1
|
Daniel BD, Inbaraj LR, Kumaravadivelu S, Subramanian K, Ramraj B, Manesh A. Optimizing Pyrazinamide Use: A Low-Hanging Fruit in Improving Outcomes with Tuberculous Meningitis? Narrative Review. Infect Dis Ther 2025; 14:317-325. [PMID: 39752122 PMCID: PMC11829872 DOI: 10.1007/s40121-024-01102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Tuberculous meningitis (TBM) disables more than a third of its sufferers. Recent research has focused on optimizing the antitubercular regimen, mainly by increasing the dosage of rifampicin. However, pyrazinamide, with higher penetration into the central nervous system, is generally overlooked. We discuss the potential clinical impact of using pyrazinamide throughout antitubercular therapy in TBM, in contrast to only the intensive phase. This approach may improve the treatment outcomes and reduce disability in TBM. We summarize the available data regarding this approach from in vitro studies, clinical cohorts, toxicity data, and baseline resistance rates. Additionally, we discuss the two ongoing clinical trials evaluating this approach.
Collapse
Affiliation(s)
- Bella Devaleenal Daniel
- ICMR, National Institute for Research in Tuberculosis, No. 1, Mayor Sathyamoorthy Road, Chennai, Tamil Nadu, India.
| | - Leeberk Raja Inbaraj
- ICMR, National Institute for Research in Tuberculosis, No. 1, Mayor Sathyamoorthy Road, Chennai, Tamil Nadu, India
| | - Shanmugapriya Kumaravadivelu
- ICMR, National Institute for Research in Tuberculosis, No. 1, Mayor Sathyamoorthy Road, Chennai, Tamil Nadu, India
| | - Kathirvel Subramanian
- ICMR, National Institute for Research in Tuberculosis, No. 1, Mayor Sathyamoorthy Road, Chennai, Tamil Nadu, India
| | - Balaji Ramraj
- ICMR, National Institute for Research in Tuberculosis, No. 1, Mayor Sathyamoorthy Road, Chennai, Tamil Nadu, India
| | - Abi Manesh
- Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Yunivita V, Gafar F, Santoso P, Chaidir L, Soeroto AY, Meirina TN, Te Brake L, Menzies D, Aarnoutse RE, Ruslami R. Pharmacokinetics and pharmacodynamics of high-dose isoniazid for the treatment of rifampicin- or multidrug-resistant tuberculosis in Indonesia. J Antimicrob Chemother 2024; 79:977-986. [PMID: 38459759 PMCID: PMC11062943 DOI: 10.1093/jac/dkae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Pharmacokinetic data on high-dose isoniazid for the treatment of rifampicin-/multidrug-resistant tuberculosis (RR/MDR-TB) are limited. We aimed to describe the pharmacokinetics of high-dose isoniazid, estimate exposure target attainment, identify predictors of exposures, and explore exposure-response relationships in RR/MDR-TB patients. METHODS We performed an observational pharmacokinetic study, with exploratory pharmacokinetic/pharmacodynamic analyses, in Indonesian adults aged 18-65 years treated for pulmonary RR/MDR-TB with standardized regimens containing high-dose isoniazid (10-15 mg/kg/day) for 9-11 months. Intensive pharmacokinetic sampling was performed after ≥2 weeks of treatment. Total plasma drug exposure (AUC0-24) and peak concentration (Cmax) were assessed using non-compartmental analyses. AUC0-24/MIC ratio of 85 and Cmax/MIC ratio of 17.5 were used as exposure targets. Multivariable linear and logistic regression analyses were used to identify predictors of drug exposures and responses, respectively. RESULTS We consecutively enrolled 40 patients (median age 37.5 years). The geometric mean isoniazid AUC0-24 and Cmax were 35.4 h·mg/L and 8.5 mg/L, respectively. Lower AUC0-24 and Cmax values were associated (P < 0.05) with non-slow acetylator phenotype, and lower Cmax values were associated with male sex. Of the 26 patients with MIC data, less than 25% achieved the proposed targets for isoniazid AUC0-24/MIC (n = 6/26) and Cmax/MIC (n = 5/26). Lower isoniazid AUC0-24 values were associated with delayed sputum culture conversion (>2 months of treatment) [adjusted OR 0.18 (95% CI 0.04-0.89)]. CONCLUSIONS Isoniazid exposures below targets were observed in most patients, and certain risk groups for low isoniazid exposures may require dose adjustment. The effect of low isoniazid exposures on delayed culture conversion deserves attention.
Collapse
Affiliation(s)
- Vycke Yunivita
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Fajri Gafar
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Office 3D.21, Montreal, Quebec H4A 3S5, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| | - Prayudi Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran and Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Lidya Chaidir
- TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Division of Microbiology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Arto Y Soeroto
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran and Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Triana N Meirina
- Pharmacokinetic Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Lindsey Te Brake
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Dick Menzies
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Office 3D.21, Montreal, Quebec H4A 3S5, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Rovina Ruslami
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|