1
|
Zhang C, Wu Z, Huang X, Zhao Y, Sun Q, Chen Y, Guo H, Liao Q, Wu H, Chen X, Liang A, Dong W, Yu M, Chen Y, Wei W. A Profile of Drug-Resistant Mutations in Mycobacterium tuberculosis Isolates from Guangdong Province, China. Indian J Microbiol 2024; 64:1044-1056. [PMID: 39282200 PMCID: PMC11399372 DOI: 10.1007/s12088-024-01236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 09/18/2024] Open
Abstract
Guangdong Province, China's largest economy, has a high incidence of tuberculosis (TB). At present, there are few reports on the distribution, transmission and drug resistance of Mycobacterium tuberculosis (Mtb) strains in this region. In this study, we performed minimum inhibitory concentration testing for 14 anti-TB drugs and whole-genome sequencing of 713 clinical Mtb isolates from 20,662 sputum culture-positive tuberculosis patients registered at 31 tuberculosis drug resistance surveillance sites covering 20 cities in Guangdong Province from 2016 to 2018. Moreover, we evaluated genome-wide associations between mutations and drug resistance, and further investigated the differences in the MICs of mutations. The epidemiology, drug-resistant phenotypes and whole genome sequencing data of 713 clinical Mtb isolates were analyzed, revealing the lineage distribution and drug-resistant gene profiles in Guangdong Province. WGS combined with quantitative MIC measurements identified several novel loci associated with resistance, of which 16 loci were found to be related to resistance to more than one drug. This study analyzed the lineage distribution, prevalence characteristics and resistance-corresponding gene profiles of Mtb isolates in Guangdong province, and provided a theoretical basis for the formulation of tuberculosis prevention and control policy in the province. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01236-3.
Collapse
Affiliation(s)
- Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Zhuhua Wu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Xinchun Huang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Yuchuan Zhao
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Qi Sun
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
- Present Address: Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanmei Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Huixin Guo
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Qinghua Liao
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Huizhong Wu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Xunxun Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Anqi Liang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Wenya Dong
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511443 China
| | - Meiling Yu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Yuhui Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, 510630 China
- College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
2
|
Peng B, Li H, Peng X. Understanding metabolic resistance strategy of clinically isolated antibiotic-resistant bacteria by proteomic approach. Expert Rev Proteomics 2024; 21:377-386. [PMID: 39387182 DOI: 10.1080/14789450.2024.2413439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Understanding the metabolic regulatory mechanisms leading to antibacterial resistance is important to develop effective control measures. AREAS COVERED In this review, we summarize the progress on metabolic mechanisms of antibiotic resistance in clinically isolated bacteria, as revealed using proteomic approaches. EXPERT OPINION Proteomic approaches are effective tools for uncovering clinically significant bacterial metabolic responses to antibiotics. Proteomics can disclose the associations between metabolic proteins, pathways, and networks with antibiotic resistance, and help identify their functional impact. The mechanisms by which metabolic proteins control the four generally recognized resistance mechanisms (decreased influx and targets, and increased efflux and enzymatic degradation) are particularly important. The proposed mechanism of reprogramming proteomics via key metabolites to enhance the killing efficiency of existing antibiotics needs attention.
Collapse
Affiliation(s)
- Bo Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuanxian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Chand P, Mendum TA, Butler RE, Hingley-Wilson SM, Stewart GR. Identification of gene targets that potentiate the action of rifampicin on Mycobacterium bovis BCG. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001488. [PMID: 39150447 PMCID: PMC11329110 DOI: 10.1099/mic.0.001488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Tuberculosis (TB) caused by bacteria of the Mycobacterium tuberculosis complex remains one of the most important infectious diseases of mankind. Rifampicin is a first line drug used in multi-drug treatment of TB, however, the necessary duration of treatment with these drugs is long and development of resistance is an increasing impediment to treatment programmes. As a result, there is a requirement for research and development of new TB drugs, which can form the basis of new drug combinations, either due to their own anti-mycobacterial activity or by augmenting the activity of existing drugs such as rifampicin. This study describes a TnSeq analysis to identify mutants with enhanced sensitivity to sub-minimum inhibitory concentrations (MIC) of rifampicin. The rifampicin-sensitive mutants were disrupted in genes of a variety of functions and the majority fitted into three thematic groups: firstly, genes that were involved in DNA/RNA metabolism, secondly, genes involved in sensing and regulating mycobacterial cellular systems, and thirdly, genes involved in the synthesis and maintenance of the cell wall. Selection at two concentrations of rifampicin (1/250 and 1/62 MIC) demonstrated a dose response for mutants with statistically significant sensitivity to rifampicin. The dataset reveals mechanisms of how mycobacteria are innately tolerant to and initiate an adaptive response to rifampicin; providing putative targets for the development of adjunctive therapies that potentiate the action of rifampicin.
Collapse
Affiliation(s)
- Pooja Chand
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Tom A. Mendum
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Rachel E. Butler
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Suzanne M. Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| | - Graham R. Stewart
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH United Kingdom
| |
Collapse
|
4
|
Mistretta M, Cimino M, Campagne P, Volant S, Kornobis E, Hebert O, Rochais C, Dallemagne P, Lecoutey C, Tisnerat C, Lepailleur A, Ayotte Y, LaPlante SR, Gangneux N, Záhorszká M, Korduláková J, Vichier-Guerre S, Bonhomme F, Pokorny L, Albert M, Tinevez JY, Manina G. Dynamic microfluidic single-cell screening identifies pheno-tuning compounds to potentiate tuberculosis therapy. Nat Commun 2024; 15:4175. [PMID: 38755132 PMCID: PMC11099131 DOI: 10.1038/s41467-024-48269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.
Collapse
Affiliation(s)
- Maxime Mistretta
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Mena Cimino
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Pascal Campagne
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Stevenn Volant
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
| | - Etienne Kornobis
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Biomics Platform, 75015, Paris, France
| | | | | | | | | | | | | | - Yann Ayotte
- Institut National de la Recherche Scientifique-Armand-Frappier Santé Biotechnologie Research Centre, Laval, Quebec, H7V 1B7, Canada
| | - Steven R LaPlante
- Institut National de la Recherche Scientifique-Armand-Frappier Santé Biotechnologie Research Centre, Laval, Quebec, H7V 1B7, Canada
| | - Nicolas Gangneux
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Monika Záhorszká
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Sophie Vichier-Guerre
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Epigenetic Chemical Biology Unit, 75015, Paris, France
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Epigenetic Chemical Biology Unit, 75015, Paris, France
| | - Laura Pokorny
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France
| | - Marvin Albert
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015, Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, 75015, Paris, France
| | - Giulia Manina
- Institut Pasteur, Université Paris Cité, Microbial Individuality and Infection Laboratory, 75015, Paris, France.
| |
Collapse
|
5
|
Kim H, Shin SJ. Revolutionizing control strategies against Mycobacterium tuberculosis infection through selected targeting of lipid metabolism. Cell Mol Life Sci 2023; 80:291. [PMID: 37704889 PMCID: PMC11072447 DOI: 10.1007/s00018-023-04914-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/12/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Lipid species play a critical role in the growth and virulence expression of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). During Mtb infection, foamy macrophages accumulate lipids in granulomas, providing metabolic adaptation and survival strategies for Mtb against multiple stresses. Host-derived lipid species, including triacylglycerol and cholesterol, can also contribute to the development of drug-tolerant Mtb, leading to reduced efficacy of antibiotics targeting the bacterial cell wall or transcription. Transcriptional and metabolic analyses indicate that lipid metabolism-associated factors of Mtb are highly regulated by antibiotics and ultimately affect treatment outcomes. Despite the well-known association between major antibiotics and lipid metabolites in TB treatment, a comprehensive understanding of how altered lipid metabolites in both host and Mtb influence treatment outcomes in a drug-specific manner is necessary to overcome drug tolerance. The current review explores the controversies and correlations between lipids and drug efficacy in various Mtb infection models and proposes novel approaches to enhance the efficacy of anti-TB drugs. Moreover, the review provides insights into the efficacious control of Mtb infection by elucidating the impact of lipids on drug efficacy. This review aims to improve the effectiveness of current anti-TB drugs and facilitate the development of innovative therapeutic strategies against Mtb infection by making reverse use of Mtb-favoring lipid species.
Collapse
Affiliation(s)
- Hagyu Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
6
|
In Silico Drug Discovery Strategies Identified ADMET Properties of Decoquinate RMB041 and Its Potential Drug Targets against Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0231521. [PMID: 35352998 PMCID: PMC9045315 DOI: 10.1128/spectrum.02315-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The highly adaptive cellular response of Mycobacterium tuberculosis to various antibiotics and the high costs for clinical trials, hampers the development of novel antimicrobial agents with improved efficacy and safety. Subsequently, in silico drug screening methods are more commonly being used for the discovery and development of drugs, and have been proven useful for predicting the pharmacokinetics, toxicities, and targets, of prospective new antimicrobial agents. In this investigation we used a reversed target fishing approach to determine potential hit targets and their possible interactions between M. tuberculosis and decoquinate RMB041, a propitious new antituberculosis compound. Two of the 13 identified targets, Cyp130 and BlaI, were strongly proposed as optimal drug-targets for dormant M. tuberculosis, of which the first showed the highest comparative binding affinity to decoquinate RMB041. The metabolic pathways associated with the selected target proteins were compared to previously published molecular mechanisms of decoquinate RMB041 against M. tuberculosis, whereby we confirmed disrupted metabolism of proteins, cell wall components, and DNA. We also described the steps within these pathways that are inhibited and elaborated on decoquinate RMB041’s activity against dormant M. tuberculosis. This compound has previously showed promising in vitro safety and good oral bioavailability, which were both supported by this in silico study. The pharmacokinetic properties and toxicity of this compound were predicted and investigated using the online tools pkCSM and SwissADME, and Discovery Studio software, which furthermore supports previous safety and bioavailability characteristics of decoquinate RMB041 for use as an antimycobacterial medication. IMPORTANCE This article elaborates on the mechanism of action of a novel antibiotic compound against both, active and dormant Mycobacterium tuberculosis and describes its pharmacokinetics (including oral bioavailability and toxicity). Information provided in this article serves useful during the search for drugs that shorten the treatment regimen for Tuberculosis and cause minimal adverse effects.
Collapse
|
7
|
Barros ILE, Meneguello JE, Ghiraldi-Lopes LD, Arita GS, de Oliveira Silva JV, Ferracioli KRC, de Lima Scodro RB, Siqueira VLD, Pilau EJ, Campanerut-Sá PAZ, Cardoso RF. PanB over-representation as part of pyrazinamide action: a proteomic insight. Future Microbiol 2021; 16:1303-1308. [PMID: 34743541 DOI: 10.2217/fmb-2020-0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Pyrazinamide (PZA) represents a milestone as a first-line antituberculosis drug due to its sterilizing activity against Mycobacterium tuberculosis. Materials & Methods: The protein changes induced by subinhibitory PZA exposure of M. tuberculosis in acidic pH were evaluated by a proteomic approach. Results: Among the 1059 M. tuberculosis proteins identified, the specific acidification in the culture medium induced the over-representation of MurF (Rv2157c), and its under-representation was induced by 12 h of PZA exposure. PanB (Rv2225) was over-represented at 24 h of PZA exposure. Conclusion: The authors highlight the over-representation of PanB in M. tuberculosis correlates of PZA action in acidic pH, reinforcing the role of the pantothenate pathway as a bacillus drug target to be explored.
Collapse
Affiliation(s)
| | - Jean Eduardo Meneguello
- Postgraduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, PR, Brazil
| | | | - Gláucia Sayuri Arita
- Postgraduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, PR, Brazil
| | | | - Katiany Rizzieri Caleffi Ferracioli
- Postgraduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, PR, Brazil.,Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, PR, Brazil
| | - Regiane Bertin de Lima Scodro
- Postgraduate Program in Health Sciences, State University of Maringá, 87020-900, PR, Brazil.,Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, PR, Brazil
| | - Vera Lucia Dias Siqueira
- Postgraduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, PR, Brazil.,Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, PR, Brazil
| | | | - Paula Aline Zanetti Campanerut-Sá
- Postgraduate Program in Health Sciences, State University of Maringá, 87020-900, PR, Brazil.,Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, PR, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Health Sciences, State University of Maringá, 87020-900, PR, Brazil.,Postgraduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, PR, Brazil.,Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, PR, Brazil
| |
Collapse
|
8
|
Abstract
Multi-omics strategies are indispensable tools in the search for new anti-tuberculosis drugs. Omics methodologies, where the ensemble of a class of biological molecules are measured and evaluated together, enable drug discovery programs to answer two fundamental questions. Firstly, in a discovery biology approach, to find new targets in druggable pathways for target-based investigation, advancing from target to lead compound. Secondly, in a discovery chemistry approach, to identify the mode of action of lead compounds derived from high-throughput screens, progressing from compound to target. The advantage of multi-omics methodologies in both of these settings is that omics approaches are unsupervised and unbiased to a priori hypotheses, making omics useful tools to confirm drug action, reveal new insights into compound activity, and discover new avenues for inquiry. This review summarizes the application of Mycobacterium tuberculosis omics technologies to the early stages of tuberculosis antimicrobial drug discovery.
Collapse
|