1
|
Wu X, Chen P, Huang D, Pan Y, Chen S. Bone and periosteum protein analysis via tandem mass tag quantitative proteomics in pediatric patients with osteomyelitis. Biomed Chromatogr 2024; 38:e5999. [PMID: 39380190 DOI: 10.1002/bmc.5999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/10/2024]
Abstract
Bone healing is crucial in managing osteomyelitis after fracture fixation. Understanding the mechanism of extensive callus formation in pediatric osteomyelitis is highly important. This study aims to analyze bone and periosteum samples from pediatric patients to elucidate the essential processes involved in callus formation during osteomyelitis. The study included eight patients from our hospital: four with positive microbial culture who underwent osteomyelitis debridement and four who had osteotomy surgery as contral. We used tandem mass tag quantitative proteomics to investigate proteomic changes in bone and periosteum tissues obtained from these patients. Differential expression proteins were analyzed for their pathways through Gene Ontology (GO) annotation, GO enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction networks. A total of 4737 proteins were successfully identified. About 2224 differentially expressed proteins were detected in the bone tissues group and periosteum tissues group. Among the differentially expressed proteins, 10 protein genes in the bone group were associated with inflammation and osteogenesis, while in the periosteum group were nine. Cytochrome b-245, beta polypeptide (CYBB), nicotinamide phosphoribosyltransferase (NAMPT), tissue inhibitor of metalloproteinases 1 (TIMP-1), Raf-1 proto-oncogene, serine/threonine kinase (RAF-1), RELA proto-oncogene, NF-KB subunit (RELA), and sphingomyelin synthase 2 (SGMS2) may play an important role in callus formation in patients with osteomyelitis. This study provides novel clues for understanding callus formation in pediatric patients with osteomyelitis.
Collapse
Affiliation(s)
- Xinwu Wu
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Peisheng Chen
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Dianhua Huang
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| | - Yuchen Pan
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shunyou Chen
- Department of Orthopedics, Fuzhou Second General Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedics Trauma, Fuzhou, China
- Fuzhou Trauma Medical Center, Fuzhou, China
| |
Collapse
|
2
|
Feng S, Wang S, Liu C, Wu S, Zhang B, Lu C, Huang C, Chen T, Zhou C, Zhu J, Chen J, Xue J, Wei W, Zhan X. Prediction model for spinal cord injury in spinal tuberculosis patients using multiple machine learning algorithms: a multicentric study. Sci Rep 2024; 14:7691. [PMID: 38565845 PMCID: PMC10987632 DOI: 10.1038/s41598-024-56711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Spinal cord injury (SCI) is a prevalent and serious complication among patients with spinal tuberculosis (STB) that can lead to motor and sensory impairment and potentially paraplegia. This research aims to identify factors associated with SCI in STB patients and to develop a clinically significant predictive model. Clinical data from STB patients at a single hospital were collected and divided into training and validation sets. Univariate analysis was employed to screen clinical indicators in the training set. Multiple machine learning (ML) algorithms were utilized to establish predictive models. Model performance was evaluated and compared using receiver operating characteristic (ROC) curves, area under the curve (AUC), calibration curve analysis, decision curve analysis (DCA), and precision-recall (PR) curves. The optimal model was determined, and a prospective cohort from two other hospitals served as a testing set to assess its accuracy. Model interpretation and variable importance ranking were conducted using the DALEX R package. The model was deployed on the web by using the Shiny app. Ten clinical characteristics were utilized for the model. The random forest (RF) model emerged as the optimal choice based on the AUC, PRs, calibration curve analysis, and DCA, achieving a test set AUC of 0.816. Additionally, MONO was identified as the primary predictor of SCI in STB patients through variable importance ranking. The RF predictive model provides an efficient and swift approach for predicting SCI in STB patients.
Collapse
Affiliation(s)
- Sitan Feng
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shujiang Wang
- Department of Outpatient, General Hospital of Eastern Theater Command, Nanjing, Jiangsu, People's Republic of China
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shaofeng Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Bin Zhang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- Department of Spine Ward, Bei Jing Ji Shui Tan Hospital Gui Zhou Hospital, Guiyang, Guizhou, People's Republic of China
| | - Chunxian Lu
- Department of Spine and Osteopathy Ward, Bai Se People's Hospital, Baise, Guangxi, People's Republic of China
| | - Chengqian Huang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chenxing Zhou
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jichong Zhu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiarui Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiang Xue
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wendi Wei
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Mantov N, Zrounba M, Brollo M, Grassin-Delyle S, Glorion M, David M, Naline E, Devillier P, Salvator H. Ruxolitinib inhibits cytokine production by human lung macrophages without impairing phagocytic ability. Front Pharmacol 2022; 13:896167. [PMID: 36059986 PMCID: PMC9437255 DOI: 10.3389/fphar.2022.896167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The Janus kinase (JAK) 1/2 inhibitor ruxolitinib has been approved in an indication of myelofibrosis and is a candidate for the treatment of a number of inflammatory or autoimmune diseases. We assessed the effects of ruxolitinib on lipopolysaccharide (LPS)- and poly (I:C)-induced cytokine production by human lung macrophages (LMs) and on the LMs’ phagocytic activity.Methods: Human LMs were isolated from patients operated on for lung carcinoma. The LMs were cultured with ruxolitinib (0.5 × 10−7 M to 10–5 M) or budesonide (10–11 to 10–8 M) and then stimulated with LPS (10 ng·ml−1) or poly (I:C) (10 μg·ml−1) for 24 h. Cytokines released by the LMs into the supernatants were measured using ELISAs. The phagocytosis of labelled bioparticles was assessed using flow cytometry.Results: Ruxolitinib inhibited both the LPS- and poly (I:C)-stimulated production of tumor necrosis factor alpha, interleukin (IL)-6, IL-10, chemokines CCL2, and CXCL10 in a concentration-dependent manner. Ruxolitinib also inhibited the poly (I:C)- induced (but not the LPS-induced) production of IL-1ß. Budesonide inhibited cytokine production more strongly than ruxolitinib but failed to mitigate the production of CXCL10. The LMs’ phagocytic activity was not impaired by the highest tested concentration (10–5 M) of ruxolitinib.Conclusion: Clinically relevant concentrations of ruxolitinib inhibited the LPS- and poly (I:C)-stimulated production of cytokines by human LMs but did not impair their phagocytic activity. Overall, ruxolitinib’s anti-inflammatory activities are less intense than (but somewhat different from) those of budesonide—particularly with regard to the production of the corticosteroid-resistant chemokine CXCL-10. Our results indicate that treatment with a JAK inhibitor might be a valuable anti-inflammatory strategy in chronic obstructive pulmonary disease, Th1-high asthma, and both viral and non-viral acute respiratory distress syndromes (including coronavirus disease 2019).
Collapse
Affiliation(s)
- Nikola Mantov
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - Mathilde Zrounba
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
| | - Marion Brollo
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - S Grassin-Delyle
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
- Infection and Inflammation, Health Biotechnology Department, Paris-Saclay University, UVSQ, INSERM, Montigny le Bretonneux, France
| | - Matthieu Glorion
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Thoracic Surgery Department, Foch Hospital, Suresnes, France
| | - Mélanie David
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - Emmanuel Naline
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - Philippe Devillier
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
- Faculté des Sciences de la Santé Simone Veil, UVSQ Paris-Saclay University, Montigny-le-Bretonneux, France
| | - Hélène Salvator
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
- Faculté des Sciences de la Santé Simone Veil, UVSQ Paris-Saclay University, Montigny-le-Bretonneux, France
- *Correspondence: Hélène Salvator,
| |
Collapse
|