1
|
Choi EW, Jeong Y, Ahn JO. Diagnosis of canine B-cell chronic lymphoid leukemia with a CD21 negative phenotype using the LT21 clone CD21 antibody in flow cytometry: a case report. BMC Vet Res 2024; 20:490. [PMID: 39462364 PMCID: PMC11515120 DOI: 10.1186/s12917-024-04335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Chronic lymphoid leukemia (CLL) is a hematological disorder characterized by the clonal expansion of small mature lymphocytes that accumulate in the blood and bone marrow. CLL can arise from B-, T-, or natural killer cell clones. The cytological evaluation of blood smears is often the simplest and least invasive method for diagnosing lymphoid leukemia. Immunophenotyping is used to further subclassify the type of lymphoid leukemia. CASE PRESENTATION A 15-year-old, 4.4-kg spayed female Shih Tzu was presented to the veterinary medical teaching hospital of Kangwon National University. Despite having a normal appetite and activity level, cervical and inguinal lymph node enlargement was noted on physical examination. Complete blood count revealed severe leukocytosis, severe lymphocytosis, and monocytosis. Splenomegaly, hepatomegaly, and lymph node enlargement were detected on radiographic and ultrasonographic examination. Immunophenotyping was performed using peripheral blood mononuclear cells (PBMCs). The majority of lymphocytes exhibited the following profiles: CD3-CD79a- (97.5%), CD4-CD8- (98.6%), CD21-CD79a- (98.4%), CD34- (0.1%), CD45+ (99.6%), major histocompatibility complex class II+ (99.5%), and CD14- (0.5%). Based on the immunophenotyping results, possible differentials considered included the following: the majority of lymphocytes may be natural killer (NK) cell clones, plasma cell clones, or show aberrant expression or loss of CD21 marker due to the neoplastic nature of the cells. Further flow cytometry was performed using antibodies against CD3, CD5, CD94, and granzyme B. The combined results indicated that the predominant lymphocyte subset in the PBMCs was CD3-CD5-CD21-CD94-granzyme B-. To confirm monoclonality and exclude the aberrant loss of CD markers, a polymerase chain reaction for antigen receptor rearrangement (PARR) assay was conducted. The PARR assay, using DNA from blood and lymph node samples, showed B-cell monoclonality. Immunocytochemistry using PBMCs showed that the plasma cell marker Multiple Myeloma Oncogene 1 (MUM1) was not expressed. Therefore, the diagnosis was confirmed to be B-cell CLL. CONCLUSION Immunophenotyping can help subclassify the type of lymphoid leukemia; however, as tumor cells can show aberrant expression or loss of the CD21 marker, combining immunophenotyping with the PARR assay could yield a more accurate diagnosis.
Collapse
MESH Headings
- Female
- Animals
- Flow Cytometry/veterinary
- Immunophenotyping/veterinary
- Dogs
- Dog Diseases/diagnosis
- Dog Diseases/immunology
- Dog Diseases/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/veterinary
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Receptors, Complement 3d
- Phenotype
Collapse
Affiliation(s)
- Eun Wha Choi
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Yunho Jeong
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jin-Ok Ahn
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do, 24341, Republic of Korea
| |
Collapse
|
2
|
Grudzien M, Pawlak A, Kutkowska J, Ziolo E, Wysokińska E, Hildebrand W, Obmińska-Mrukowicz B, Strzadala L, Rapak A. A newly established canine NK-type cell line and its cytotoxic properties. Vet Comp Oncol 2021; 19:567-577. [PMID: 33774906 DOI: 10.1111/vco.12695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/30/2022]
Abstract
We established a canine natural killer (NK)-type cell line called CNK-89 derived from a dog with NK cell neoplasia. Immunophenotyping analysis showed positive staining for CD5, CD8, CD45, CD56, CD79a and NKp46, while negative for CD3, CD4, CD14, CD20, CD21, CD34, Thy1, IgG, IgM and MHCII. Polymerase chain reaction analysis revealed the presence of CD56, NKG2D, NKp30, NKp44, NKp46 and perforin, but the absence of CD16, Ly49 and granzyme B mRNA. Treating CNK-89 cells with IL-2 did not change the expression of activating receptors, TNFα and IFNγ secretion and cytotoxic activity, however, treatment with IL-12 alone or in combinations with IL-15, IL-18 and IL-21 caused an increase in granzyme B and CD16 mRNA, IFNγ secretion and cytotoxic properties of the CNK-89 cell line.
Collapse
Affiliation(s)
- Malgorzata Grudzien
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Justyna Kutkowska
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Ewa Ziolo
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Edyta Wysokińska
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | | | - Bożena Obmińska-Mrukowicz
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Leon Strzadala
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Andrzej Rapak
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
3
|
Hirabayashi M, Chambers JK, Sugawara M, Ohmi A, Tsujimoto H, Nakayama H, Uchida K. Blastic natural killer cell lymphoma/leukaemia in a cat. JFMS Open Rep 2019; 5:2055116919863080. [PMID: 31321069 PMCID: PMC6628536 DOI: 10.1177/2055116919863080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Case summary A 7-year-old mixed-breed cat presented with subcutaneous oedema and erythema
extending from the right axilla to the abdomen. Fine-needle aspiration of
the subcutaneous lesion revealed large, atypical, round cells. A clonality
analysis for the T-cell receptor-gamma and immunoglobulin heavy chain genes
showed no clonal rearrangement. The presumed diagnosis was lymphoma and the
cat was treated with prednisolone and L-asparaginase but died 78 days after
initial treatment. At necropsy, an oedematous subcutaneous mass in the right
axilla, hepatomegaly, splenomegaly and lymphadenopathy of the mediastinum
and left axilla were observed. Histopathological examination revealed
diffuse infiltration of large atypical round cells in the subcutaneous mass,
liver, spleen, lymph nodes and bone marrow. Immunohistochemically, the
tumour cells were strongly positive for CD56, and negative for CD3, CD20,
CD79a, CD57, granzyme B and perforin. Based on these findings, the cat was
diagnosed with blastic natural killer (NK) cell lymphoma/leukaemia. Relevance and novel information Here, we report the pathological and clinical findings of NK cell
lymphoma/leukaemia in a cat. The antibody for human CD56, a diagnostic
marker for human NK cell neoplasms, showed cross-reactivity with feline CD56
by immunohistochemistry and Western blotting analysis. The antibody could be
a useful diagnostic marker for feline NK cell neoplasms.
Collapse
Affiliation(s)
- Miyuki Hirabayashi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Mei Sugawara
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Aki Ohmi
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hajime Tsujimoto
- Laboratory of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Bonnefont-Rebeix C, Fournel-Fleury C, Ponce F, Belluco S, Watrelot D, Bouteille SE, Rapiteau S, Razanajaona-Doll D, Pin JJ, Leroux C, Marchal T. Characterization of a novel canine T-cell line established from a spontaneously occurring aggressive T-cell lymphoma with large granular cell morphology. Immunobiology 2016; 221:12-22. [DOI: 10.1016/j.imbio.2015.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/15/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022]
|
5
|
Park JY, Shin DJ, Lee SH, Lee JJ, Suh GH, Cho D, Kim SK. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells. Vet Microbiol 2015; 176:239-49. [DOI: 10.1016/j.vetmic.2015.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 12/19/2022]
|
6
|
Grøndahl-Rosado C, Bønsdorff TB, Brun-Hansen HC, Storset AK. NCR1+ cells in dogs show phenotypic characteristics of natural killer cells. Vet Res Commun 2014; 39:19-30. [DOI: 10.1007/s11259-014-9624-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
|
7
|
Michael HT, Ito D, McCullar V, Zhang B, Miller JS, Modiano JF. Isolation and characterization of canine natural killer cells. Vet Immunol Immunopathol 2013; 155:211-7. [PMID: 23876304 DOI: 10.1016/j.vetimm.2013.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 11/28/2022]
Abstract
NK cells are non-T, non-B lymphocytes that kill target cells without previous activation. The immunophenotype and function of these cells in humans and mice are well defined, but canine NK cells remain incompletely characterized. Our objectives were to isolate and culture canine peripheral blood NK cells, and to define their immunophenotype and killing capability. PBMC were obtained from healthy dogs and T cells were depleted by immunomagnetic separation. The residual cells were cultured in media supplemented with IL-2, IL-15 or both, or with mouse embryonic liver (EL) feeder cells. Non-T, non-B lymphocytes survived and expanded in these cultures. IL-2 was necessary and sufficient for survival; the addition of IL-15 was necessary for expansion, but IL-15 alone did not support survival. Culture with EL cells and IL-2 also fostered survival and expansion. The non-T, non-B lymphocytes uniformly expressed CD45, MHC I, and showed significant cytotoxic activity against CTAC targets. Expression of MHC II, CD11/18 was restricted to subsets of these cells. The data show that cells meeting the criteria for NK cells in other species, i.e., non-T, non-B lymphocytes with cytotoxic activity, can be expanded from canine PBMC by T-cell depletion and culture with cytokines or feeder cells.
Collapse
Affiliation(s)
- Helen T Michael
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1352 Boyd Avenue, St. Paul, MN 55108, United States.
| | | | | | | | | | | |
Collapse
|
8
|
Ex vivo expansion of canine cytotoxic large granular lymphocytes exhibiting characteristics of natural killer cells. Vet Immunol Immunopathol 2013; 153:249-59. [PMID: 23548866 DOI: 10.1016/j.vetimm.2013.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/19/2013] [Accepted: 03/13/2013] [Indexed: 12/22/2022]
Abstract
Canine NK cells still are not well-characterized due to the lack of information concerning specific NK cell markers and the fact that NK cells are not an abundant cell population. In this study, we selectively expanded the canine cytotoxic large granular lymphocytes (CLGLs) that exhibit morphologic, genetic, and functional characteristics of NK cells from normal donor PBMCs. The cultured CLGLs were characterized by a high proportion of CD5(dim) expressing cells, of which the majority of cells co-expressed CD3 and CD8, but did not express TCRαβ and TCRγδ. The phenotype of the majority of the CLGLs was CD5(dim)CD3(+)CD8(+) TCRαβ(-)TCRγδ(-)CD4(-)CD21(-)CD11c(+/-)CD11d(+/-)CD44(+). The expression of mRNAs for NK cell-associated receptors (NKG2D, NKp30, NKp44, Ly49, perforin, and granzyme B) were highly upregulated in cultured CLGLs. Specifically, NKp46 was remarkably upregulated in the cultured CLGLs compared to PBMCs. The mRNAs for the NKT-associated iTCRα gene in CLGLs was present at a basal level. The cytotoxic activity of the CLGLs against canine NK cell-sensitive CTAC cells was remarkably elevated in a dose-dependent manner, and the CLGLs produced large amounts of IFN-γ. The antitumor activity of CLGLs extended to different types of canine tumor cells (CF41.Mg and K9TCC-pu-AXC) without specific antigen recognition. These results are consistent with prior reports, and strongly suggest that the selectively expanded CLGLs represent a population of canine NK cells. The results of this study will contribute to future research on canine NK cells as well as NK cell-based immunotherapy.
Collapse
|