1
|
Gogoi D, Rao TN, Satheeshkumar S, Kutty G. Impact of improved air quality during complete and partial lockdowns on surface energetics and atmospheric boundary layer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179078. [PMID: 40101407 DOI: 10.1016/j.scitotenv.2025.179078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Long-term measurements of meteorological, radiation, and aerosol profiles at a rural location have been used to study (i) the differences in spatial and vertical variation of aerosols during complete and partial lockdowns (LDs), (ii) the impact of these LDs on surface energetics and atmospheric boundary layer (ABL) height, and (iii) underlying processes that explain the variations in the above-measured parameters during LDs from the climatology. Large reduction in aerosol optical depth (AOD) and lidar (aerosol) backscatter up to the ABL height during complete and partial LD periods relative to climatology is observed, indicating improved air-quality during these periods. The reduction, in fact, is more during the partial LD imposed in 2021 (46 % in AOD) than during the complete LD (40 %) in 2020 over most part of peninsular India, partly due to higher rainfall during LD period of 2021. The reduction in aerosols during the LD periods increased the shortwave radiation by 59.8 W m-2 and 76.9 W m-2 in 2020 and 2021, respectively, relative to climatology. Contrary to the expected increase in temperature and ABL height due to higher insolation, both decreased during the LD. On the other hand, the absolute humidity increased during the above period. To shed more light on the above observations, rainfall and turbulent heat fluxes during the above periods were examined. More rain events and higher rain amount are observed during the LD periods of both years, which increased the soil moisture and modified the portioning of net radiation into turbulent fluxes. It increased the latent heat flux considerably and thereby the absolute humidity. On the other hand, the sensible heat flux has decreased, which in turn reduced the temperature and also the ABL height. The present study highlights the complex interplay of natural and anthropogenic processes in modifying land-atmospheric interaction and ABL dynamics.
Collapse
Affiliation(s)
- Donali Gogoi
- National Atmospheric Research Laboratory, Gadanki 517112, India; Indian Institute of Space Science, Thiruvananthapuram 695547, India
| | - T Narayana Rao
- National Atmospheric Research Laboratory, Gadanki 517112, India.
| | - S Satheeshkumar
- National Atmospheric Research Laboratory, Gadanki 517112, India
| | - Govindan Kutty
- Indian Institute of Space Science, Thiruvananthapuram 695547, India
| |
Collapse
|
2
|
Saharan US, Kumar R, Singh S, Mandal TK, Sateesh M, Verma S, Srivastava A. Hotspot driven air pollution during crop residue burning season in the Indo-Gangetic Plain, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124013. [PMID: 38670421 DOI: 10.1016/j.envpol.2024.124013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/06/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Intensive crop residue burning (CRB) in northern India triggers severe air pollution episodes over the Indo-Gangetic Plain (IGP) each year during October and November. We have quantified the contribution of hotspot districts (HSDs) and total CRB to poor air quality over the IGP. Initially, we investigated the spatiotemporal distribution of CRB fire within the domain and pinpointed five HSD in each Punjab and Haryana. Furthermore, we have simulated air quality and quantified the impact of CRB using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), incorporating recent anthropogenic emissions (EDGAR v5) and biomass burning emissions (FINN v2.4) inventories, along with MOZART-MOSAIC chemistry. The key finding is that HSDs contributed ∼80% and ∼50% of the total fire counts in Haryana and Punjab, respectively. The model effectively captured observed PM₂.₅ concentrations, with a normalized mean bias (NMB) below 0.2 and R-squared (R2) exceeding 0.65 at the majority of validation sites. However, some discrepancies were observed at a few sites in Delhi, Punjab, Haryana, and West Bengal. The National Capital Region experienced the highest PM₂.₅ concentrations, followed by Punjab, Haryana, Uttar Pradesh, Bihar, and West Bengal. Moreover, HSDs were responsible for about 70% of the total increase in CRB-induced PM₂.₅ in the western, central, and eastern cities, and around 50% in the northern cities. By eliminating CRB emissions across the domain, we could potentially save approximately 18,000 lives annually. Policymakers, scientists, and institutions can leverage the framework to address air pollution at national and global scales by targeting source-specific hotspots. This approach, coupled with appropriate technological and financial solutions, can contribute to achieving climate change and sustainable development goals.
Collapse
Affiliation(s)
- Ummed Singh Saharan
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, 110012, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India
| | - Rajesh Kumar
- National Center for Atmospheric Research, Boulder, CO, USA
| | | | - Tuhin Kumar Mandal
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi, 110012, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201 002, Uttar Pradesh, India.
| | - M Sateesh
- Climate Change Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Shubha Verma
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | |
Collapse
|
3
|
Sharma SK, Mandal TK. Elemental Composition and Sources of Fine Particulate Matter (PM 2.5) in Delhi, India. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:60. [PMID: 36892662 PMCID: PMC9995727 DOI: 10.1007/s00128-023-03707-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/20/2023] [Indexed: 05/04/2023]
Abstract
In this study we have analysed the elemental composition of fine particulate matter (PM2.5) to examine the seasonal changes and sources of the elements in Delhi, India from January, 2017 to December, 2021. During the entire sampling period, 19 elements (Al, Fe, Ti, Cu, Zn, Cr, Ni, As, Mo, Cl, P, S, K, Pb, Na, Mg, Ca, Mn, and Br) of PM2.5 were identified by Wavelength Dispersive X-ray Fluorescence Spectrometer. The higher annual mean concentrations of S (2.29 µg m-3), Cl (2.26 µg m-3), K (2.05 µg m-3), Ca (0.96 µg m-3) and Fe (0.93 µg m-3) were recorded during post-monsoon season followed by Zn > Pb > Al > Na > Cu > Ti > As > Cr > Mo > Br > Mg > Ni > Mn > and P. The annual mean concentrations of elemental composition of PM2.5 accounted for 10% of PM2.5 (pooled estimate of 5 year). Principal Component Analysis (PCA) identified the five main sources [crustal/soil/road dust, combustion (BB + FFC), vehicular emissions (VE), industrial emissions (IE) and mixed source (Ti, Cr and Mo rich-source)] of PM2.5 in Delhi, India.
Collapse
Affiliation(s)
- S K Sharma
- CSIR-National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110 012, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - T K Mandal
- CSIR-National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110 012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
4
|
Sharma SK, Mandal TK, Banoo R, Rai A, Rani M. Long-Term Variation in Carbonaceous Components of PM 2.5 from 2012 to 2021 in Delhi. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:502-510. [PMID: 35322279 PMCID: PMC8942158 DOI: 10.1007/s00128-022-03506-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/07/2022] [Indexed: 05/20/2023]
Abstract
Carbonaceous species [organic carbon (OC), elemental carbon (EC), elemental matter (EM), primary organic carbon (POC), secondary organic carbon (SOC), total carbon (TC), and total carbonaceous matter (TCM)] of PM2.5 were analyzed to study the seasonal variability and long-term trend of carbonaceous aerosols (CAs) in megacity Delhi, India from January, 2012 to April, 2021. The average concentrations (± standard deviation) of PM2.5, OC, EC, TC, EM, TCM, POC and SOC were 127 ± 77, 15.7 ± 11.6, 7.4 ± 5.1, 23.1 ± 16.5, 8.2 ± 5.6, 33.3 ± 23.9, 9.3 ± 6.3 and 6.5 ± 5.3 µg m-3, respectively during the sampling period (10-year average). The average CAs accounted for 26% of PM2.5 concentration during the entire sampling period. In addition, the seasonal variations in PM2.5, OC, EC, POC, SOC, and TCM levels were recorded with maxima in post-monsoon and minima in monsoon seasons. The linear relationship of OC and EC, OC/EC and EC/TC ratios suggested that the vehicular emissions (VE), fossil fuel combustion (FFC) and biomass burning (BB) are the major sources of CAs at megacity Delhi, India.
Collapse
Affiliation(s)
- S K Sharma
- CSIR-National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110 012, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - T K Mandal
- CSIR-National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110 012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - R Banoo
- CSIR-National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110 012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - A Rai
- CSIR-National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110 012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - M Rani
- CSIR-National Physical Laboratory, Dr. K S Krishnan Road, New Delhi, 110 012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
5
|
Ziemke JR, Kramarova NA, Frith SM, Huang L, Haffner DP, Wargan K, Lamsal LN, Labow GJ, McPeters RD, Bhartia PK. NASA Satellite Measurements Show Global-Scale Reductions in Free Tropospheric Ozone in 2020 and Again in 2021 During COVID-19. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL098712. [PMID: 36247521 PMCID: PMC9538536 DOI: 10.1029/2022gl098712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/01/2022] [Accepted: 07/24/2022] [Indexed: 06/16/2023]
Abstract
NASA satellite measurements show that ozone reductions throughout the Northern Hemisphere (NH) free troposphere reported for spring-summer 2020 during the COronaVIrus Disease 2019 pandemic have occurred again in spring-summer 2021. The satellite measurements show that tropospheric column ozone (TCO) (mostly representative of the free troposphere) for 20°N-60°N during spring-summer for both 2020 and 2021 averaged ∼3 Dobson Units (DU) (or ∼7%-8%) below normal. These ozone reductions in 2020 and 2021 were the lowest in the 2005-2021 record. We also include satellite measurements of tropospheric NO2 that exhibit reductions of ∼10%-20% in the NH in early spring-to-summer 2020 and 2021, suggesting that reduced pollution was the main cause for the low anomalies in NH TCO in 2020 and 2021. Reductions of TCO ∼2 DU (7%) are also measured in the Southern Hemisphere in austral summer but are not associated with reduced NO2.
Collapse
Affiliation(s)
- Jerry R. Ziemke
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Goddard Earth Sciences Technology and Research (GESTAR)/Morgan State UniversityBaltimoreMDUSA
| | | | - Stacey M. Frith
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Science Systems and Applications Inc. (SSAI)LanhamMDUSA
| | - Liang‐Kang Huang
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Science Systems and Applications Inc. (SSAI)LanhamMDUSA
| | - David P. Haffner
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Science Systems and Applications Inc. (SSAI)LanhamMDUSA
| | - Krzysztof Wargan
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Science Systems and Applications Inc. (SSAI)LanhamMDUSA
| | - Lok N. Lamsal
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- University of Maryland Baltimore CountyBaltimoreMDUSA
| | - Gordon J. Labow
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Science Systems and Applications Inc. (SSAI)LanhamMDUSA
| | | | - Pawan K. Bhartia
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Emeritus, NASA Goddard Space Flight CenterGreenbeltMDUSA
| |
Collapse
|