliadin peptide library using CD blood before and after GC. Whole blood IL-2 release assay using electrochemiluminescence is a sensitive test for rare gliadin-specific T cells in CD, and could aid in monitoring and diagnosis. Larger studies and validation with tetramer-based assays are warranted.
Collapse
Affiliation(s)
| | - G Goel
- ImmusanT, Inc., Cambridge, MA, USA
| | - M Y Hardy
- Immunology Division, Department of Medical Biology, The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia
| | - A K Russell
- Immunology Division, Department of Medical Biology, The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia
| | - S Wang
- ImmusanT, Inc., Cambridge, MA, USA
| | | | - R Zhang
- ImmusanT, Inc., Cambridge, MA, USA
| | | | - K Neff
- ImmusanT, Inc., Cambridge, MA, USA
| | | | | | | | - J A Tye-Din
- Immunology Division, Department of Medical Biology, The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia.,Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
22
|
Ranaivomanana P, Rabodoarivelo MS, Ndiaye MDB, Rakotosamimanana N, Rasolofo V. Different PPD-stimulated cytokine responses from patients infected with genetically distinct Mycobacterium tuberculosis complex lineages. Int J Infect Dis 2021; 104:725-731. [PMID: 33556615 DOI: 10.1016/j.ijid.2021.01.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/08/2021] [Accepted: 01/30/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The genetic diversity of Mycobacterium tuberculosis complex (MTBC) influences the immune response of the host, which may affect the immunodiagnostic tests and biomarker assessment studies used for tuberculosis (TB). This study aimed to determine whether the mycobacterial-antigen-stimulated cytokine responses vary with the genotype of the MTBC infecting the patient. METHODS Eighty-one patients with confirmed active pulmonary TB were recruited, and MTBC clinical strains were isolated from their sputum for bacterial lineage single-nucleotide polymorphism typing. Whole blood was drawn from the patients to measure the purified protein derivative (PPD)-stimulated cytokine responses (GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, TNF-α, IFN-α, IL-12, eotaxin, IL-13, IL-15, IL-17, MIP1-α, MIP1-β, MCP1, IL1RA, IP10, IL2R, MIG) with the Luminex multiplex immunoassay. RESULTS Of the 24 cytokines studied, three were produced differentially in whole blood dependent on the infecting lineage of MTBC. Decreased production of IL-17 was observed in patients infected with modern lineages compared with patients infected with ancestral lineages (P < 0.01), and production of IFN-γ and IL-2 was significantly decreased in patients infected with lineage 4 strains compared with patients infected with lineage 3 strains (P < 0.05). CONCLUSION MTBC strains belonging to lineage 4 induced a decreased whole-blood PPD-stimulated pro-inflammatory cytokine response.
Collapse
Affiliation(s)
- Paulo Ranaivomanana
- Mycobacteria Unit, Institut Pasteur de Madagascar, B.P. Ambatofotsikely, Antananarivo, Madagascar
| | | | | | - Niaina Rakotosamimanana
- Mycobacteria Unit, Institut Pasteur de Madagascar, B.P. Ambatofotsikely, Antananarivo, Madagascar.
| | - Voahangy Rasolofo
- Mycobacteria Unit, Institut Pasteur de Madagascar, B.P. Ambatofotsikely, Antananarivo, Madagascar
| |
Collapse
|
23
|
Kinsella RL, Zhu DX, Harrison GA, Mayer Bridwell AE, Prusa J, Chavez SM, Stallings CL. Perspectives and Advances in the Understanding of Tuberculosis. ANNUAL REVIEW OF PATHOLOGY 2021; 16:377-408. [PMID: 33497258 DOI: 10.1146/annurev-pathol-042120-032916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of Mtb pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of Mtb research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding Mtb pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Gregory A Harrison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| |
Collapse
|
24
|
Bobhate A, Viswanathan V, Aravindhan V. Anti-inflammatory cytokines IL-27, IL-10, IL-1Ra and TGF-β in subjects with increasing grades of glucose intolerence (DM-LTB-2). Cytokine 2020; 137:155333. [PMID: 33045524 DOI: 10.1016/j.cyto.2020.155333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
Anti-inflammatory cytokines act as double edged swords- they can dampen inflammation but can also suppress immunity. The role played by these cytokines in latent TB infected (LTBI) subjects, with various grades of glucose intolerance was studied. Both serum levels and recall-secretion of IL-27, IL-10, IL-1Ra and TGF-β in Normal Glucose Tolerance (NGT), Pre-Diabetes (PDM), Newly diagnosed Diabetes (NDM) and Known Diabetes (KDM) subjects, both with and without LTBI (n = 382), were quantified by ELISA. All the subjects were screened for LTBI by QuantiFERON-TB Gold test. Serum levels of IL-27, IL-10 and IL-1Ra were significantly elevated in the LTB-PDM, compared to LTB-NGT group. Increased IL-27 and IL-10 levels and decreased levels of TGF-β were seen in the LTB-NDM, compared to LTB-NGT group. Decreased serum levels of IL-27 and increased levels of IL-1Ra and TGF-β were seen in the LTB-KDM, compared to LTB-NGT group. TB antigens induced the secretion of IL-1Ra in LTB+ subjects in the NGT, PDM and NDM groups, but not in the KDM group. Co-morbidity with LTBI brought about (diabetic) stage-specific modulation, in these cytokine levels. Major defects in the circulating levels and recall secretion of anti-inflammatory cytokines, as seen in LTB+KDM subjects, could fuel DM-TB synergy.
Collapse
Affiliation(s)
- Anup Bobhate
- M.V. Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre (WHO Collaborating Centre for Research, Education and Training in Diabetes), Chennai, Tamil Nadu, India
| | - Vijay Viswanathan
- M.V. Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre (WHO Collaborating Centre for Research, Education and Training in Diabetes), Chennai, Tamil Nadu, India.
| | | |
Collapse
|
25
|
Qiu B, Liu Q, Li Z, Song H, Xu D, Ji Y, Jiang Y, Tian D, Wang J. Evaluation of cytokines as a biomarker to distinguish active tuberculosis from latent tuberculosis infection: a diagnostic meta-analysis. BMJ Open 2020; 10:e039501. [PMID: 33033030 PMCID: PMC7542925 DOI: 10.1136/bmjopen-2020-039501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES With a marginally effective vaccine and no significant breakthroughs in new treatments, a sensitive and specific method to distinguish active tuberculosis from latent tuberculosis infection (LTBI) would allow for early diagnosis and limit the spread of the pathogen. The analysis of multiple cytokine profiles provides the possibility to differentiate the two diseases. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, Cochrane Library, Clinical Key and EMBASE databases were searched on 31 December 2019. ELIGIBILITY CRITERIA We included case-control studies, cohort studies and randomised controlled trials considering IFN-γ, TNF-α, IP-10, IL-2, IL-10, IL-12 and VEGF as biomarkers to distinguish active tuberculosis and LTBI. DATA EXTRACTION AND SYNTHESIS Two students independently extracted data and assessed the risk of bias. Diagnostic OR, sensitivity, specificity, positive and negative likelihood ratios and area under the curve (AUC) together with 95% CI were used to estimate the diagnostic value. RESULTS Of 1315 records identified, 14 studies were considered eligible. IL-2 had the highest sensitivity (0.84, 95% CI: 0.72 to 0.92), while VEGF had the highest specificity (0.87, 95% CI: 0.73 to 0.94). The highest AUC was observed for VEGF (0.85, 95% CI: 0.81 to 0.88), followed by IFN-γ (0.84, 95% CI: 0.80 to 0.87) and IL-2 (0.84, 95% CI: 0.81 to 0.87). CONCLUSION Cytokines, such as IL-2, IFN-γ and VEGF, can be utilised as promising biomarkers to distinguish active tuberculosis from LTBI. PROSPERO REGISTRATION NUMBER CRD42020170725.
Collapse
Affiliation(s)
- Beibei Qiu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiao Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhongqi Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huan Song
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dian Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ye Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dan Tian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Sudbury EL, Clifford V, Messina NL, Song R, Curtis N. Mycobacterium tuberculosis-specific cytokine biomarkers to differentiate active TB and LTBI: A systematic review. J Infect 2020; 81:873-881. [PMID: 33007340 DOI: 10.1016/j.jinf.2020.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES New tests are needed to overcome the limitations of existing immunodiagnostic tests for tuberculosis (TB) infection, including their inability to differentiate between active TB and latent TB infection (LTBI). This review aimed to identify the most promising cytokine biomarkers for use as stage-specific markers of TB infection. METHODS A systematic review was done using electronic databases to identify studies that have investigated Mycobacterium tuberculosis (MTB)-specific cytokine responses as diagnostic tools to differentiate between LTBI and active TB. RESULTS The 56 studies included in this systematic review measured the MTB-specific responses of 100 cytokines, the most frequently studied of which were IFN-γ, IL-2, TNF-α, IP-10, IL-10 and IL-13. Ten studies assessed combinations of cytokines, most commonly IL-2 and IFN-γ. For most cytokines, findings were heterogenous between studies. The variation in results likely relates to differences in the study design and laboratory methods, as well as participant and environmental factors. CONCLUSIONS Although several cytokines show promise as stage-specific markers of TB infection, this review highlights the need for further well-designed studies, in both adult and paediatric populations, to establish which cytokine(s) will be of most use in a new generation of immunodiagnostic tests.
Collapse
Affiliation(s)
- Eva L Sudbury
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia.
| | - Vanessa Clifford
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital, Parkville, Australia.
| | - Nicole L Messina
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia.
| | - Rinn Song
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital, Parkville, Australia.
| |
Collapse
|
27
|
Zhang H, Cao X, Xin H, Liu J, Pan S, Guan L, Shen F, Liu Z, Wang D, Guan X, Yan J, Feng B, Li N, Jin Q, Gao L. Serum level of IL-1ra was associated with the treatment of latent tuberculosis infection in a Chinese population. BMC Infect Dis 2020; 20:330. [PMID: 32384874 PMCID: PMC7206663 DOI: 10.1186/s12879-020-05047-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 02/01/2023] Open
Abstract
Background Dynamically changed levels of serum cytokines might predict the development of active TB from latent tuberculosis infection (LTBI) and monitor preventive treatment effectiveness. The aim of the study was to identify potential serum cytokines associated with LTBI treatment which might predict active disease development in a Chinese population. Methods Based on a randomized controlled trial aiming to explore short-course regimens for LTBI treatment, the dynamic changes of serum cytokines determined by bead-based multiplex assays were investigated for the participants who developed active TB during follow-up and age and gender matched controls stayed healthy. Results Totally, 21 patients diagnosed with active tuberculosis (TB) during the 2-year follow-up (12 from treated groups and 9 from untreated controls) and 42 age and gender matched healthy controls (24 from treated groups and 18 from untreated controls) were included in the study. Before treatment, serum IL-1ra was statistically higher among those who developed active disease during follow-up as compared with those stayed healthy. As for treated participants, the levels of IL-1ra were significantly lower after treatment in comparison with those before treatment both in active TB group (p = 0.002) and non-TB group (p = 0.009). For untreated participants, the levels of IL-1ra were not statistically different between different time points both in active TB group (p = 0.078) and non-TB group (p = 0.265). Conclusion Our results suggested that declined serum level of IL-1ra was associated with LTBI treatment. Further studies are needed to verify whether it could be used to evaluate LTBI treatment and to predict active disease development.
Collapse
Affiliation(s)
- Haoran Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Xuefang Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Henan Xin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Jianmin Liu
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450061, China
| | - Shouguo Pan
- The Center for Disease Prevention and Control of Zhongmu County, Zhengzhou, 451470, China
| | - Ling Guan
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450061, China
| | - Fei Shen
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450061, China
| | - Zisen Liu
- The Center for Disease Prevention and Control of Zhongmu County, Zhengzhou, 451470, China
| | - Dakuan Wang
- The Center for Disease Prevention and Control of Zhongmu County, Zhengzhou, 451470, China
| | - Xueling Guan
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450061, China
| | - Jiaoxia Yan
- The Center for Disease Prevention and Control of Zhongmu County, Zhengzhou, 451470, China
| | - Boxuan Feng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Na Li
- Gastroenterology Department, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Lei Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
28
|
Dávila-Martínez C, Castillo-Velázquez U, Soto-Domínguez A, Nevárez-Garza AM, Arce-Mendoza AY, Hernandez-Vidal G, Zamora-Avila DE, Rodriguez-Tovar LE. Immunohistochemical localization of TNF-α and IL-4 in granulomas of immunocompetent and immunosuppressed New Zealand white rabbits infected with Encephalitozoon cuniculi. Cytokine 2020; 130:155055. [PMID: 32182455 DOI: 10.1016/j.cyto.2020.155055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 11/21/2022]
Abstract
Encephalitozoon cuniculi is a fungi-related, obligate, zoonotic, spore-forming intracellular eukaryotic microorganism. This emerging pathogen causes granulomas to form in the brain and kidneys of infected individuals. The objective of the current study was to detect the distribution of TNF-α- and IL-4-positive cells using immunohistochemistry within these granulomas in both infected immunocompetent (group A) and immunosuppressed (group B) New Zealand white rabbits. In the brain, labeled TNF-α immune cells were mainly located in the granuloma peripheries in group B. Granulomas examined in the kidneys of groups A and B were TNF-α positive, but were significantly different (p < 0.001) when compared with the brain. IL-4-producing immune cells in the brain and kidneys were disseminated within granulomas in groups A and B; however, no significant difference (p > 0.05), was observed. IL-4 positive cells were more numerous in brain sections of group B and differed significantly (p < 0.05) when compared with kidneys. Granulomas were not observed in control animals (groups C and D). In conclusion, we identified TNF-α positive cells in both the brain and kidneys of immunocompetent and immunosuppressed animals; IL-4 positive cells were numerous in the brains of immunosuppressed rabbits; however, in terms of percentage were numerous in the brains of immunocompetent rabbits. Immunosuppression appeared to stimulate a change in the cellular phenotype of Th1- to Th2-like granulomas in the brain and kidneys via an unknown mechanism. Expression of pro- and pre-inflammatory cytokines in microsporidian granulomas suggests a mechanism by which E. cuniculi evades the immune response, causing more severe disease. These results increase our understanding of TNF-α and IL-4-positive cells within the E. cuniculi granuloma microenvironment.
Collapse
Affiliation(s)
- C Dávila-Martínez
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico
| | - U Castillo-Velázquez
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico
| | - A Soto-Domínguez
- Departamento de Histología, Facultad de Medicina, UANL, Monterrey, N. L. C.P. 64460, Mexico
| | - A M Nevárez-Garza
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico
| | - A Y Arce-Mendoza
- Cuerpo Académico de Inmunología Clínica y Dermatología, Facultad de Medicina, UANL, Col. Mitras Centro, Monterrey, N. L. C.P. 64460, Mexico
| | - G Hernandez-Vidal
- Cuerpo Académico de Patobiología, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico
| | - D E Zamora-Avila
- Cuerpo Académico de Epidemiologia Veterinaria, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico
| | - L E Rodriguez-Tovar
- Cuerpo Académico de Zoonosis y Enfermedades Emergentes, Facultad de Medicina Veterinaria y Zootecnia, UANL, General Escobedo, N. L. C.P. 66050, Mexico.
| |
Collapse
|
29
|
Rodriguez-Moncayo R, Jimenez-Valdes RJ, Gonzalez-Suarez AM, Garcia-Cordero JL. Integrated Microfluidic Device for Functional Secretory Immunophenotyping of Immune Cells. ACS Sens 2020; 5:353-361. [PMID: 31927915 DOI: 10.1021/acssensors.9b01786] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Integrated platforms for automatic assessment of cellular functional secretory immunophenotyping could have a widespread use in the diagnosis, real-time monitoring, and therapy evaluation of several pathologies. We present a microfluidic platform with integrated biosensors and culture chambers to measure cytokine secretion from a consistent and uniform number of immune cells. The biosensor relies on a fluorescence sandwich immunoassay enabled by the mechanically induced trapping of molecular interactions method. The platform contains 32 cell culture chambers, each patterned with an array of 492 microwells, to capture and analyze both adherent and nonadherent immune cells. Multiple stimuli can be delivered to a set of culture chambers. Per chamber, we were able to capture consistently 1113 ± 191 of blood-derived monocytes and neutrophils and 348 ± 37 THP-1 monocytes. Good occupancy efficiencies of ∼70% with a uniformity of ∼90% across all of the culture chambers of the device were achieved. Furthermore, we demonstrate that up to 96% of cells remain viable for the first 48 h. The employment of epoxy-modified glass substrates and active mixing enhanced the biosensing performance compared to the use of bare glass and simple diffusion. Finally, we performed functional secretory analysis of interleukin-8 and tumor necrosis factor alpha from human neutrophils and monocytes, stimulated with various doses of lipopolysaccharide and phorbol 12-myristate 13-acetate-ionomycin, respectively. We foresee the employment of our microfluidic platform in the diagnosis of different pathologies where alterations in cytokine secretion patterns can be used as biomarkers.
Collapse
Affiliation(s)
- Roberto Rodriguez-Moncayo
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| | - Rocio Jimena Jimenez-Valdes
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| | - Alan Mauricio Gonzalez-Suarez
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| | - Jose Luis Garcia-Cordero
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Parque PIIT, Apodaca, Nuevo León 66628, Mexico
| |
Collapse
|
30
|
Suzukawa M, Takeda K, Akashi S, Asari I, Kawashima M, Ohshima N, Inoue E, Sato R, Shimada M, Suzuki J, Yamane A, Tamura A, Ohta K, Tohma S, Teruya K, Nagai H. Evaluation of cytokine levels using QuantiFERON-TB Gold Plus in patients with active tuberculosis. J Infect 2020; 80:547-553. [PMID: 32092390 DOI: 10.1016/j.jinf.2020.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVES A recently released new QuantiFERON (QFT) product, QFT TB Gold plus (QFT-plus), is optimized for both CD4 and CD8 responses and reported to have higher sensitivity compared to the former QFT-3 G. Previously, using supernatants of QFT-3 G, we and others have demonstrated that cytokines other than IFN-γ may be useful in diagnosing tuberculosis. The present study aimed to identify cytokines that are useful for accurately diagnosing active tuberculosis by using QFT-plus and compared the data to those with QFT-3 G. METHODS Eighty-three active tuberculosis patients and 70 healthy control subjects who were examined by QFT at Tokyo National Hospital from June 2017 to July 2018 were enrolled. QFT-3 G and QFT-plus were performed according to the manufacturer's instructions. At the same time, blood cell culture supernatants were collected and assayed for their cytokine levels using R&D Systems Luminex Assay and MAGPIX System. The levels of cytokines were compared between different antigen-containing tubes (3 G Ag, TB1 and TB2 tubes), as well as between the patients and the control subjects. ROC curves were drawn, and the AUCs were calculated. RESULTS Five cytokines, i.e., IL-2, IL-6, IL-8, IP-10 and MIP-1β, produced by human blood cells in three independent tubes containing different tuberculosis antigens were higher in the 3 G Ag tube compared to both the TB1 and TB2 tubes. Further, when the TB1 and TB2 tubes were compared, TB2 showed greater production of only PDGF-BB, and less production of IL-6 and TNF-α. For diagnosing active tuberculosis, the levels of IP-10 were superior to the level of IFN-γ based on showing a larger AUC for ROC curves in our present study setting. Finally, the levels of IFN-γ, IL-1RA, IL-2, IP-10, MCP-1 and MIP-1β were distinctly different between the active tuberculosis patients and healthy controls. CONCLUSIONS In summary, there was no cytokine that was higher in the tubes of QFT-plus compared to the tube of QFT-3 G, suggesting inferiority of QFT-plus antigens to 3 G Ag in terms of elicitation of cytokine production. Our results also suggest the usefulness of cytokines that showed a significant difference between the active tuberculosis patients and the healthy controls-namely, IFN-γ, IL-1RA, IL-2, IP-10, MCP-1 and MIP-1β-for diagnosing tuberculosis, but the roles of these cytokines in the pathogenesis of tuberculosis need to be elucidated (UMIN000035253).
Collapse
Affiliation(s)
- Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan.
| | - Keita Takeda
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Department of Basic Mycobacteriology, Graduate School of Biomedical Science, Nagasaki University, 1-14 Bunkyomachi, Nagasaki, 852-8521, Japan
| | - Shunsuke Akashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Isao Asari
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Masahiro Kawashima
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Nobuharu Ohshima
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Eri Inoue
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Ryota Sato
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Masahiro Shimada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Junko Suzuki
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Akira Yamane
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Atsuhisa Tamura
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan; Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, Japan
| | - Shigeto Tohma
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| | - Katsuji Teruya
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideaki Nagai
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose-City, Tokyo 204-8585, Japan
| |
Collapse
|
31
|
Coppola M, Villar-Hernández R, van Meijgaarden KE, Latorre I, Muriel Moreno B, Garcia-Garcia E, Franken KLMC, Prat C, Stojanovic Z, De Souza Galvão ML, Millet JP, Sabriá J, Sánchez-Montalva A, Noguera-Julian A, Geluk A, Domínguez J, Ottenhoff THM. Cell-Mediated Immune Responses to in vivo-Expressed and Stage-Specific Mycobacterium tuberculosis Antigens in Latent and Active Tuberculosis Across Different Age Groups. Front Immunol 2020; 11:103. [PMID: 32117257 PMCID: PMC7026259 DOI: 10.3389/fimmu.2020.00103] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
A quarter of the global human population is estimated to be latently infected by Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). TB remains the global leading cause of death by a single pathogen and ranks among the top-10 causes of overall global mortality. Current immunodiagnostic tests cannot discriminate between latent, active and past TB, nor predict progression of latent infection to active disease. The only registered TB vaccine, Bacillus Calmette-Guérin (BCG), does not adequately prevent pulmonary TB in adolescents and adults, thus permitting continued TB-transmission. Several Mtb proteins, mostly discovered through IFN-γ centered approaches, have been proposed as targets for new TB-diagnostic tests or -vaccines. Recently, however, we identified novel Mtb antigens capable of eliciting multiple cytokines, including antigens that did not induce IFN-γ but several other cytokines. These antigens had been selected based on high Mtb gene-expression in the lung in vivo, and have been termed in vivo expressed (IVE-TB) antigens. Here, we extend and validate our previous findings in an independent Southern European cohort, consisting of adults and adolescents with either LTBI or TB. Our results confirm that responses to IVE-TB antigens, and also DosR-regulon and Rpf stage-specific Mtb antigens are marked by multiple cytokines, including strong responses, such as for TNF-α, in the absence of detectable IFN-γ production. Except for TNF-α, the magnitude of those responses were significantly higher in LTBI subjects. Additional unbiased analyses of high dimensional flow-cytometry data revealed that TNF-α+ cells responding to Mtb antigens comprised 17 highly heterogeneous cell types. Among these 17 TNF-α+ cells clusters identified, those with CD8+TEMRA or CD8+CD4+ phenotypes, defined by the expression of multiple intracellular markers, were the most prominent in adult LTBI, while CD14+ TNF-α+ myeloid-like clusters were mostly abundant in adolescent LTBI. Our findings, although limited to a small cohort, stress the importance of assessing broader immune responses than IFN-γ alone in Mtb antigen discovery as well as the importance of screening individuals of different age groups. In addition, our results provide proof of concept showing how unbiased multidimensional multiparametric cell subset analysis can identify unanticipated blood cell subsets that could play a role in the immune response against Mtb.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Raquel Villar-Hernández
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Irene Latorre
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Muriel Moreno
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Garcia-Garcia
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Cristina Prat
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Zoran Stojanovic
- Servei de Neumología Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Joan-Pau Millet
- Serveis Clínics, Unitat Clínica de Tractament Directament Observat de la Tuberculosi, CIBER de Epidemiología y Salud Pública (CIBEREESP), Madrid, Spain
| | - Josefina Sabriá
- Servei de Pneumologia, Hospital Sant Joan Despí Moises Broggi, Sant Joan Despí, Spain
| | - Adrián Sánchez-Montalva
- Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.,Grupo de Estudio de Micobacterias (GEIM), Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Antoni Noguera-Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d'Infeccions, Servei de Pediatria, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jose Domínguez
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
32
|
Wang S, He L, Wu J, Zhou Z, Gao Y, Chen J, Shao L, Zhang Y, Zhang W. Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Identifies Diagnostic Biomarkers That Distinguish Active and Latent Tuberculosis. Front Immunol 2019; 10:2948. [PMID: 31921195 PMCID: PMC6930242 DOI: 10.3389/fimmu.2019.02948] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) infection in humans can cause active disease or latent infection. However, the factors contributing to the maintenance of latent infection vs. disease progression are poorly understood. In this study, we used a genome-wide RNA sequencing (RNA-seq) approach to identify host factors associated with M. tuberculosis infection status and a novel gene signature that can distinguish active disease from latent infection. By RNA-seq, we characterized transcriptional differences in purified protein derivative (PPD)-stimulated peripheral blood mononuclear cells (PBMCs) among three groups: patients with active tuberculosis (ATB), individuals with latent TB infection (LTBI), and TB-uninfected controls (CON). A total of 401 differentially expressed genes enabled grouping of individuals into three clusters. A validation study by quantitative real-time PCR (qRT-PCR) confirmed the differential expression of TNFRSF10C, IFNG, PGM5, EBF3, and A2ML1 between the ATB and LTBI groups. Additional clinical validation was performed to evaluate the diagnostic performance of these five biomarkers using 130 subjects. The 3-gene signature set of TNFRSF10C, EBF3, and A2ML1 enabled correct classification of 91.5% of individuals, with a high sensitivity of 86.2% and specificity of 94.9%. Diagnostic performance of the 3-gene signature set was validated using a clinical cohort of 147 subjects with suspected ATB. The sensitivity and specificity of the 3-gene set for ATB were 82.4 and 92.4%, respectively. In conclusion, we detected distinct gene expression patterns in PBMCs stimulated by PPD depending on the status of M. tuberculosis infection. Furthermore, we identified a 3-gene signature set that could distinguish ATB from LTBI, which may facilitate rapid diagnosis and treatment for more effective disease control.
Collapse
Affiliation(s)
- Sen Wang
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei He
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zumo Zhou
- Department of Infectious Diseases, People's Hospital of Zhuji, Zhuji, China
| | - Yan Gao
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Wenhong Zhang
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
McLean MR, Lu LL, Kent SJ, Chung AW. An Inflammatory Story: Antibodies in Tuberculosis Comorbidities. Front Immunol 2019; 10:2846. [PMID: 31921122 PMCID: PMC6913197 DOI: 10.3389/fimmu.2019.02846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) resides in a quarter of the world's population and is the causative agent for tuberculosis (TB), the most common infectious reason of death in humans today. Although cellular immunity has been firmly established in the control of Mtb, there is growing evidence that antibodies may also modulate the infection. More specifically, certain antibody features are associated with inflammation and are divergent in different states of human infection and disease. Importantly, TB impacts not just the healthy but also those with chronic conditions. While HIV represents the quintessential comorbid condition for TB, recent epidemiological evidence shows that additional chronic conditions such as diabetes and kidney disease are rising. In fact, the prevalence of diabetes as a comorbid TB condition is now higher than that of HIV. These chronic diseases are themselves independently associated with pro-inflammatory immune states that encompass antibody profiles. This review discusses isotypes, subclasses, post-translational modifications and Fc-mediated functions of antibodies in TB infection and in the comorbid chronic conditions of HIV, diabetes, and kidney diseases. We propose that inflammatory antibody profiles, which are a marker of active TB, may be an important biomarker for detection of TB disease progression within comorbid individuals. We highlight the need for future studies to determine which inflammatory antibody profiles are the consequences of comorbidities and which may potentially contribute to TB reactivation.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lenette L Lu
- Division of Infectious Disease and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Brisbane, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
34
|
An IFN-γ and TNF-α dual release fluorospot assay for diagnosing active tuberculosis. Clin Microbiol Infect 2019; 26:928-934. [PMID: 31730906 DOI: 10.1016/j.cmi.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Currently available interferon (IFN)-γ-release assays (IGRA) cannot discriminate active tuberculosis (TB) from latent TB infection (LTBI), and so have limited clinical utility for diagnosing active TB. Since numbers of tumour necrosis factor (TNF)-α-producing T cells are highly correlated with active TB, we hypothesized that detecting IFN-γ- and/or TNF-α-producing T cells would overcome this limitation of IGRA. This study evaluated the diagnostic performances of the IFN-γ and TNF-α dual release fluorospot assay for active TB. METHODS Adult patients with suspected TB including recent TB exposers were prospectively enrolled over a 28-month period. In addition to the conventional IGRA test (i.e. QuantiFERON-In-Tube), a fluorospot assay for detecting IFN-γ- and TNF-α-producing T cells was performed. The final diagnoses were classified by clinical category. Patients with confirmed or probable TB were regarded as active TB, and patients with not active TB were further classified as having not active TB with and without LTBI, based on the QuantiFERON-In-Tube results. RESULTS A total of 153 patients including 45 with active TB and 108 with not active TB (38 LTBI vs. 70 not LTBI) were finally analysed. The sensitivity and specificity of the QuantiFERON-In-Tube assay for active TB were 84% (95% confidence interval (CI), 70-93) and 70% (95% CI 61-79), respectively. The IFN-γ/TNF-α dual release assay by fluorospot had substantially higher diagnostic specificity (94%) for diagnosing active TB than the IFN-γ single release assay (72%, p < 0.001), without compromising sensitivity (84% vs. 89%, p 0.79). CONCLUSIONS The fluorospot-based IFN-γ/TNF-α dual release assay appears to be a simple and useful test for diagnosing active TB.
Collapse
|
35
|
Sudbury EL, Otero L, Tebruegge M, Messina NL, Seas C, Montes M, Rìos J, Germano S, Gardiner K, Clifford V, Gotuzzo E, Curtis N. Mycobacterium tuberculosis-specific cytokine biomarkers for the diagnosis of childhood TB in a TB-endemic setting. J Clin Tuberc Other Mycobact Dis 2019; 16:100102. [PMID: 31720428 PMCID: PMC6830137 DOI: 10.1016/j.jctube.2019.100102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The tuberculin skin test and interferon-gamma release assays have limitations in diagnosing tuberculosis (TB), particularly in children. This study investigated the performance of candidate M. tuberculosis-specific cytokine biomarkers for TB in children in a TB-endemic setting. A total of 237 children with a household contact with smear-positive pulmonary TB were recruited. Importantly, a group of children with illnesses other than TB (sick controls) was included to assess specificity. Median IFN-ɣ, IL-1ra, IL-2, IL-13, IP-10, MIP-1β and TNF-α responses were significantly higher in children with active TB and latent TB infection (LTBI) than in both healthy and sick control children. Three of these cytokines - IL-2, IL-13 and IP-10 - showed better performance characteristics than IFN-ɣ, with IL-2 achieving positive and negative predictive values of 97.7% and 90.7%, respectively. Furthermore, IL-1ra and TNF-α responses differed significantly between active TB and LTBI cases, suggesting that they may be stage-specific biomarkers. Our data indicate that incorporating these biomarkers into future blood-based TB assays could result in substantial performance gains.
Collapse
Affiliation(s)
- Eva L. Sudbury
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Larissa Otero
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marc Tebruegge
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Department of Infection, Immunity & Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Infectious Diseases & Immunology, Evelina London Children's Hospital, Guy's and St. Thomas’ NHS Foundation Trust, London, UK
| | - Nicole L. Messina
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Carlos Seas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Martin Montes
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Julia Rìos
- Dirección de Prevención y Control de Tuberculosis, Ministerio de Salud, Lima, Peru
| | - Susie Germano
- Murdoch Children's Research Institute, Parkville, Australia
| | - Kaya Gardiner
- Murdoch Children's Research Institute, Parkville, Australia
| | - Vanessa Clifford
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Murdoch Children's Research Institute, Parkville, Australia
- Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
| | - Eduardo Gotuzzo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Murdoch Children's Research Institute, Parkville, Australia
- Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
| |
Collapse
|
36
|
Manngo PM, Gutschmidt A, Snyders CI, Mutavhatsindi H, Manyelo CM, Makhoba NS, Ahlers P, Hiemstra A, Stanley K, McAnda S, Kidd M, Malherbe ST, Walzl G, Chegou NN. Prospective evaluation of host biomarkers other than interferon gamma in QuantiFERON Plus supernatants as candidates for the diagnosis of tuberculosis in symptomatic individuals. J Infect 2019; 79:228-235. [PMID: 31319143 DOI: 10.1016/j.jinf.2019.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND There is an urgent need for new tools for the diagnosis of TB. We evaluated the usefulness recently described host biomarkers in supernatants from the newest generation of the QuantiFERON test (QuantiFERON Plus) as tools for the diagnosis of active TB. METHODS We recruited individuals presenting at primary health care clinics in Cape Town, South Africa with symptoms requiring investigation for TB disease, prior to the establishment of a clinical diagnosis. Participants were later classified as TB or other respiratory diseases (ORD) based on the results of clinical and laboratory tests. Using a multiplex platform, we evaluated the concentrations of 37 host biomarkers in QuantiFERON Plus supernatants from study participants as tools for the diagnosis of TB. RESULTS Out of 120 study participants, 35(29.2%) were diagnosed with active TB, 69(57.5%) with ORD whereas 16(13.3%) were excluded. 14(11.6%) of the study participants were HIV infected. Although individual host markers showed potential as diagnostic candidates, the main finding of the study was the identification of a six-marker biosignature in unstimulated supernatants (Apo-ACIII, CXCL1, CXCL9, CCL8, CCL-1, CD56) which diagnosed TB with sensitivity and specificity of 73.9%(95% CI; 51.6-87.8) and 87.6%(95% CI; 77.2-94.5), respectively, after leave-one-out cross validation. Combinations between TB-antigen specific biomarkers also showed potential (sensitivity of 77.3% and specificity of 69.2%, respectively), with multiple biomarkers being significantly different between TB patients, Quantiferon Plus Positive and Quantiferon Plus negative individuals with ORD, regardless of HIV status. CONCLUSIONS Biomarkers detected in QuantiFERON Plus supernatants may contribute to adjunctive diagnosis of TB.
Collapse
Affiliation(s)
- Portia M Manngo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Andrea Gutschmidt
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Candice I Snyders
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Hygon Mutavhatsindi
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Charles M Manyelo
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Nonjabulo S Makhoba
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Petri Ahlers
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Andriette Hiemstra
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Kim Stanley
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Shirley McAnda
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Department of Statistics and Actuarial Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T Malherbe
- Centre for Statistical Consultation, Department of Statistics and Actuarial Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa
| | - Novel N Chegou
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Po Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
37
|
Kumar NP, Moideen K, Banurekha VV, Nair D, Babu S. Plasma Proinflammatory Cytokines Are Markers of Disease Severity and Bacterial Burden in Pulmonary Tuberculosis. Open Forum Infect Dis 2019; 6:ofz257. [PMID: 31281858 DOI: 10.1093/ofid/ofz257] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Type 1, type 17, and other proinflammatory cytokines are important in host immunity to tuberculosis (TB) in animal models. However, their role in human immunity to TB is not completely understood. Methods To examine the association of proinflammatory cytokines with pulmonary TB (PTB), we examined the plasma levels of type 1 (interferon [IFN]γ and tumor necrosis factor [TNF]α), type 17 (interleukin [IL]-17A and IL-17F), and other proinflammatory (IL-6, IL-12, and IL-1β) cytokines in individuals with PTB, latent TB (LTB), or healthy controls (HC). Results Individuals with PTB exhibited significantly higher plasma levels of most of the above cytokines compared with LTB or HC individuals. Principal component analysis based on these cytokines could clearly distinguish PTB from both LTB or HC individuals. Pulmonary TB individuals with bilateral or cavitary disease exhibited significantly higher levels of IFNγ, TNFα, IL-17A, and IL-1β compared with those with unilateral or noncavitary disease. Pulmonary TB individuals also exhibited a significant positive relationship between IFNγ, TNFα, and IL-17A levels and bacterial burdens. In addition, PTB individuals with delayed culture conversion exhibited significantly higher levels of IFNγ, TNFα, IL-17A, and IL-1β at baseline. Finally, the plasma levels of all the cytokines examined were significantly reduced after successful chemotherapy. Conclusions Therefore, our data demonstrate that PTB is associated with heightened levels of plasma proinflammatory cytokines, which are reversed after chemotherapy. Our data also reveal that proinflammatory cytokines are markers of disease severity, bacterial burden, and delayed culture conversion in PTB.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai, India
| | - Kadar Moideen
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai, India
| | - Vaithilingam V Banurekha
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai, India
| | - Dina Nair
- National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- National Institutes of Health, National Institute for Research in Tuberculosis, International Center for Excellence in Research, Chennai, India.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|