1
|
Puchalska M, Witkowska‐Piłaszewicz O. Gene doping in horse racing and equine sports: Current landscape and future perspectives. Equine Vet J 2025; 57:312-324. [PMID: 39267222 PMCID: PMC11807943 DOI: 10.1111/evj.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Gene doping, the use of gene therapy or genetic manipulation to enhance athletic performance, has emerged as a potential threat to the integrity and welfare of equine sports, such as horse racing and equestrian sports. This review aims to provide an overview of gene doping in horses, including the underlying technologies, potential applications, detection methods, ethical concerns and future perspectives. By understanding the current landscape of gene doping in horses, stakeholders can work together to develop strategies to safeguard the integrity of equine sports.
Collapse
Affiliation(s)
- Maria Puchalska
- Department of Large Animals Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| | - Olga Witkowska‐Piłaszewicz
- Department of Large Animals Diseases and Clinic, Institute of Veterinary MedicineWarsaw University of Life SciencesWarsawPoland
| |
Collapse
|
2
|
Maniego J, Harding C, Habershon-Butcher J, Hincks P, Ryder E. Administration and detection of a multi-target rAAV gene doping vector in horses using multiple matrices and molecular techniques. Gene Ther 2024; 31:477-488. [PMID: 38972888 DOI: 10.1038/s41434-024-00462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Gene doping, which includes the non-therapeutic use of genes or genetic elements that have the capacity to enhance athletic performance, is prohibited in horseracing and equestrian sports. To provide a comprehensive assessment of matrix and detection techniques, a custom adeno-associated virus serotype 8 vector was designed to include PCR binding sites for multiple target genes and assay types. The vector was injected via an intramuscular route into two Thoroughbred horses and matrices collected at defined timepoints. DNA was analysed using 3 detection methods: qPCR, digital PCR, and NGS. Overall, there was a strong correlation across the different detection methods employed, although digital PCR was less sensitive at lower concentrations. High concentrations of vector were detected at early timepoints in plasma and whole blood, which rapidly dropped after 0.5 d to trace levels by 4 d and 9 d post-administration respectively, following a similar pattern to previous studies. Vector was detected in dried blood spots at lower levels than whole blood, but with a similar detection time. Detection in hair root bulbs in one horse was observed at over a month post-administration, which opens new avenues for future gene doping testing in humans and animals.
Collapse
Affiliation(s)
- Jillian Maniego
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, CB7 5WW, UK
| | - Caitlin Harding
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, CB7 5WW, UK
| | | | - Pamela Hincks
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, CB7 5WW, UK
| | - Edward Ryder
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, CB7 5WW, UK.
| |
Collapse
|
3
|
Reißmann M, Rajavel A, Kokov ZA, Schmitt AO. Identification of Differentially Expressed Genes after Endurance Runs in Karbadian Horses to Determine Candidates for Stress Indicators and Performance Capability. Genes (Basel) 2023; 14:1982. [PMID: 38002925 PMCID: PMC10671444 DOI: 10.3390/genes14111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
RNA sequencing makes it possible to uncover genetic mechanisms that underlie certain performance traits. In order to gain a deeper insight into the genetic background and biological processes involved in endurance performance in horses, the changes in the gene expression profiles induced by endurance runs over long (70 km) and short (15 km) distances in the blood of Kabardian horses (Equus caballus) were analyzed. For the long-distance runs, we identified 1484 up- and 691 downregulated genes, while after short-distance runs, only 13 up- and 8 downregulated genes (FC > |1.5|; p < 0.05) were found. These differentially expressed genes (DEGs) are involved in processes and pathways that are primarily related to stress response (interleukin production, activation of inflammatory system) but also to metabolism (carbohydrate catabolic process, lipid biosynthesis, NADP metabolic process). The most important genes involved in these processes therefore represent good candidates for the monitoring and evaluation of the performance of horses in order to avoid excessive demands when endurance performance is required, like ACOD1, CCL5, CD40LG, FOS, IL1R2, IL20RA, and IL22RA2, on the one hand, and, on the other hand, for assessing the suitability of a horse for endurance races, like GATA2, GYG1, HIF1A, MOGAT1, PFKFB3, PLIN5, SIK1, and STBD1.
Collapse
Affiliation(s)
- Monika Reißmann
- Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany;
| | - Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
| | - Zaur A. Kokov
- Institute of Physics and Mathematics, Kabardino-Balkarian State University, Chernyshevsky 173, Nalchik 360004, Russia;
| | - Armin O. Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| |
Collapse
|
4
|
Haughan J, Ortved KF, Robinson MA. Administration and detection of gene therapy in horses: A systematic review. Drug Test Anal 2023; 15:143-162. [PMID: 36269665 DOI: 10.1002/dta.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Gene therapy uses genetic modification of cells to produce a therapeutic effect. Defective or missing genes can be repaired or replaced, or gene expression can be modified using a variety of technologies. Repair of defective genes can be achieved using specialized gene editing tools. Gene addition promotes gene expression by introducing synthetic copies of genes of interest (transgenes) into cells where they are transcribed and translated into therapeutic proteins. Protein production can also be modified using therapies that regulate gene expression. Gene therapy is currently prohibited in both human and equine athletes because of the potential to induce production of performance-enhancing proteins in the athlete's body, also referred to as "gene doping." Detection of gene doping is challenging and necessitates development of creative, novel analytical methods for doping control. Methods for detection of gene doping must be specific to and will vary depending on the type of gene therapy. The purpose of this paper is to present the results of a systematic review of gene editing, gene therapy, and detection of gene doping in horses. Based on the published literature, gene therapy has been administered to horses in a large number of experimental studies and a smaller number of clinical cases. Detection of gene therapy is possible using a combination of PCR and sequencing technologies. This summary can provide a basis for discussion of appropriate and inappropriate uses for gene therapy in horses by the veterinary community and guide expansion of methods to detect inappropriate uses by the regulatory community.
Collapse
Affiliation(s)
- Joanne Haughan
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Kyla F Ortved
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Mary A Robinson
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA.,Pennsylvania Equine Toxicology & Research Center, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
5
|
Pan J, Purev C, Zhao H, Zhang Z, Wang F, Wendoule N, Qi G, Liu Y, Zhou H. Discovery of exercise-related genes and pathway analysis based on comparative genomes of Mongolian originated Abaga and Wushen horse. Open Life Sci 2022; 17:1269-1281. [PMID: 36249530 PMCID: PMC9518662 DOI: 10.1515/biol-2022-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The Mongolian horses have excellent endurance and stress resistance to adapt to the cold and harsh plateau conditions. Intraspecific genetic diversity is mainly embodied in various genetic advantages of different branches of the Mongolian horse. Since people pay progressive attention to the athletic performance of horse, we expect to guide the exercise-oriented breeding of horses through genomics research. We obtained the clean data of 630,535,376,400 bp through the entire genome second-generation sequencing for the whole blood of four Abaga horses and ten Wushen horses. Based on the data analysis of single nucleotide polymorphism, we severally detected that 479 and 943 positively selected genes, particularly exercise related, were mainly enriched on equine chromosome 4 in Abaga horses and Wushen horses, which implied that chromosome 4 may be associated with the evolution of the Mongolian horse and athletic performance. Four hundred and forty genes of positive selection were enriched in 12 exercise-related pathways and narrowed in 21 exercise-related genes in Abaga horse, which were distinguished from Wushen horse. So, we speculated that the Abaga horse may have oriented genes for the motorial mechanism and 21 exercise-related genes also provided a molecular genetic basis for exercise-directed breeding of the Mongolian horse.
Collapse
Affiliation(s)
- Jing Pan
- Faculty of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
- Department of Reproductive Medicine, Inner Mongolia Maternal and Child Health Care Hospitaly, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Chimge Purev
- Mongolia-China Joint Laboratory of Applied Molecular Biology, “Administration of the Science Park” CSTI, Ulaanbaatar, Mongolia
| | - Hongwei Zhao
- Beijing 8omics Gene Technology Co. Ltd, Beijing, People’s Republic of China
| | - Zhipeng Zhang
- Faculty of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Feng Wang
- Faculty of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Nashun Wendoule
- Animal Husbandry Workstation of Ewenki Autonomous County, Hulun Buir, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Guichun Qi
- Bayanta Village of Animal Husbandry and Veterinary Station of Ewenki Autonomous County, Hulun Buir, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Yongbin Liu
- Sheep Collaboration and Innovation Center, Inner Mongolia Universityy, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Huanmin Zhou
- Faculty of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
- Sheep Collaboration and Innovation Center, Inner Mongolia Universityy, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| |
Collapse
|
6
|
Abstract
Thoroughbred horses have been selected for racing performance for more than 400 years. Despite continued selection, race times have not improved significantly during the past 60 years, raising the question of whether genetic variation for racing performance still exists. Studies using phenotypes such as race time, money earned, and handicapping, however, demonstrate that there is extensive variation within these traits and that they are heritable. Even so, these are poor measures of racing success since Thoroughbreds race at different ages and distances and on different types of tracks, and some may not race at all. With the advent of genomic tools, DNA variants are being identified that contribute to racing success. Aside from strong associations for myostatin variants with best racing distance, weak to modest associations with racing phenotypes are reported for other genomic regions. These data suggest that diverse genetic strategies have contributed to producing a successful racehorse, and genetic variation contributing to athleticism remains important. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ernest Bailey
- MH Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA; ,
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska, USA;
| | | |
Collapse
|
7
|
Screening for gene doping transgenes in horses via the use of massively parallel sequencing. Gene Ther 2021; 29:236-246. [PMID: 34276046 DOI: 10.1038/s41434-021-00279-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022]
Abstract
Throughout the history of horse racing, doping techniques to suppress or enhance performance have expanded to match the technology available. The next frontier in doping, both in the equine and human sports areas, is predicted to be genetic manipulation; either by prohibited use of genome editing, or gene therapy via transgenes. By using massively-parallel sequencing via a two-step PCR method we can screen for multiple doping targets at once in pooled primer sets. This method has the advantages of high scalability through combinational indexing, and the use of reference standards with altered sequences as controls. Custom software produces transgene-specific amplicons from any Ensembl-annotated genome to facilitate rapid assay design. Additional scripts batch-process FASTQ data from experiments, automatically quality-filtering sequences and assigning hits based on discriminatory motifs. We report here our experiences in establishing the workflow with an initial 31 transgene and vector feature targets. To evaluate the sensitivity of parallel sequencing in a real-world setting, we performed an intramuscular (IM) administration of a control rAAV vector into two horses and compared the detection sensitivity between parallel sequencing and real-time qPCR. Vector was detected by all assays on both methods up to 79 h post-administration, becoming sporadic after 96 h.
Collapse
|
8
|
Pira E, Vacca GM, Dettori ML, Piras G, Moro M, Paschino P, Pazzola M. Polymorphisms at Myostatin Gene ( MSTN) and the Associations with Sport Performances in Anglo-Arabian Racehorses. Animals (Basel) 2021; 11:964. [PMID: 33808485 PMCID: PMC8065447 DOI: 10.3390/ani11040964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
One hundred and eighty Anglo-Arabian horses running 1239 races were sampled for the present study. DNA was extracted from the blood and myostatin gene, MSTN, was genotyped. Moreover, prizes won and places were achieved for the 1239 races to perform association analyses between the different genotypes and sport traits. Two SNPs already reported in previous studies regarding the Thoroughbred breed, rs69472472 and rs397152648, were revealed as polymorphic. The linkage disequilibrium analysis investigating the haplotype structure of MSTN did not evidence any association block. Polymorphism at SNP rs397152648, previously known as g.66493737 T>C, significantly influenced sport traits, with heterozygous horses TC showing better results than homozygotes TT. The portion of variance due to the random effect of the individual animal, and the other phenotypic effects of sex, percentage of Arabian blood and race distance, computed together with the genotype at MSTN in the statistical models, exerted a significant influence. Hence, this information is useful to improve knowledge of the genetic profile of Anglo-Arabian horses and a possible selection for better sport performance.
Collapse
Affiliation(s)
- Emanuela Pira
- Local Health Authority 7 Pedemontana, Via dei Lotti 40, 36061 Bassano del Grappa, Italy;
| | - Giuseppe Massimo Vacca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| | - Gianpiera Piras
- Local Health Authority of Oristano, Via Carducci 35, 09170 Oristano, Italy;
| | - Massimiliano Moro
- Local Health Authority of Nuoro, Via Amerigo Demurtas 1, 08110 Nuoro, Italy;
| | - Pietro Paschino
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.M.V.); (M.L.D.); (P.P.)
| |
Collapse
|
9
|
Dall'Olio S, Bovo S, Tinarelli S, Schiavo G, Padalino B, Fontanesi L. Association between candidate gene markers and harness racing traits in Italian trotter horses. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Differential Expression of IGF1, IGFBP5, MSTN, and MYH1 Across Different Age Classes in American Quarter Horses. J Equine Vet Sci 2020; 94:103226. [PMID: 33077104 DOI: 10.1016/j.jevs.2020.103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine the influence of age on expression of insulin-like growth factor 1 (IGF1), insulin-like growth factor binding protein (IGFBP5), myostatin (MSTN), and myosin (MYH1) genes which are related to growth and muscle development in the American Quarter Horse. Thus, horses (n = 10) from weanling, yearling, 2-, 3-, and 10-year-old age classes were sampled and gene expression was assessed by RT-qPCR. ΔCT was calculated using the hypoxanthine-guanine phosphoribosyltransferase gene as an internal normalizer. The generalized linear model was used to determine differentially expressed genes, by pairwise comparison between ages. Among technical replicates, the coefficient of variation ranged from 1.0 to 5.2% and was lower than the variation observed between biological replicates (2.1-12.9%). IGF1 demonstrated significantly lower expression in the 3-year-old age class than in weanlings and yearlings, but the 10-year-old age class displayed a significantly higher level than 2- and 3-year-old age classes. Expression of IGFBP5 was highest in weanlings compared with all other age classes. Expression of MSTN was significantly higher in weanlings than in other age classes, whereas 10-year-old horses had an intermediate level of expression, but significantly different from yearlings, 2- and 3-year-old fillies. Finally, expression of MYH1 was lower in 2- and 10-year-old horses than in weanlings and yearlings, whereas 3-year-old fillies demonstrated an intermediate level of expression. Differential expression patterns observed in this preliminary study provide insight into the physiological changes occurring throughout the life span of horses. These patterns could also help explain the variation in performance and endurance between individuals at different developmental stages.
Collapse
|
11
|
Campbell MLH, McNamee MJ. Ethics, Genetic Technologies and Equine Sports: The Prospect of Regulation of a Modified Therapeutic Use Exemption Policy. SPORT ETHICS AND PHILOSOPHY 2020. [DOI: 10.1080/17511321.2020.1737204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M. L. H Campbell
- Department of Production and Population Sciences, The Royal Veterinary College, South Mymms, UK
| | - M. J. McNamee
- School of Sport and Exercise Sciences, Swansea University, Swansea, UK
- Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Salek Ardestani S, Aminafshar M, Zandi Baghche Maryam MB, Banabazi MH, Sargolzaei M, Miar Y. Whole-Genome Signatures of Selection in Sport Horses Revealed Selection Footprints Related to Musculoskeletal System Development Processes. Animals (Basel) 2019; 10:ani10010053. [PMID: 31888018 PMCID: PMC7023322 DOI: 10.3390/ani10010053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Selective breeding has led to gradual changes at the genome level of horses. Deciphering selective pressure patterns is progressive to understand how breeding strategies have shaped the sport horse genome; although, little is known about the genomic regions under selective pressures in sport horse breeds. The major goal of this study was to shed light on genomic regions and biological pathways under selective pressures in sport horses. In this study, whole-genome sequences of 16 modern sport and 35 non-sport horses were used to investigate the genomic selective signals of sport performance, by employing fixation index, nucleotide diversity, and Tajima's D approaches. A total number of 49 shared genes were identified using these approaches. The functional enrichment analysis for candidate genes revealed novel significant biological processes related to musculoskeletal system development, such as limb development and morphogenesis, having been targeted by selection in sport breeds.
Collapse
Affiliation(s)
- Siavash Salek Ardestani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (S.S.A.); (M.A.)
| | - Mehdi Aminafshar
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (S.S.A.); (M.A.)
| | | | - Mohammad Hossein Banabazi
- Department of Biotechnology, Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education & Extension Organization (AREEO), Karaj 3146618361, Iran;
| | - Mehdi Sargolzaei
- Department of Pathobiology, Veterinary College, University of Guelph, Guelph, ON NIG2W1, Canada;
- Select Sires Inc., Plain City, OH 43064, USA
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada
- Correspondence: ; Tel.: +1-902-893-6165
| |
Collapse
|
13
|
Asadollahpour Nanaei H, Ayatollahi Mehrgardi A, Esmailizadeh A. Comparative population genomics unveils candidate genes for athletic performance in Hanoverians. Genome 2019; 62:279-285. [DOI: 10.1139/gen-2018-0151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Equine athletes have a genetic heritage that has been evolved for millions of years, which provides an opportunity to study the genetics of locomotion pattern and performance in mammals. The Hanoverian, a breed originating in Germany, is arguably among the most athletic of horse breeds, as well as possessing a balanced character and beautiful appearance. Here, we compared the whole genomes of Hanoverian with three other horse breeds (Akhal-Teke, Franches-Montagnes, and Standardbred), using the fixation index (Fst) and cross-population composite likelihood ratio (XP-CLR) methods for testing the multi-locus allele frequency differentiation between populations. We identified 299 and 485 positively selected genes using the Fst and XP-CLR methods, respectively. Further functional analyses showed that the ACTA1 gene is potentially involved in athletic performance in the Hanoverian breed, consistent with its role observed in human population. In addition, three other loci on chromosomes 1 and 20 were identified to be potentially involved in equine physical performance. The selected candidate genes identified in this study may be useful in current breeding efforts to develop improved breeds in regard to athletic performance.
Collapse
Affiliation(s)
- Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| |
Collapse
|
14
|
Gazda MA, Andrade P, Afonso S, Dilyte J, Archer JP, Lopes RJ, Faria R, Carneiro M. Signatures of Selection on Standing Genetic Variation Underlie Athletic and Navigational Performance in Racing Pigeons. Mol Biol Evol 2019; 35:1176-1189. [PMID: 29547891 DOI: 10.1093/molbev/msy030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Racing pigeons have been selectively bred to find their way home quickly over what are often extremely long distances. This breed is of substantial commercial value and is also an excellent avian model to gain empirical insights into the evolution of traits associated with flying performance and spatial orientation. Here, we investigate the molecular basis of the superior athletic and navigational capabilities of racing pigeons using whole-genome and RNA sequencing data. We inferred multiple signatures of positive selection distributed across the genome of racing pigeons. The strongest signature overlapped the CASK gene, a gene implicated in the formation of neuromuscular junctions. However, no diagnostic alleles were found between racing pigeons and other breeds, and only a small proportion of highly differentiated variants were exclusively detected in racing pigeons. We can thus conclude that very few individual genetic changes, if any, are either strictly necessary or sufficient for superior athletics and navigation. Gene expression analysis between racing and nonracing breeds revealed modest differences in muscle (213) and brain (29). These transcripts, however, showed only slightly elevated levels of genetic differentiation between the two groups, suggesting that most differential expression is not causative but likely a consequence of alterations in regulatory networks. Our results show that the unique suite of traits that enable fast flight, long endurance, and accurate navigation in racing pigeons, do not result from few loci acting as master switches but likely from a polygenic architecture that leveraged standing genetic variation available at the onset of the breed formation.
Collapse
Affiliation(s)
- Malgorzata A Gazda
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro Andrade
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Jolita Dilyte
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - John P Archer
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Ricardo J Lopes
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Rui Faria
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Kim HA, Kim MC, Kim NY, Ryu DY, Lee HS, Kim Y. Integrated analysis of microRNA and mRNA expressions in peripheral blood leukocytes of Warmblood horses before and after exercise. J Vet Sci 2018; 19:99-106. [PMID: 28927254 PMCID: PMC5799405 DOI: 10.4142/jvs.2018.19.1.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 01/26/2023] Open
Abstract
Exercise capacity is a valuable trait in horses, and it has been used as a horse selection criterion. Although exercise affects molecular homeostasis and adaptation in horses, the mechanisms underlying these effects are not fully described. This study was carried out to identify changes in the blood profiles of microRNAs (miRNAs) and mRNAs induced by exercise in horse leukocytes. Total RNAs isolated from the peripheral blood leukocytes of four Warmblood horses before and after exercise were subjected to next-generation sequencing (NGS) and microarray analyses to determine the miRNA and mRNA expression profiles, respectively. The expressions of 6 miRNAs, including 4 known and 2 novel miRNAs, were altered by exercise. The predicted target genes of the differentially expressed miRNAs identified by NGS were matched to the exercise-induced mRNAs determined by microarray analysis. Five genes (LOC100050849, LOC100054517, KHDRBS3, LOC100053996, and LOC100062720) from the microarray analysis were matched to the predicted target genes of the 6 miRNAs. The subset of mRNAs and miRNAs affected by exercise in peripheral blood leukocytes may be useful in elucidating the molecular mechanisms of exercise-associated physiology in horses.
Collapse
Affiliation(s)
- Hang-Ah Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Myung-Chul Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Na-Yon Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Doug-Young Ryu
- Laboratory of Environmental Health and Biomarkers, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hong-Seok Lee
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Jäderkvist Fegraeus K, Velie BD, Axelsson J, Ang R, Hamilton NA, Andersson L, Meadows JRS, Lindgren G. A potential regulatory region near the EDN3 gene may control both harness racing performance and coat color variation in horses. Physiol Rep 2018; 6:e13700. [PMID: 29845762 PMCID: PMC5974718 DOI: 10.14814/phy2.13700] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/06/2018] [Accepted: 04/14/2018] [Indexed: 01/11/2023] Open
Abstract
The Swedish-Norwegian Coldblooded trotter and the heavier North-Swedish draught horse both descend from the North-Swedish horse, but the Coldblooded trotters have been selected for racing performance while the North-Swedish draught horse is mainly used for agricultural and forestry work. By comparing the genomes of Coldblooded trotters, North-Swedish draught horses and Standardbreds for a large number of single-nucleotide polymorphisms (SNPs), the aim of the study was to identify genetic regions that may be under selection for racing performance. We hypothesized that the selection for racing performance, in combination with unauthorized crossbreeding of Coldblooded trotters and Standardbreds, has created regions in the genome where the Coldblooded trotters and Standardbreds are similar, but differ from the North-Swedish draught horse. A fixation index (Fst) analysis was performed and sliding window Delta Fst values were calculated across the three breeds. Five windows, where the average Fst between Coldblooded trotters and Standardbreds was low and the average Fst between Coldblooded trotters and North-Swedish draught horses was high, were selected for further investigation. Associations between the most highly ranked SNPs and harness racing performance were analyzed in 400 raced Coldblooded trotters with race records. One SNP showed a significant association with racing performance, with the CC genotype appearing to be negatively associated. The SNP identified was genotyped in 1915 horses of 18 different breeds. The frequency of the TT genotype was high in breeds typically used for racing and show jumping while the frequency of the CC genotype was high in most pony breeds and draught horses. The closest gene in this region was the Endothelin3 gene (EDN3), a gene mainly involved in melanocyte and enteric neuron development. Both functional genetic and physiological studies are needed to fully understand the possible impacts of the gene on racing performance.
Collapse
Affiliation(s)
- Kim Jäderkvist Fegraeus
- Department of Animal Breeding & GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Brandon D. Velie
- Department of Animal Breeding & GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Jeanette Axelsson
- Department of Animal Breeding & GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Rachel Ang
- Faculty of ScienceUniversity of SydneySydneyAustralia
| | | | - Leif Andersson
- Department of Animal Breeding & GeneticsSwedish University of Agricultural SciencesUppsalaSweden
- Department of Medical Biochemistry and MicrobiologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexas
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and MicrobiologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Gabriella Lindgren
- Department of Animal Breeding & GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
17
|
Choi JY, Jang HJ, Park JW, Oh JD, Shin D, Kim NY, Oh JH, Song KD, Cho BW. Characterization of gene expression and genetic variation of horse ERBB receptor feedback inhibitor 1 in Thoroughbreds. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:309-315. [PMID: 28920408 PMCID: PMC5838335 DOI: 10.5713/ajas.17.0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/22/2017] [Accepted: 09/11/2017] [Indexed: 12/17/2022]
Abstract
Objective This study aimed to test the expression patterns of ERBB receptor feedback inhibitor 1 (ERRFI1) before and after exercise and the association of non-synonymous single-nucleotide polymorphisms (nsSNPs) of horse ERRFI1 with racing traits in Thoroughbreds. Methods We performed bioinformatics and gene expression analyses for horse ERRFI1. Transcription factor (TF) binding sites in the 5′-regulatory region of this gene were identified through a tool for prediction of TF-binding site (PROMO). A general linear model was used to detect the association between the nsSNP (LOC42830758 A to G) and race performance. Results Quantitative polymerase chain reaction analysis showed that expression level of ERRFI1 after exercise was 1.6 times higher than that before exercise. Ten transcription factors were predicted from the ERRFI1 regulatory region. A novel nsSNP (LOC42830758 A to G) was found in ERRFI1, which was associated with three racing traits including average prize money, average racing index, and 3-year-old starts percentile ranking. Conclusion Our analysis will be helpful as a basis for studying genes and SNPs that affect race performance in racehorses.
Collapse
Affiliation(s)
- Jae-Young Choi
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Hyun-Jun Jang
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Korea
| | - Jeong-Woong Park
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Korea
| | - Donghyun Shin
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Korea
| | - Nam Young Kim
- National Institute of Animal Science, Rural Development Administration, Jeju 63242, Korea
| | - Jin Hyeog Oh
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, College of Agricultural and Life Sciences, Chonbuk National University, Jeonju 54896, Korea.,The Animal Molecular Genetics and Breeding Center, Chonbuk National University, Jeonju 54896, Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
18
|
McKenzie E. Foundations of performance – factors that contribute to excellence in equine exercise. COMPARATIVE EXERCISE PHYSIOLOGY 2017. [DOI: 10.3920/cep170022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Horses are renowned for their incredible capacity for a range of athletic activities, and participation in athletic events arguably represents the most critical strut of the equine industry. Successful performance is typically a primary focus during participation in competitive athletic events, and relies upon a variety of innate physiological and structural factors of the athlete. However, a wide range of external factors also influence performance, and many of these can be readily manipulated. Therefore, thorough assessment of the individual’s inherent capacity for a specific athletic discipline must be combined with optimisation of external factors including nutrition and training to promote excellent performance. Recent progress in methods of athlete selection and monitoring of training responses are assisting continued improvements in equine performance.
Collapse
Affiliation(s)
- E. McKenzie
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, 227 Magruder Hall, Corvallis, OR 97331, USA
| |
Collapse
|
19
|
Wilkin T, Baoutina A, Hamilton N. Equine performance genes and the future of doping in horseracing. Drug Test Anal 2017; 9:1456-1471. [DOI: 10.1002/dta.2198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Tessa Wilkin
- Vet Faculty; University of Sydney; Gunn Building, Sydney University, Camperdown NSW Australia
- Bioanalysis; The National Measurement Institute; 36 Bradfield Rd, Lindfield Sydney New South Wales Australia
| | - Anna Baoutina
- School of Life and Environmental Sciences, Faculty of Science; The University of Sydney; Bradfield Rd West Lindfield New South Wales Australia
| | - Natasha Hamilton
- Faculty of Veterinary Science; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
20
|
Rivero JLL, Hill EW. Skeletal muscle adaptations and muscle genomics of performance horses. Vet J 2015; 209:5-13. [PMID: 26831154 DOI: 10.1016/j.tvjl.2015.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/25/2015] [Accepted: 11/29/2015] [Indexed: 11/24/2022]
Abstract
Skeletal muscles in horses are characterised by specific adaptations, which are the result of the natural evolution of the horse as a grazing animal, centuries of selective breeding and the adaptability of this tissue in response to training. These adaptations include an increased muscle mass relative to body weight, a great locomotor efficiency based upon an admirable muscle-tendon architectural design and an adaptable fibre-type composition with intrinsic shortening velocities greater than would be predicted from an animal of comparable body size. Furthermore, equine skeletal muscles have a high mitochondrial volume that permits a higher whole animal aerobic capacity, as well as large intramuscular stores of energy substrates (glycogen in particular). Finally, high buffer and lactate transport capacities preserve muscles against fatigue during anaerobic exercise. Many of these adaptations can improve with training. The publication of the equine genome sequence in 2009 has provided a major advance towards an improved understanding of equine muscle physiology. Equine muscle genomics studies have revealed a number of genes associated with elite physical performance and have also identified changes in structural and metabolic genes following exercise and training. Genes involved in muscle growth, muscle contraction and specific metabolic pathways have been found to be functionally relevant for the early performance evaluation of elite athletic horses. The candidate genes discussed in this review are important for a healthy individual to improve performance. However, muscle performance limiting conditions are widespread in horses and many of these conditions are also genetically influenced.
Collapse
Affiliation(s)
- José-Luis L Rivero
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Campus Universitario de Rabanales, 14014 Cordoba, Spain.
| | - Emmeline W Hill
- Animal Genomics Laboratory, School of Agriculture and Food Science, College of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
21
|
Do KT, Cho HW, Badrinath N, Park JW, Choi JY, Chung YH, Lee HK, Song KD, Cho BW. Molecular Characterization and Expression Analysis of Creatine Kinase Muscle (CK-M) Gene in Horse. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1680-5. [PMID: 26580434 PMCID: PMC4647075 DOI: 10.5713/ajas.15.0468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/11/2015] [Accepted: 07/10/2015] [Indexed: 11/27/2022]
Abstract
Since ancient days, domestic horses have been closely associated with human civilization. Today, horse racing is an important industry. Various genes involved in energy production and muscle contraction are differentially regulated during a race. Among them, creatine kinase (CK) is well known for its regulation of energy preservation in animal cells. CK is an iso-enzyme, encoded by different genes and expressed in skeletal muscle, heart, brain and leucocytes. We confirmed that the expression of CK-M significantly increased in the blood after a 30 minute exercise period, while no considerable change was observed in skeletal muscle. Analysis of various tissues showed an ubiquitous expression of the CK-M gene in the horse; CK-M mRNA expression was predominant in the skeletal muscle and the cardiac muscle compared to other tissues. An evolutionary study by synonymous and non-synonymous single nucleotide polymorphism ratio of CK-M gene revealed a positive selection that was conserved in the horse. More studies are warranted in order to develop the expression of CK-M gene as a biomarker in blood of thoroughbred horses.
Collapse
Affiliation(s)
- Kyong-Tak Do
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 627-702, Korea ; Department of Equine Sciences, Sorabol College, Gyeongju 780-711, Korea
| | - Hyun-Woo Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 627-702, Korea
| | - Narayanasamy Badrinath
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 627-702, Korea
| | - Jeong-Woong Park
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 627-702, Korea
| | - Jae-Young Choi
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 627-702, Korea
| | - Young-Hwa Chung
- BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 561-756, Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 627-702, Korea
| |
Collapse
|
22
|
Brard S, Ricard A. Genome-wide association study for jumping performances in French sport horses. Anim Genet 2014; 46:78-81. [PMID: 25515185 DOI: 10.1111/age.12245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2014] [Indexed: 11/28/2022]
Abstract
A genome-wide association study was performed to identify single nucleotide polymorphisms (SNPs) associated with jumping performances of warmbloods in France. The 999 horses included in the study for jumping performances were sport horses [mostly Selle Français (68%), Anglo-Arabians (13%) and horses from the other European studbooks]. Horses were genotyped using the Illumina EquineSNP50 BeadChip. Of the 54,602 SNPs available on this chip, 44,424 were retained after quality testing. Phenotypes were obtained by deregressing official breeding values for jumping competitions to use all available information, that is, the performances of each horse as well as those of its relatives. Two models were used to test the effects of the genotypes on deregressed phenotypes: a single-marker mixed model and a haplotype-based mixed model (significant: P < 1E-05; suggestive: P < 1E-04). Both models included a polygenic effect to take into account familial structures. For jumping performances, one suggestive quantitative trait locus (QTL) located on chromosome 1 (BIEC2_31196 and BIEC2_31198) was detected with both models. This QTL explains 0.7% of the phenotypic variance. RYR2, a gene encoding a major calcium channel in cardiac muscle in humans and mice, is located 0.55 Mb from this potential QTL.
Collapse
Affiliation(s)
- S Brard
- INRA, GenPhySE (Génétique Physiologie et Systèmes d'Elevage), F-31326, Castanet-Tolosan, France; INP, ENSAT, GenPhySE (Génétique Physiologie et Systèmes d'Elevage), Université de Toulouse, F-31326, Castanet-Tolosan, France; INP, ENVT, GenPhySE (Génétique Physiologie et Systèmes d'Elevage), Université de Toulouse, F-31076, Toulouse, France
| | | |
Collapse
|
23
|
Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses. Gene 2014; 547:152-8. [DOI: 10.1016/j.gene.2014.06.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/15/2014] [Accepted: 06/23/2014] [Indexed: 11/22/2022]
|
24
|
Munsters CCBM, van Iwaarden A, van Weeren R, Sloet van Oldruitenborgh-Oosterbaan MM. Exercise testing in Warmblood sport horses under field conditions. Vet J 2014; 202:11-9. [PMID: 25172838 DOI: 10.1016/j.tvjl.2014.07.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Regular exercise testing in Warmblood sport horses may, as in racing, potentially help to characterise fitness indices in different disciplines and at various competition levels and assist in understanding when a horse is 'fit to compete'. In this review an overview is given of the current state of the art of exercise testing in the Olympic disciplines of eventing, show jumping and dressage, and areas for further development are defined. In event horses, a simple four-step incremental exercise test measuring heart rate (HR), lactate concentration (LA) and velocity (V) is most often used. In dressage and riding horses, a wide variety of exercise tests have been developed, including incremental exercise tests, indoor riding tests and lunging tests. In show jumping, the use of a five-step incremental exercise test and exercise tests evaluating technical skills and fatigue of the horse has been reported. The velocity at a plasma LA of 4 mmol/L (VLA4) and HR recovery during submaximal exercise intensity have been shown to be the best parameters in event horses for predicting performance and impending injuries. In riding horses, the fitness level of horses is also an important determinant of injuries. Implementation of regular exercise testing and monitoring of training sessions may have important added value in the assessment of performance ability and potential future injuries in Warmblood sport horses. However, there is an urgent need to standardise methodologies and outcome parameters in order to make results comparable.
Collapse
Affiliation(s)
- Carolien C B M Munsters
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, Utrecht NL 3584 CM, The Netherlands; Moxie Sport Analysis and Coaching, Raam 107, Uden 5403 TH, The Netherlands.
| | - Alexandra van Iwaarden
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, Utrecht NL 3584 CM, The Netherlands
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, Utrecht NL 3584 CM, The Netherlands
| | | |
Collapse
|
25
|
Prospection of genomic regions divergently selected in racing line of Quarter Horses in relation to cutting line. Animal 2014; 8:1754-64. [PMID: 25032727 DOI: 10.1017/s1751731114001761] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Selection of Quarter Horses for different purposes has led to the formation of lines, including racing and cutting horses. The objective of this study was to identify genomic regions divergently selected in racing line of Quarter Horses in relation to cutting line applying relative extended haplotype homozygosity (REHH) analysis, an extension of extended haplotype homozygosity (EHH) analysis, and the fixation index (F ST) statistic. A total of 188 horses of both sexes, born between 1985 and 2009 and registered at the Brazilian Association of Quarter Horse Breeders, including 120 of the racing line and 68 of the cutting line, were genotyped using single nucleotide polymorphism arrays. On the basis of 27 genomic regions identified as selection signatures by REHH and F ST statistics, functional annotations of genes were made in order to identify those that could have been important during formation of the racing line and that could be used subsequently for the development of selection tools. Genes involved in muscle growth (n=8), skeletal growth (n=10), muscle energy metabolism (n=15), cardiovascular system (n=14) and nervous system (n=23) were identified, including the FKTN, INSR, GYS1, CLCN1, MYLK, SYK, ANG, CNTFR and HTR2B.
Collapse
|
26
|
Hemmann K, Raekallio M, Vainio O, Juga J. Crib-biting and its heritability in Finnhorses. Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2014.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Thomas K, Hamilton N, North K, Houweling P. Sequence analysis of the equine ACTN3 gene in Australian horse breeds. Gene 2014; 538:88-93. [DOI: 10.1016/j.gene.2014.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/02/2013] [Accepted: 01/06/2014] [Indexed: 11/25/2022]
|
28
|
Young Friesian horses show familial aggregation in fitness response to a 7-week performance test. Vet J 2013; 198:193-9. [PMID: 23973160 DOI: 10.1016/j.tvjl.2013.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 07/08/2013] [Accepted: 07/19/2013] [Indexed: 12/18/2022]
Abstract
The aim of this study was to monitor the fitness level of young Friesian horses and to assess whether fitness data are predictive for final performance score and whether familial aggregation of response to training could be detected. Sixty-six young Friesian horses, the offspring of six different stallions (A, B, C, D, E and F), underwent a 7-week performance test. The horses were given a performance score for their ability for dressage (in weeks 5 and 7; 0-110 points) and were evaluated for fitness using standardised exercise tests (SETs) at the beginning (week 2, SET-I) and the end (week 6, SET-II) of the period. Heart rate (HR, beats/min) was measured in both SETs, and plasma lactate concentration (LA, mmol/L) was measured only in SET-II. Fitness of the horses improved moderately but significantly between SET-I and SET-II (P=0.015). There was a large heterogeneity in responsiveness to training; some horses were high responders, whereas others were non- or low responders. There was a familial aggregation of HR canter-1 response to training (P=0.039), while the HR of stallion C's offspring decreased significantly more than those of stallions A (P=0.09), D (P=0.013) and F (P=0.009). Horses that were reluctant to exercise did not differ in HR or LA concentrations compared to those that completed the SET, which may have been a sign of overreaching. HR had no predictive value for the performance score, but horses that did not reach the anaerobic threshold in SET-II scored significantly better (73.8 ± 5.6 points) than horses that did not (69.9 ± 5.9 points, P=0.025). The findings demonstrate for the first time in the horse a familial aggregation of HR response to training, as has been reported previously in humans. Familial aggregation suggests a genetic influence on the effect of training on fitness in horses. HR could not predict final performance score, but LA concentrations during SET-II were predictive.
Collapse
|
29
|
Hamilton NA, Tammen I, Raadsma HW. Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16. PLoS One 2013; 8:e55434. [PMID: 23408978 PMCID: PMC3568152 DOI: 10.1371/journal.pone.0055434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/23/2012] [Indexed: 11/18/2022] Open
Abstract
Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.
Collapse
Affiliation(s)
- Natasha A Hamilton
- ReproGen-Animal Bioscience Group, Faculty of Veterinary Science, University of Sydney, Camperdown, New South Wales, Australia.
| | | | | |
Collapse
|
30
|
Park KD, Park J, Ko J, Kim BC, Kim HS, Ahn K, Do KT, Choi H, Kim HM, Song S, Lee S, Jho S, Kong HS, Yang YM, Jhun BH, Kim C, Kim TH, Hwang S, Bhak J, Lee HK, Cho BW. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics 2012; 13:473. [PMID: 22971240 PMCID: PMC3472166 DOI: 10.1186/1471-2164-13-473] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Thoroughbred horses are the most expensive domestic animals, and their running ability and knowledge about their muscle-related diseases are important in animal genetics. While the horse reference genome is available, there has been no large-scale functional annotation of the genome using expressed genes derived from transcriptomes. RESULTS We present a large-scale analysis of whole transcriptome data. We sequenced the whole mRNA from the blood and muscle tissues of six thoroughbred horses before and after exercise. By comparing current genome annotations, we identified 32,361 unigene clusters spanning 51.83 Mb that contained 11,933 (36.87%) annotated genes. More than 60% (20,428) of the unigene clusters did not match any current equine gene model. We also identified 189,973 single nucleotide variations (SNVs) from the sequences aligned against the horse reference genome. Most SNVs (171,558 SNVs; 90.31%) were novel when compared with over 1.1 million equine SNPs from two SNP databases. Using differential expression analysis, we further identified a number of exercise-regulated genes: 62 up-regulated and 80 down-regulated genes in the blood, and 878 up-regulated and 285 down-regulated genes in the muscle. Six of 28 previously-known exercise-related genes were over-expressed in the muscle after exercise. Among the differentially expressed genes, there were 91 transcription factor-encoding genes, which included 56 functionally unknown transcription factor candidates that are probably associated with an early regulatory exercise mechanism. In addition, we found interesting RNA expression patterns where different alternative splicing forms of the same gene showed reversed expressions before and after exercising. CONCLUSION The first sequencing-based horse transcriptome data, extensive analyses results, deferentially expressed genes before and after exercise, and candidate genes that are related to the exercise are provided in this study.
Collapse
Affiliation(s)
- Kyung-Do Park
- Department of Biotechnology, Hankyong National University, Anseong, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hamilton NA, Raadsma HW. Racing towards the genes for speed. Vet J 2011; 190:5-6. [DOI: 10.1016/j.tvjl.2011.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/27/2010] [Accepted: 01/05/2011] [Indexed: 11/15/2022]
|