1
|
Liu H, Liu S, Ma P, Ma L, Liu Y, Zhao F, Zhou R. Development and Evaluation of Aloperine-Loaded Nanostructured Lipid Carriers for the Treatment of Pulmonary Arterial Hypertension. Int J Nanomedicine 2025; 20:871-886. [PMID: 39867311 PMCID: PMC11761852 DOI: 10.2147/ijn.s489133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Objective This study focuses on the development and evaluation of nanostructured lipid carriers (NLCs) loaded with aloperine as a potential therapeutic approach for the treatment of pulmonary arterial hypertension. Methods The NLCs were designed to enhance the solubility, stability, and bioavailability of aloperine, a compound with vasodilatory and anti-inflammatory properties. Through a series of experiments including single-factor experimentation, transmission electron microscopy, high-performance liquid chromatography, in vivo pharmacokinetics, and tissue distribution studies, we assessed the physicochemical properties, drug release profiles, and in vitro and in vivo performance of this novel nanocarrier. Results The prepared aloperine-loaded NLCs exhibited a milky white and translucent suspension appearance, presenting a quasi-spherical shape under a transmission electron microscope, with an average particle size of (509.48±30.04) nm and an entrapment efficiency of (64.18±1.14)%. The drug release profile demonstrated good sustained-release characteristics in vitro, and the formulation remained stable for up to 15 days when stored at 4°C. Compared to the aloperine solution group, the t1/2, AUC(0→t), AUC(0→∞), MRT(0→t), and clearance rate of the aloperine-loaded NLCs were 2.3, 2.96, 3.06, 3.03, and 0.22 times higher, respectively. This indicates that formulating aloperine into NLCs can prolong its circulation time in the body. Furthermore, the concentrations of aloperine in the lungs of the NLCs group were 1.79, 3.78, and 2.30 times higher than those in the solution group at three time points (0.25 h, 1.5 h, 4 h), suggesting that NLCs can increase the accumulation of aloperine in the lungs. Conclusion Our findings suggest that NLCs loaded with aloperine could offer a promising strategy for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Hui Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Siyun Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Pengsheng Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Long Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Yuxin Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Fang Zhao
- General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Ru Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
- Ningxia Characteristic Traditional Chinese Medicine Modernization Engineering Technology Research Center, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| |
Collapse
|
2
|
Bauman AA, Sarathy JP, Kaya F, Massoudi LM, Scherman MS, Hastings C, Liu J, Xie M, Brooks EJ, Ramey ME, Jones IL, Benedict ND, Maclaughlin MR, Miller-Dawson JA, Waidyarachchi SL, Butler MM, Bowlin TL, Zimmerman MD, Lenaerts AJ, Meibohm B, Gonzalez-Juarrero M, Lyons MA, Dartois V, Lee RE, Robertson GT. Spectinamide MBX-4888A exhibits favorable lesion and tissue distribution and promotes treatment shortening in advanced murine models of tuberculosis. Antimicrob Agents Chemother 2024; 68:e0071624. [PMID: 39345140 PMCID: PMC11539231 DOI: 10.1128/aac.00716-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis. Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. Here, we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models, including mice exhibiting advanced pulmonary disease, can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.
Collapse
Affiliation(s)
- Allison A. Bauman
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Jansy P. Sarathy
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Firat Kaya
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Lisa M. Massoudi
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Michael S. Scherman
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Courtney Hastings
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Jiuyu Liu
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Min Xie
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Elizabeth J. Brooks
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Michelle E. Ramey
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Isabelle L. Jones
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Noalani D. Benedict
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Madelyn R. Maclaughlin
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Jake A. Miller-Dawson
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | - Matthew D. Zimmerman
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Anne J. Lenaerts
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | | | - Michael A. Lyons
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Veronique Dartois
- Hackensack Meridian School of Medicine, Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Gregory T. Robertson
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Liu J, Lukka PB, Ektnitphong VA, Parmar KR, Wagh S, Lu Y, Lee RB, Scherbakov D, Wang H, Zimmerman MD, Meibohm B, Robertson GT, Dartois V, Böttger EC, Lenaerts AJ, Lee RE. Enhancing the therapeutic window for Spectinamide anti-tuberculosis Agents: Synthesis, Evaluation, and activation of phosphate prodrug 3408. Bioorg Med Chem Lett 2024; 112:129934. [PMID: 39214506 PMCID: PMC11403708 DOI: 10.1016/j.bmcl.2024.129934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Spectinamides are a novel class of narrow-spectrum antitubercular agents with the potential to treat drug-resistant tuberculosis infections. Spectinamide 1810 has shown a good safety record following subcutaneous injection in mice or infusion in rats but exhibits transient acute toxicity following bolus administration in either species. To improve the therapeutic index of 1810, an injectable prodrug strategy was explored. The injectable phosphate prodrug 3408 has a superior maximum tolerated dose compared to 1810 or Gentamicin. Following intravenous administration in rodents, prodrug 3408 was quickly converted to 1810. The resulting 1810 exposure and pharmacokinetic profile after 3408 administration was identical to equivalent molar amounts of 1810 given directly by intravenous administration. 3408 and the parent 1810 exhibited similar overall efficacy in a BALB/c acute tuberculosis efficacy model. Delivery of 1810 in phosphate prodrug form, therefore, holds the potential to improve further the therapeutic index of an already promising tuberculosis antibiotic.
Collapse
Affiliation(s)
- Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Pradeep B Lukka
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Victoria A Ektnitphong
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Keyur R Parmar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Santosh Wagh
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Yan Lu
- Therapeutics Prod & Quality, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Robin B Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Dimitri Scherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Rämistrasse 71, Gloriastrasse 30/32, CH-8006 Zürich, Switzerland
| | - Han Wang
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Matthew D Zimmerman
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Vêronique Dartois
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, United States
| | - Erik C Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Rämistrasse 71, Gloriastrasse 30/32, CH-8006 Zürich, Switzerland
| | - Anne J Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
4
|
Zohaib Ali M, Dutt TS, MacNeill A, Walz A, Pearce C, Lam H, Philp JS, Patterson J, Henao-Tamayo M, Lee R, Liu J, Robertson GT, Hickey AJ, Meibohm B, Gonzalez Juarrero M. A modified BPaL regimen for tuberculosis treatment replaces linezolid with inhaled spectinamides. eLife 2024; 13:RP96190. [PMID: 39378165 PMCID: PMC11460978 DOI: 10.7554/elife.96190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
The Nix-TB clinical trial evaluated a new 6 month regimen containing three oral drugs; bedaquiline (B), pretomanid (Pa), and linezolid (L) (BPaL regimen) for the treatment of tuberculosis (TB). This regimen achieved remarkable results as almost 90% of the multidrug-resistant or extensively drug-resistant TB participants were cured but many patients also developed severe adverse events (AEs). The AEs were associated with the long-term administration of the protein synthesis inhibitor linezolid. Spectinamide 1599 is also a protein synthesis inhibitor of Mycobacterium tuberculosis with an excellent safety profile, but it lacks oral bioavailability. Here, we propose to replace L in the BPaL regimen with spectinamide (S) administered via inhalation and we demonstrate that inhaled spectinamide 1599, combined with BPa --BPaS regimen--has similar efficacy to that of the BPaL regimen while simultaneously avoiding the L-associated AEs. The BPaL and BPaS regimens were compared in the BALB/c and C3HeB/FeJ murine chronic TB efficacy models. After 4-weeks of treatment, both regimens promoted equivalent bactericidal effects in both TB murine models. However, treatment with BPaL resulted in significant weight loss and the complete blood count suggested the development of anemia. These effects were not similarly observed in mice treated with BPaS. BPaL and BPa, but not the BPaS treatment, also decreased myeloid to erythroid ratio suggesting the S in the BPaS regimen was able to recover this effect. Moreover, the BPaL also increased concentration of proinflammatory cytokines in bone marrow compared to mice receiving BPaS regimen. These combined data suggest that inhaled spectinamide 1599 combined with BPa is an effective TB regimen without L-associated AEs.
Collapse
Affiliation(s)
- Malik Zohaib Ali
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
- Program in Cell & Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Taru S Dutt
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Amy MacNeill
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Amanda Walz
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Camron Pearce
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
- Program in Cell & Molecular Biology, Colorado State UniversityFort CollinsUnited States
| | - Ha Lam
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Jamie S Philp
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Johnathan Patterson
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Richard Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research HospitalMemphisUnited States
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| | - Anthony J Hickey
- Technology Advancement and Commercialization, RTI InternationalResearch Triangle ParkUnited States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science CenterMemphisUnited States
| | - Mercedes Gonzalez Juarrero
- Mycobacteria Research Laboratories, Colorado State UniversityFort CollinsUnited States
- Microbiology, Immunology and Pathology, Colorado State UniversityFort CollinsUnited States
| |
Collapse
|
5
|
Bauman AA, Sarathy JP, Kaya F, Massoudi LM, Scherman MS, Hastings C, Liu J, Xie M, Brooks EJ, Ramey ME, Jones IL, Benedict ND, Maclaughlin MR, Miller-Dawson JA, Waidyarachchi SL, Butler MM, Bowlin TL, Zimmerman MD, Lenaerts AJ, Meibohm B, Gonzalez-Juarrero M, Lyons MA, Dartois V, Lee RE, Robertson GT. Spectinamide MBX-4888A exhibits favorable lesion and tissue distribution and promotes treatment shortening in advanced murine models of tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593953. [PMID: 38798577 PMCID: PMC11118289 DOI: 10.1101/2024.05.13.593953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis . Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. To demonstrate that this translates to more effective cure, we first confirmed the role of rifampin, with or without pyrazinamide, as essential to achieve effective bactericidal responses and sterilizing cure in the current standard of care regimen in chronically infected C3HeB/FeJ mice compared to BALB/c mice. Thus, demonstrating added value in testing clinically relevant regimens in murine models of increasing pathologic complexity. Next we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models including mice exhibiting advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.
Collapse
|
6
|
Parmar KR, Lukka PB, Wagh S, Temrikar ZH, Liu J, Lee RE, Braunstein M, Hickey AJ, Robertson GT, Gonzalez-Juarrero M, Edginton A, Meibohm B. Development of a Minimalistic Physiologically Based Pharmacokinetic (mPBPK) Model for the Preclinical Development of Spectinamide Antibiotics. Pharmaceutics 2023; 15:1759. [PMID: 37376207 DOI: 10.3390/pharmaceutics15061759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Spectinamides 1599 and 1810 are lead spectinamide compounds currently under preclinical development to treat multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. These compounds have previously been tested at various combinations of dose level, dosing frequency, and route of administration in mouse models of Mycobacterium tuberculosis (Mtb) infection and in healthy animals. Physiologically based pharmacokinetic (PBPK) modeling allows the prediction of the pharmacokinetics of candidate drugs in organs/tissues of interest and extrapolation of their disposition across different species. Here, we have built, qualified, and refined a minimalistic PBPK model that can describe and predict the pharmacokinetics of spectinamides in various tissues, especially those relevant to Mtb infection. The model was expanded and qualified for multiple dose levels, dosing regimens, routes of administration, and various species. The model predictions in mice (healthy and infected) and rats were in reasonable agreement with experimental data, and all predicted AUCs in plasma and tissues met the two-fold acceptance criteria relative to observations. To further explore the distribution of spectinamide 1599 within granuloma substructures as encountered in tuberculosis, we utilized the Simcyp granuloma model combined with model predictions in our PBPK model. Simulation results suggest substantial exposure in all lesion substructures, with particularly high exposure in the rim area and macrophages. The developed model may be leveraged as an effective tool in identifying optimal dose levels and dosing regimens of spectinamides for further preclinical and clinical development.
Collapse
Affiliation(s)
- Keyur R Parmar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pradeep B Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Wagh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zaid H Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jiuyu Liu
- Department of Chemical Biology, St. Jude Children's Hospital, Memphis, TN 38105, USA
| | - Richard E Lee
- Department of Chemical Biology, St. Jude Children's Hospital, Memphis, TN 38105, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anthony J Hickey
- Technology Advancement and Commercialization, RTI International, Durham, NC 27709, USA
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrea Edginton
- School of Pharmacy, University of Waterloo, Waterloo, ON N2G 1C5, Canada
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
7
|
Omollo C, Singh V, Kigondu E, Wasuna A, Agarwal P, Moosa A, Ioerger TR, Mizrahi V, Chibale K, Warner DF. Developing synergistic drug combinations to restore antibiotic sensitivity in drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2023; 65:AAC.02554-20. [PMID: 33619062 PMCID: PMC8092878 DOI: 10.1128/aac.02554-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/14/2021] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is a leading global cause of mortality owing to an infectious agent, accounting for almost one-third of antimicrobial resistance (AMR) deaths annually. We aimed to identify synergistic anti-TB drug combinations with the capacity to restore therapeutic efficacy against drug-resistant mutants of the causative agent, Mycobacterium tuberculosis We investigated combinations containing the known translational inhibitors, spectinomycin (SPT) and fusidic acid (FA), or the phenothiazine, chlorpromazine (CPZ), which disrupts mycobacterial energy metabolism. Potentiation of whole-cell drug efficacy was observed in SPT-CPZ combinations. This effect was lost against an M. tuberculosis mutant lacking the major facilitator superfamily (MFS) efflux pump, Rv1258c. Notably, the SPT-CPZ combination partially restored SPT efficacy against an SPT-resistant mutant carrying a g1379t point mutation in rrs, encoding the mycobacterial 16S ribosomal RNA. Combinations of SPT with FA, which targets the mycobacterial elongation factor G, exhibited potentiating activity against wild-type M. tuberculosis Moreover, this combination produced a modest potentiating effect against both FA-monoresistant and SPT-monoresistant mutants. Finally, combining SPT with the frontline anti-TB agents, rifampicin (RIF) and isoniazid, resulted in enhanced activity in vitro and ex vivo against both drug-susceptible M. tuberculosis and a RIF-monoresistant rpoB S531L mutant.These results support the utility of novel potentiating drug combinations in restoring antibiotic susceptibility of M. tuberculosis strains carrying genetic resistance to any one of the partner compounds.
Collapse
Affiliation(s)
- Charles Omollo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Elizabeth Kigondu
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| | - Antonina Wasuna
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| | - Pooja Agarwal
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Atica Moosa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Thomas R Ioerger
- Texas A&M University, Department of Computer Science, College Station, TX, 77843, USA
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
8
|
Temrikar ZH, Kodidela S, Kumar S, Liu J, Robertson GT, Lee RE, Hickey AJ, Gonzalez-Juarrero M, Meibohm B. Characterization of spectinamide 1599 efficacy against different mycobacterial phenotypes. Tuberculosis (Edinb) 2023; 140:102342. [PMID: 37120915 PMCID: PMC10247484 DOI: 10.1016/j.tube.2023.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/02/2023]
Abstract
Spectinamides are a novel series of spectinomycin analogs being developed for the treatment of tuberculosis. The preclinical lead spectinamide 1599 is an antituberculosis drug that possesses robust in vivo efficacy, good pharmacokinetic properties, and excellent safety profiles in rodents. In individuals infected with Mycobacterium tuberculosis or Mycobacterium bovis, causative agents of tuberculosis, the host immune system is capable of restraining these mycobacteria within granulomatous lesions. The harsh microenvironmental conditions of these granuloma lead to phenotypic transformation of mycobacteria. Phenotypically transformed bacteria display suboptimal growth, or complete growth arrest and are frequently associated with drug tolerance. Here we quantified the effect of spectinamide 1599 on log-phase and phenotypically tolerant isoforms of Mycobacterium bovis BCG using various in vitro approaches as a first indicator of spectinamide 1599 activity against various mycobacterial isoforms. We also used the hollow fiber infection model to establish time-kill curves and deployed pharmacokinetic/pharmacodynamic modeling to characterize the activity differences of spectinamide 1599 towards the different phenotypic subpopulations. Our results indicate that spectinamide 1599 is more efficacious against log phase bacteria when compared to its activity against other phenotypically tolerant forms such as acid phase bacteria and hypoxic phase bacteria, a behavior similar to the established antituberculosis drug isoniazid.
Collapse
Affiliation(s)
- Zaid H Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anthony J Hickey
- Technology Advancement and Commercialization, RTI International, Durham, NC, 27709, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
9
|
Model-Based Exposure-Response Assessment for Spectinamide 1810 in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother 2021; 65:e0174420. [PMID: 34424046 DOI: 10.1128/aac.01744-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite decades of research, tuberculosis remains a leading cause of death from a single infectious agent. Spectinamides are a promising novel class of antituberculosis agents, and the lead spectinamide 1810 has demonstrated excellent efficacy, safety, and drug-like properties in numerous in vitro and in vivo assessments in mouse models of tuberculosis. In the current dose ranging and dose fractionation study, we used 29 different combinations of dose level and dosing frequency to characterize the exposure-response relationship for spectinamide 1810 in a mouse model of Mycobacterium tuberculosis infection and in healthy animals. The obtained data on 1810 plasma concentrations and counts of CFU in lungs were analyzed using a population pharmacokinetic/pharmacodynamic (PK/PD) approach as well as classical anti-infective PK/PD indices. The analysis results indicate that there was no difference in the PK of 1810 in infected compared to healthy, uninfected animals. The PK/PD index analysis showed that bacterial killing of 1810 in mice was best predicted by the ratio of maximum free drug concentration to MIC (fCmax/MIC) and the ratio of the area under the free concentration-time curve to the MIC (fAUC/MIC) rather than the cumulative percentage of time that the free drug concentration is above the MIC (f%TMIC). A novel PK/PD model with consideration of postantibiotic effect could adequately describe the exposure-response relationship for 1810 and supports the notion that the in vitro observed postantibiotic effect of this spectinamide also translates to the in vivo situation in mice. The obtained results and pharmacometric model for the exposure-response relationship of 1810 provide a rational basis for dose selection in future efficacy studies of this compound against M. tuberculosis.
Collapse
|
10
|
Gonzalez-Juarrero M, Lukka PB, Wagh S, Walz A, Arab J, Pearce C, Ali Z, Ryman JT, Parmar K, Temrikar Z, Munoz-Gutierrez J, Robertson GT, Liu J, Lenaerts AJ, Daley C, Lee RE, Braunstein M, Hickey AJ, Meibohm B. Preclinical Evaluation of Inhalational Spectinamide-1599 Therapy against Tuberculosis. ACS Infect Dis 2021; 7:2850-2863. [PMID: 34546724 DOI: 10.1021/acsinfecdis.1c00213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The lengthy treatment time for tuberculosis (TB) is a primary cause for the emergence of multidrug resistant tuberculosis (MDR-TB). One approach to improve TB therapy is to develop an inhalational TB therapy that when administered in combination with oral TB drugs eases and shortens treatment. Spectinamides are new semisynthetic analogues of spectinomycin with excellent activity against Mycobacterium tuberculosis (Mtb), including MDR and XDR Mtb strains. Spectinamide-1599 was chosen as a promising candidate for development of inhalational therapy. Using the murine TB model and intrapulmonary aerosol delivery of spectinamide-1599, we characterized the pharmacokinetics and efficacy of this therapy in BALB/c and C3HeB/FeJ mice infected with the Mtb Erdman strain. As expected, spectinamide-1599 exhibited dose-dependent exposure in plasma, lungs, and ELF, but exposure ratios between lung and plasma were 12-40 times higher for intrapulmonary compared to intravenous or subcutaneous administration. In chronically infected BALB/c mice, low doses (10 mg/kg) of spectinamide-1599 when administered thrice weekly for two months provide efficacy similar to that of higher doses (50-100 mg/kg) after one month of therapy. In the C3HeB/FeJ TB model, intrapulmonary aerosol delivery of spectinamide-1599 (50 mg/kg) or oral pyrazinamide (150 mg/kg) had limited or no efficacy in monotherapy, but when both drugs were given in combination, a synergistic effect with superior bacterial reduction of >1.8 log10 CFU was observed. Throughout the up to eight-week treatment period, intrapulmonary therapy was well-tolerated without any overt toxicity. Overall, these results strongly support the further development of intrapulmonary spectinamide-1599 as a combination partner for anti-TB therapy.
Collapse
Affiliation(s)
- Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Pradeep B. Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Santosh Wagh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Amanda Walz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jennifer Arab
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Camron Pearce
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Zohaib Ali
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Josiah T. Ryman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Keyur Parmar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zaid Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Juan Munoz-Gutierrez
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gregory T. Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jiuyu Liu
- Department of Chemical Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Anne J. Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Charles Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, Colorado 80206, United States
| | - Richard E. Lee
- Department of Chemical Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anthony J. Hickey
- Discovery Science and Technology, RTI International, RTP, Durham, North Carolina 27709, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
11
|
Walz A, Lukka PB, Pearce C, Creissen E, Braunstein M, Hickey AJ, Meibohm B, Gonzalez-Juarrero M. Sterilization of Mycobacterium tuberculosis infected samples using methanol preserves anti-tuberculosis drugs for subsequent pharmacological testing studies. Tuberculosis (Edinb) 2019; 117:52-55. [PMID: 31378268 DOI: 10.1016/j.tube.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Pharmacokinetic/pharmacodynamic studies of anti-tuberculosis agents in animal models of tuberculosis are hampered by the frequent necessity to perform sample bioanalysis outside the biosafety level-3 environment. Thus, each specimen has to undergo tedious and time-consuming sample sterilization procedures that may also affect drug stability. Here, we tested treatment of Mycobacterium tuberculosis (Mtb) infected samples with methanol to sterilize samples while preserving drug integrity for further pharmacokinetic/pharmacodynamic evaluations. Tissue samples harvested from Mtb infected mice were homogenized, incubated in methanol, and tested for sterility. Once sterility was confirmed, the samples were used to determine concentrations of the anti-tuberculosis drug spectinamide-1599 in lung homogenates using liquid chromatography coupled with mass spectrometry. The results demonstrate that methanol sterilizes tissue samples harvested from Mtb infected mice without altering the integrity of the drug in the tissue.
Collapse
Affiliation(s)
- Amanda Walz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pradeep B Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Camron Pearce
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Elizabeth Creissen
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Anthony J Hickey
- Engineering Sciences, RTI International, RTP, Durham, NC, 27709, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
12
|
Stewart IE, Lukka PB, Liu J, Meibohm B, Gonzalez-Juarrero M, Braunstein MS, Lee RE, Hickey AJ. Development and Characterization of a Dry Powder Formulation for Anti-Tuberculosis Drug Spectinamide 1599. Pharm Res 2019; 36:136. [PMID: 31321552 DOI: 10.1007/s11095-019-2666-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Human tuberculosis (TB) is a global health problem that causes nearly 2 million deaths per year. Anti-TB therapy exists, but it needs to be administered as a cocktail of antibiotics for six months. This lengthy therapy results in low patient compliance and is the main reason attributable to the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis. METHODS One alternative approach is to combine anti-TB multidrug therapy with inhalational TB therapy. The aim of this work was to develop and characterize dry powder formulations of spectinamide 1599 and ensure in vitro and in vivo delivered dose reproducibility using custom dosators. RESULTS Amorphous dry powders of spectinamide 1599 were successfully spray dried with mass median aerodynamic diameter (MMAD) = 2.32 ± 0.05 μm. The addition of L-leucine resulted in minor changes to the MMAD (1.69 ± 0.35 μm) but significantly improved the inhalable portion of spectinamide 1599 while maintaining amorphous qualities. Additionally, we were able to demonstrate reproducibility of dry powder administration in vitro and in vivo in mice. CONCLUSIONS The corresponding systemic drug exposure data indicates dose-dependent exposure in vivo in mice after dry powder intrapulmonary aerosol delivery in the dose range 15.4 - 32.8 mg/kg.
Collapse
Affiliation(s)
- Ian E Stewart
- Engineered Systems, RTI International, Durham, North Carolina, USA
| | - Pradeep B Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | - Miriam S Braunstein
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anthony J Hickey
- Engineered Systems, RTI International, Durham, North Carolina, USA.
| |
Collapse
|