1
|
Kirchhoffer OA, Quirós-Guerrero L, Nitschke J, Nothias LF, Burdet F, Marcourt L, Hanna N, Mehl F, David B, Grondin A, Queiroz EF, Pagni M, Soldati T, Wolfender JL. Prioritization of novel anti-infective stilbene derivatives by combining metabolomic data organization and a stringent 3R-infection model in a knowledge graph. RSC Adv 2025; 15:13010-13030. [PMID: 40271414 PMCID: PMC12015462 DOI: 10.1039/d4ra08421g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
The rising threat of multidrug-resistant tuberculosis, caused by Mycobacterium tuberculosis, underscores the urgent need for new therapeutic solutions to tackle the challenge of antibiotic resistance. The current study utilized an innovative 3R infection model featuring the amoeba Dictyostelium discoideum infected with Mycobacterium marinum, serving as stand-ins for macrophages and M. tuberculosis, respectively. This high-throughput phenotypic assay allowed for the evaluation of more specific anti-infective activities that may be less prone to resistance mechanisms. To discover novel anti-infective compounds, a diverse collection of 1600 plant NEs from the Pierre Fabre Library was screened using the latter assay. Concurrently, these NEs underwent untargeted UHPLC-HRMS/MS analysis. The biological screening flagged the NE from Stauntonia brunoniana as one of the anti-infective hit NEs. High-resolution HPLC micro-fractionation coupled with bioactivity profiling was employed to highlight the natural products driving this bioactivity. Stilbenes were eventually identified as the primary active compounds in the bioactive fractions. A knowledge graph was then used to leverage the heterogeneous data integrated into it to make a rational selection of stilbene-rich NEs. Using both CANOPUS chemical classes and Jaccard similarity indices to compare features within the metabolome of the 1600 plant NEs collection, 14 NEs rich in stilbenes were retrieved. Among those, the roots of Gnetum edule were flagged as possessing broader chemo-diversity in their stilbene content, along with the corresponding NE also being a strict anti-infective. Eventually, a total of 11 stilbene oligomers were isolated from G. edule and fully characterized by NMR with their absolute stereochemistry established through electronic circular dichroism. Six of these compounds are new since they possess a stereochemistry which was never described in the literature to the best of our knowledge. All of them were assessed for their anti-infective activity and (-)-gnetuhainin M was reported as having the highest anti-infective activity with an IC50 of 22.22 μM.
Collapse
Affiliation(s)
- Olivier Auguste Kirchhoffer
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU 1211 Geneva Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU 1211 Geneva Switzerland
| | - Luis Quirós-Guerrero
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU 1211 Geneva Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU 1211 Geneva Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Sciences, University of Geneva Quai Ernest-Ansermet 30 1205 Geneva Switzerland
| | - Louis-Félix Nothias
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU 1211 Geneva Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU 1211 Geneva Switzerland
- Université Côte d'Azur, CNRS, ICN France
| | - Frédéric Burdet
- Vital-IT, SIB Swiss Institute of Bioinformatics 1015 Lausanne Switzerland
| | - Laurence Marcourt
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU 1211 Geneva Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU 1211 Geneva Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Sciences, University of Geneva Quai Ernest-Ansermet 30 1205 Geneva Switzerland
| | - Florence Mehl
- Vital-IT, SIB Swiss Institute of Bioinformatics 1015 Lausanne Switzerland
| | - Bruno David
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute Toulouse France
| | - Antonio Grondin
- Green Mission Department, Herbal Products Laboratory, Pierre Fabre Research Institute Toulouse France
| | - Emerson Ferreira Queiroz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU 1211 Geneva Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU 1211 Geneva Switzerland
| | - Marco Pagni
- Vital-IT, SIB Swiss Institute of Bioinformatics 1015 Lausanne Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva Quai Ernest-Ansermet 30 1205 Geneva Switzerland
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU 1211 Geneva Switzerland
- School of Pharmaceutical Sciences, University of Geneva, CMU 1211 Geneva Switzerland
| |
Collapse
|
2
|
Kathayat D, VanderVen BC. Exploiting cAMP signaling in Mycobacterium tuberculosis for drug discovery. Trends Microbiol 2024; 32:874-883. [PMID: 38360432 PMCID: PMC11322422 DOI: 10.1016/j.tim.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Mycobacterium tuberculosis (Mtb) replicates within host macrophages by adapting to the stressful and nutritionally constrained environments in these cells. Exploiting these adaptations for drug discovery has revealed that perturbing cAMP signaling can restrict Mtb growth in macrophages. Specifically, compounds that agonize or stimulate the bacterial enzyme, Rv1625c/Cya, induce cAMP synthesis and this interferes with the ability of Mtb to metabolize cholesterol. In murine tuberculosis (TB) infection models, Rv1625c/Cya agonists contribute to reducing relapse and shortening combination treatments, highlighting the therapeutic potential for this class of compounds. More recently, cAMP signaling has been implicated in regulating fatty acid utilization by Mtb. Thus, a new model is beginning to emerge in which cAMP regulates the utilization of host lipids by Mtb during infection, and this could provide new targets for TB drug development. Here, we summarize the current understanding of cAMP signaling in Mtb with a focus on our understanding of how cAMP signaling impacts Mtb physiology during infection. We also discuss additional cAMP-related drug targets in Mtb and other bacterial pathogens that may have therapeutic potential.
Collapse
Affiliation(s)
- Dipak Kathayat
- Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Brian C VanderVen
- Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Peña-Díaz S, Chao JD, Rens C, Haghdadi H, Zheng X, Flanagan K, Ko M, Shapira T, Richter A, Maestre-Batlle D, Canseco JO, Gutierrez MG, Duc KD, Pelech S, Av-Gay Y. Glycogen synthase kinase 3 inhibition controls Mycobacterium tuberculosis infection. iScience 2024; 27:110555. [PMID: 39175770 PMCID: PMC11340618 DOI: 10.1016/j.isci.2024.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/20/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
Compounds targeting host control of infectious diseases provide an attractive alternative to antimicrobials. A phenotypic screen of a kinase library identified compounds targeting glycogen synthase kinase 3 as potent inhibitors of Mycobacterium tuberculosis (Mtb) intracellular growth in the human THP-1 cell line and primary human monocytes-derived macrophages (hMDM). CRISPR knockouts and siRNA silencing showed that GSK3 isoforms are needed for the growth of Mtb and that a selected compound, P-4423632 targets GSK3β. GSK3 inhibition was associated with macrophage apoptosis governed by the Mtb secreted protein tyrosine phosphatase A (PtpA). Phospho-proteome analysis of macrophages response to infection revealed a wide array of host signaling and apoptosis pathways controlled by GSK3 and targeted by P-4423632. P-4423632 was additionally found to be active against other intracellular pathogens. Our findings strengthen the notion that targeting host signaling to promote the infected cell's innate antimicrobial capacity is a feasible and attractive host-directed therapy approach.
Collapse
Affiliation(s)
- Sandra Peña-Díaz
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joseph D. Chao
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Celine Rens
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hasti Haghdadi
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Xingji Zheng
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Keegan Flanagan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mary Ko
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tirosh Shapira
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Adrian Richter
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | - Julio Ortiz Canseco
- Host-pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | | | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Steven Pelech
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Kinexus Bioinformatics Corporation, 8755 Ash Street, Vancouver, BC, Canada
| | - Yossef Av-Gay
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Identification of Small Molecule Inhibitors against Mycobacteria in Activated Macrophages. Molecules 2022; 27:molecules27185824. [PMID: 36144572 PMCID: PMC9504936 DOI: 10.3390/molecules27185824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterial pathogens are intrinsically resistant to many available antibiotics, making treatment extremely challenging, especially in immunocompromised individuals and patients with underlying and chronic lung conditions. Even with lengthy therapy and the use of a combination of antibiotics, clinical success for non-tuberculous mycobacteria (NTM) is achieved in fewer than half of the cases. The need for novel antibiotics that are effective against NTM is urgent. To identify such new compounds, a whole cell high-throughput screen (HTS) was performed in this study. Compounds from the Chembridge DIVERSet library were tested for their ability to inhibit intracellular survival of M. avium subsp. hominissuis (MAH) expressing dtTomato protein, using fluorescence as a readout. Fifty-eight compounds were identified to significantly inhibit fluorescent readings of MAH. In subsequent assays, it was found that treatment of MAH-infected THP-1 macrophages with 27 of 58 hit compounds led to a significant reduction in intracellular viable bacteria, while 19 compounds decreased M. abscessus subsp. abscessus (Mab) survival rates within phagocytic cells. In addition, the hit compounds were tested in M. tuberculosis H37Ra (Mtb) and 14 compounds were found to exhibit activity in activated THP-1 cells. While the majority of compounds displayed inhibitory activity against both replicating (extracellular) and non-replicating (intracellular) forms of bacteria, a set of compounds appeared to be effective exclusively against intracellular bacteria. The efficacy of these compounds was examined in combination with current antibiotics and survival of both NTM and Mtb were evaluated within phagocytic cells. In time-kill dynamic studies, it was found that co-treatment promoted increased bacterial clearance when compared with the antibiotic or compound group alone. This study describes promising anti-NTM and anti-Mtb compounds with potential novel mechanisms of action that target intracellular bacteria in activated macrophages.
Collapse
|