1
|
Basu S, Hassman L, Kodati S, Chu CJ. Intraocular Immune Response in Human Uveitis: Time to Look Beyond Animal Models. Am J Ophthalmol 2024; 266:17-25. [PMID: 38703799 PMCID: PMC7616079 DOI: 10.1016/j.ajo.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE To review the current and future approaches to investigating the intraocular immune response in human uveitis. DESIGN Perspective. METHODS Review of currently available methods for investigating the immune response in ocular tissues and fluids in patients with intraocular inflammation/ uveitis. The advantages and disadvantages of human studies have been compared to those of animal models of uveitis. RESULTS Animal models, while being excellent tools for mechanistic studies, do not replicate the clinical and immunologic heterogeneity of human uveitis. Opportunities for immunological studies in human uveitis are mostly limited to histological studies, or sampling of intraocular fluids and peripheral blood. Histopathological studies can be enhanced by revisiting published historical data, tissue repositories, or autopsy specimens. Intraocular fluids can be investigated by a variety of techniques. Among these, flow cytometry and single-cell RNA sequencing (scRNAseq) provide single-cell resolution. While the current technology is costly and labor-intensive, scRNAseq is less limited by the low cellular yield from intraocular fluids and allows unbiased immune profiling enabling discovery of new cellular subsets. Immunological phenotypes uncovered from human data can be further investigated in animal studies. CONCLUSION The diversity of the intraocular immune response in uveitis patients remains challenging but can be studied by multiple techniques including histopathology, flow cytometry, and scRNAseq. Human data can be combined with animal studies for translating uveitis research into novel therapies.
Collapse
Affiliation(s)
- Soumyava Basu
- From the Saroja A Rao Centre for Uveitis (S.B.), LV Prasad Eye Institute, Hyderabad, India.
| | - Lynn Hassman
- UCHealth Sue Anschutz-Rodgers Eye Center (L.H.), Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shilpa Kodati
- Kellogg Eye Center (S.K.), University of Michigan, Ann Arbor, Michigan, USA
| | - Colin J Chu
- NIHR Biomedical Research Centre (C.J.C.), Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
2
|
Putera I, Schrijver B, Kolijn PM, van Stigt AC, Ten Berge JCEM, IJspeert H, Nagtzaam NMA, Swagemakers SMA, van Laar JAM, Agrawal R, Rombach SM, van Hagen PM, La Distia Nora R, Dik WA. A serum B-lymphocyte activation signature is a key distinguishing feature of the immune response in sarcoidosis compared to tuberculosis. Commun Biol 2024; 7:1114. [PMID: 39256610 PMCID: PMC11387424 DOI: 10.1038/s42003-024-06822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Sarcoidosis and tuberculosis (TB) are two granulomatous diseases that often share overlapping clinical features, including uveitis. We measured 368 inflammation-related proteins in serum in both diseases, with and without uveitis from two distinct geographically separated cohorts: sarcoidosis from the Netherlands and TB from Indonesia. A total of 192 and 102 differentially expressed proteins were found in sarcoidosis and active pulmonary TB compared to their geographical healthy controls, respectively. While substantial overlap exists in the immune-related pathways involved in both diseases, activation of B cell activating factor (BAFF) signaling and proliferation-inducing ligand (APRIL) mediated signaling pathways was specifically associated with sarcoidosis. We identified a B-lymphocyte activation signature consisting of BAFF, TNFRSF13B/TACI, TRAF2, IKBKG, MAPK9, NFATC1, and DAPP1 that was associated with sarcoidosis, regardless of the presence of uveitis. In summary, a difference in B-lymphocyte activation is a key discriminative immunological feature between sarcoidosis/ocular sarcoidosis (OS) and TB/ocular TB (OTB).
Collapse
Affiliation(s)
- Ikhwanuliman Putera
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine Section Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - P Martijn Kolijn
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Astrid C van Stigt
- Department of Internal Medicine Section Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Academic Center for Rare Immunological Diseases (Rare Immunological Disease Center), Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Hanna IJspeert
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Academic Center for Rare Immunological Diseases (Rare Immunological Disease Center), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nicole M A Nagtzaam
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jan A M van Laar
- Department of Internal Medicine Section Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke NUS University, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Moorfields Eye Hospital, London, United Kingdom
| | - Saskia M Rombach
- Department of Internal Medicine Section Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine Section Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rina La Distia Nora
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Biswas J, Jadhav S, Eswaran BV. Evolution of research in diagnosis and management of uveitis over four decades in India. Indian J Ophthalmol 2024; 72:809-815. [PMID: 38454865 PMCID: PMC11232861 DOI: 10.4103/ijo.ijo_1577_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 03/09/2024] Open
Abstract
Uveitis and its complications are more common in the developing world, in which the condition occurs in up to 714 per 100,000 in the population and accounts for up to 25% of all blindness. In India, the ophthalmic sub speciality of uveitis greatly evolved in the last four decades. In the early decades most of the studies were epidemiological studies. In recent years, more research has been published due to tremendous advancements in clinical diagnosis, laboratory investigations and ancillary test and treatment modalities. In this review article, we did a medline search with key words 'uveitis' and 'India', and selectively incorporated articles showing the evolution of this sub-speciality in India.
Collapse
Affiliation(s)
- Jyotirmay Biswas
- Department of Uveitis and Ocular Pathology, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Sourabh Jadhav
- Department of Vitreo Retina, Shri Bhagvan Mahavir, Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | | |
Collapse
|
4
|
Chadalawada S, Rathinam SR, Lalitha P, Kannan NB, Devarajan B. Detection of microRNAs expression signatures in vitreous humor of intraocular tuberculosis. Mol Biol Rep 2023; 50:10061-10072. [PMID: 37906423 DOI: 10.1007/s11033-023-08819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND MicroRNA (miRNA) expression analysis has been shown to provide them as biomarkers in several eye diseases and has a regulatory role in pathogenesis. However, miRNA expression analysis in the vitreous humor (VH) of intraocular tuberculosis (IOTB) is not studied. Thus, we aim to find miRNA expression signatures in the VH of IOTB patients to identify their regulatory role in disease pathogenesis and to find them as potential biomarkers for IOTB. METHODS AND RESULTS First, we profiled miRNAs in VH of three IOTB and three Macular hole (MH) samples as controls through small-RNA deep sequencing using Illumina Platform. In-house bioinformatics analysis identified 81 dysregulated miRNAs in IOTB. Further validation in VH of IOTB (n = 15) compared to MH (n = 15) using Real-Time quantitative PCR (RT-qPCR) identified three significantly upregulated miRNAs, hsa-miR-150-5p, hsa-miR-26b-5p, and hsa-miR-21-5p. Based on the miRNA target prediction, functional network analysis, and RT-qPCR analysis of target genes, the three miRNAs downregulating WNT5A, PRKCA, MAP3K7, IL7, TGFB2, IL1A, PRKCB, TNFA, and TP53 genes involving MAPK signaling pathway, PI3K-AKT signaling pathway, WNT signaling pathway, Cell cycle, TGF-beta signaling pathway, Long-term potentiation, and Sphingolipid signaling pathways, have a potential role in disease pathogenesis. The ROC analysis of RT-qPCR data showed that hsa-miR-150-5p with AUC = 0.715, hsa-miR-21-5p with AUC = 0.789, and hsa-miR-26b-5p with AUC = 0.738; however, the combination of hsa-miR-21-5p and hsa-miR-26b-5p with AUC = 0.796 could serve as a potential biomarker for IOTB. CONCLUSIONS This study provides the first report on miRNA expression signatures detected in VH for IOTB pathogenesis and also provides a potential biomarker for IOTB.
Collapse
Affiliation(s)
- Swathi Chadalawada
- Department of Microbiology and Bioinformatics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, India
- Biomedical Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - S R Rathinam
- Uveitis Service, Aravind Eye Hospital and PG Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Prajna Lalitha
- Department of Microbiology, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Naresh Babu Kannan
- Chief, Retina Vitreous Services, Aravind Eye Hospital, Madurai, Tamil Nadu, India
| | - Bharanidharan Devarajan
- Department of Microbiology and Bioinformatics, Aravind Medical Research Foundation, 1, Anna Nagar, Madurai, India.
| |
Collapse
|
5
|
Du Y, Zheng R, Yin H, Ma L, Li J, Chen Y, Zhang X, Tao P, Gao L, Yang L, He L. Mycobacterium tuberculosis Rv2653 Protein Promotes Inflammation Response by Enhancing Glycolysis. Jpn J Infect Dis 2023; 76:343-350. [PMID: 37518069 DOI: 10.7883/yoken.jjid.2022.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Mycobacterium tuberculosis (M.tb) infection causes the communicable disease tuberculosis (TB), a major disease and one of the leading causes of death worldwide. The protein encoded by the region of deletion (RD) in M.tb mediates the pathogenic properties of M.tb by inducing an inflammatory response or disrupting host cell metabolism. We cloned and purified the Rv2653 protein from RD13 to explore its regulatory effects on host macrophages. We found that Rv2653 promoted glycolysis and upregulated the expression of key glycolytic enzymes, namely, hexokinase 2 (HK2) and lactate dehydrogenase-A (LDHA) in human leukemia monocytic (THP1) cells. Furthermore, the induction of glycolysis by Rv2653 contributes to the activation of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome. Rv2653 activated the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, and the mTORC1 inhibitor NR1 blocked Rv2653-induced HK2, LDHA, and NLRP3 expression. siRNA interfering with HK2 or LDHA significantly inhibited the activation of NLRP3 inflammasome by Rv2653, blocked Rv2653-triggered inflammatory factors interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, reactive oxygen species (ROS), and nitric oxide (NO), and promoted the survival of Bacillus Calmette-Guerin (BCG) in THP1 cells. Overall, Rv2653 promoted glycolysis by activating the mTORC1 signaling pathway, activating the NLRP3 inflammasome, and releasing inflammatory factors, ultimately inhibiting the intracellular survival of BCG in THP1 cells. Therefore, we revealed that anti-M.tb immune mechanisms induced by Rv2653 contribute to the development of new anti-TB strategies.
Collapse
Affiliation(s)
- Yaman Du
- Department of Clinical Laboratory, The 3rd Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), China
| | - Rui Zheng
- Department of Clinical Laboratory, First People's Hospital of Yunnan Province, China
| | - Hongli Yin
- Department of Gynecology, The 3rd Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), China
| | - Li Ma
- Department of Clinical Laboratory, The 3rd Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), China
| | - Jingfang Li
- Department of Clinical Laboratory, The 3rd Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), China
| | - Yun Chen
- Department of Pathology, The 3rd Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), China
| | - Xi Zhang
- Department of Clinical Laboratory, The 3rd Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), China
| | - Pengzuo Tao
- Department of Clinical Laboratory, The 3rd Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), China
| | - Lili Gao
- Department of Clinical Laboratory, The 3rd Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), China
| | - Li Yang
- Department of Clinical Laboratory, The 3rd Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), China
| | - Liang He
- Department of Clinical Laboratory, The 3rd Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), China
| |
Collapse
|
6
|
Becker K, Weigelt CM, Fuchs H, Viollet C, Rust W, Wyatt H, Huber J, Lamla T, Fernandez-Albert F, Simon E, Zippel N, Bakker RA, Klein H, Redemann NH. Transcriptome analysis of AAV-induced retinopathy models expressing human VEGF, TNF-α, and IL-6 in murine eyes. Sci Rep 2022; 12:19395. [PMID: 36371417 PMCID: PMC9653384 DOI: 10.1038/s41598-022-23065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
Retinopathies are multifactorial diseases with complex pathologies that eventually lead to vision loss. Animal models facilitate the understanding of the pathophysiology and identification of novel treatment options. However, each animal model reflects only specific disease aspects and understanding of the specific molecular changes in most disease models is limited. Here, we conducted transcriptome analysis of murine ocular tissue transduced with recombinant Adeno-associated viruses (AAVs) expressing either human VEGF-A, TNF-α, or IL-6. VEGF expression led to a distinct regulation of extracellular matrix (ECM)-associated genes. In contrast, both TNF-α and IL-6 led to more comparable gene expression changes in interleukin signaling, and the complement cascade, with TNF-α-induced changes being more pronounced. Furthermore, integration of single cell RNA-Sequencing data suggested an increase of endothelial cell-specific marker genes by VEGF, while TNF-α expression increased the expression T-cell markers. Both TNF-α and IL-6 expression led to an increase in macrophage markers. Finally, transcriptomic changes in AAV-VEGF treated mice largely overlapped with gene expression changes observed in the oxygen-induced retinopathy model, especially regarding ECM components and endothelial cell-specific gene expression. Altogether, our study represents a valuable investigation of gene expression changes induced by VEGF, TNF-α, and IL-6 and will aid researchers in selecting appropriate animal models for retinopathies based on their agreement with the human pathophysiology.
Collapse
Affiliation(s)
- Kolja Becker
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carina M. Weigelt
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Fuchs
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Coralie Viollet
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Werner Rust
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Hannah Wyatt
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jochen Huber
- grid.420061.10000 0001 2171 7500Clinical Development & Operations Corporate, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Thorsten Lamla
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Francesc Fernandez-Albert
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Eric Simon
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Nina Zippel
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Remko A. Bakker
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Klein
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Norbert H. Redemann
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
7
|
Betzler BK, Gunasekeran DV, Kempen J, Smith JR, McCluskey P, Nguyen QD, Pavesio C, Gupta V, Agrawal R. The Historical Evolution of Ocular Tuberculosis: Past, Present, and Future. Ocul Immunol Inflamm 2022; 30:593-599. [PMID: 34752203 DOI: 10.1080/09273948.2021.1992446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/06/2021] [Indexed: 10/19/2022]
Abstract
Ocular involvement is a rare manifestation of tuberculosis. Four key issues historically faced by clinicians when diagnosing and treating ocular tuberculosis - diagnostic uncertainty, naturally heterogeneous presentations, limitations of existing laboratory diagnostic tools, and non-uniform treatment guidelines - continue to test today's physicians. Unparalleled scientific and clinical developments over the past century have greatly expanded the knowledge surrounding this challenging ophthalmic condition. Experience with large volumes of cases at tuberculosis-endemic centres has led to recent growth in knowledge and physician experience, perhaps more so in developing countries. Looking forward, the role of diverse new technologies, including artificial intelligence and proteomics, will advance ocular tuberculosis research. Efforts have been made to address the lack of standardized nomenclature, diagnostic uncertainty, and unvalidated, geographically variable treatment guidelines.
Collapse
Affiliation(s)
- Bjorn Kaijun Betzler
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Dinesh Visva Gunasekeran
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Moorfields Eye Hospital and Biomedical Research Centre, Institute of Ophthalmology, University College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - John Kempen
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, Massachusetts, USA
- MyungSung Christian Medical Center (MCM) Eye Unit, MCM General Hospital and MyungSung Medical School, Addis Ababa, Ethiopia
| | - Justine R Smith
- Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Peter McCluskey
- Save Sight Institute, Sydney Eye Hospital, Sydney, Australia
| | - Quan Dong Nguyen
- Byers Eye Institute, Stanford Medical School, Stanford, California, USA
| | - Carlos Pavesio
- Moorfields Eye Hospital and Biomedical Research Centre, Institute of Ophthalmology, University College London, London, UK
| | - Vishali Gupta
- Advanced Eye Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rupesh Agrawal
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Moorfields Eye Hospital and Biomedical Research Centre, Institute of Ophthalmology, University College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Luo S, Xu H, Yang L, Gong X, Shen J, Chen X, Wu Z. Quantitative proteomics analysis of human vitreous in rhegmatogenous retinal detachment associated with choroidal detachment by data-independent acquisition mass spectrometry. Mol Cell Biochem 2022; 477:1849-1863. [PMID: 35332395 DOI: 10.1007/s11010-022-04409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The prognosis of rhegmatogenous retinal detachment (RRD) with choroidal detachment (RRDCD) is often poor and complicated. This study focused on the identification of the characteristic proteins and signal pathways associated with the etiology of RRDCD and to provide guidance for diagnosis and treatment of RRDCD. In this study, vitreous humor samples were obtained from 16 RRDCD patients, 14 with RRD, 12 with idiopathic epiretinal macular membrane (IEMM), and 5 healthy controls from donated corpse eyes. Data-independent acquisition mass spectrometry and bioinformatics analysis were employed to identify differentially expressed proteins (DEPs). In the vitreous humor, 14,842 peptides were identified. Patients with RRDCD had 249 DEPs (93 upregulated and 156 downregulated), with 89 in patients with RRD and 61 in patients with IEMM. Enrichment analysis of the GO and Kyoto Encyclopedia of Genes and Genomes DEP databases indicated functional clusters related to inflammation and immunity, protein degradation and absorption, cell adhesion molecules (CAMs), the hedgehog signaling pathway, and lipid metabolism. Weighted gene co-expression network analysis showed that DEPs with positive co-expression of RRDCD participated in immune-related pathways led by the complement and coagulation cascade, whereas DEPs with negative co-expression of RRDCD participated in protein degradation and absorption, CAMs, and the hedgehog signaling pathway. In summary, our study provides important clues and the theoretical basis for exploring the pathogenesis, progression, and prognosis of ocular fundus disease.
Collapse
Affiliation(s)
- Shasha Luo
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Huiyan Xu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Lufei Yang
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuechun Gong
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Jinyan Shen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuan Chen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Zhifeng Wu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China. .,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China.
| |
Collapse
|