1
|
Egerton R, Hayashida M, Malac M. Transmission electron microscopy of thick polymer and biological specimens. Micron 2023; 169:103449. [PMID: 37001476 DOI: 10.1016/j.micron.2023.103449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
We explore the properties of elastic and inelastic scattering in a thick organic specimen, together with the mechanisms that provide contrast in a transmission electron microscope (TEM) and scanning-transmission electron microscope (STEM). Experimental data recorded from amorphous carbon are used to predict the bright-field image intensity, mass-thickness contrast and dose-limited resolution as a function of thickness, objective-aperture size, and primary-electron energy E0. Combining this information with estimates of chromatic aberration, objective-aperture diffraction and beam broadening in the specimen, we calculate the achievable TEM and STEM resolution to be around 4 nm at E0 = 300 keV (or below 3 nm at MeV energies) for a 10 µm-diameter objective aperture and 1 - 2 µm thickness of hydrated biological tissue. The 3 MeV resolution for a 10-μm tissue sample is probably closer to 10 nm. We also comment on the error involved in quadrature addition of resolution factors, when one or more of the point-spread functions are non-Gaussian.
Collapse
|
2
|
Gibson W, Patterson JP. Liquid Phase Electron Microscopy Provides Opportunities in Polymer Synthesis and Manufacturing. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wyeth Gibson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
3
|
Nishida T, Yoshimura R, Nishi R, Imoto Y, Endo Y. Application of ultra-high voltage electron microscope tomography to 3D imaging of microtubules in neurites of cultured PC12 cells. J Microsc 2020; 278:42-48. [PMID: 32133640 DOI: 10.1111/jmi.12885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022]
Abstract
Electron tomography methods using the conventional transmission electron microscope have been widely used to investigate the three-dimensional distribution patterns of various cellular structures including microtubules in neurites. Because the penetrating power of electrons depends on the section thickness and accelerating voltage, conventional TEM, having acceleration voltages up to 200 kV, is limited to sample thicknesses of 0.2 µm or less. In this paper, we show that the ultra-high voltage electron microscope (UHVEM), employing acceleration voltages of higher than 1000 kV (1 MV), allowed distinct reconstruction of the three-dimensional array of microtubules in a 0.7-µm-thick neurite section. The detailed structure of microtubules was more clearly reconstructed from a 0.7-µm-thick section at an accelerating voltage of 1 MV compared with a 1.0 µm section at 2 MV. Furthermore, the entire distribution of each microtubule in a neurite could be reconstructed from serial-section UHVEM tomography. Application of optimised UHVEM tomography will provide new insights, bridging the gap between the structure and function of widely-distributed cellular organelles such as microtubules for neurite outgrowth. LAY DESCRIPTION: An optimal 3D visualisation of microtubule cytoskeleton using ultra-high voltage electron microscopy tomography The ultra-high voltage electron microscope (UHVEM) is able to visualise a micrometre-thick specimen at nanoscale spatial resolution because of the high-energy electron beam penetrating such a specimen. In this study, we determined the optimal conditions necessary for microtubule cytoskeleton imaging within 0.7-µm-thick section using a combination with UHVEM and electron tomography method. Our approach provides excellent 3D information about the complex arrangement of the individual microtubule filaments that make up the microtubule network.
Collapse
Affiliation(s)
- T Nishida
- Japan Textile Products Quality and Technology Center, Kobe, Hyogo, Japan
| | - R Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - R Nishi
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka, Japan
| | - Y Imoto
- Japan Textile Products Quality and Technology Center, Kobe, Hyogo, Japan
| | - Y Endo
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
4
|
Peet MJ, Henderson R, Russo CJ. The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules. Ultramicroscopy 2019; 203:125-131. [PMID: 30773415 PMCID: PMC6495108 DOI: 10.1016/j.ultramic.2019.02.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 11/19/2022]
Abstract
Carbon elastic and inelastic electron scattering cross sections are measured vs. energy. Elastic scattering is compared to energy deposition and radiation damage. An optimal energy for cryoEM of a given biological specimen thickness is determined.
We have measured the dependence on electron energy of elastic and inelastic scattering cross-sections from carbon, over the energy range that includes 100 keV to 300 keV. We also compared quantitatively the radiation damage to bacteriorhodopsin and paraffin (C44H90) at 100 keV and 300 keV by observing the fading of the diffraction spots from two-dimensional crystals as a function of electron fluence. The elastic cross-section is 2.01 - fold greater at 100 keV than at 300 keV, whereas the radiation damage increased by only 1.57. This implies that the amount of useful information from diffraction patterns or images of most biological structures should be 25% greater using 100 keV rather than 300 keV electrons. Using these measurements, we calculate the energy dependence of the available information per unit damage for a specimen of a particular thickness, which we call the “information coefficient.” This allows us to determine the optimal energy for imaging a biological specimen of a given thickness. We find that for most single particle cryoEM specimens, 100 keV provides not only the highest potential for information per unit damage, but would also simplify the instrument while retaining the potential to reach high resolution with a minimum of data. These measurements will help guide the development and use of electron cryomicroscopes for biology.
Collapse
Affiliation(s)
- Mathew J Peet
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Richard Henderson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
5
|
Baba M, Tomonaga S, Suzuki M, Gen M, Takeda E, Matsuura A, Kamada Y, Baba N. A nuclear membrane-derived structure associated with Atg8 is involved in the sequestration of selective cargo, the Cvt complex, during autophagosome formation in yeast. Autophagy 2018; 15:423-437. [PMID: 30238844 DOI: 10.1080/15548627.2018.1525475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macroautophagy (hereafter autophagy) is a conserved intracellular degradation mechanism required for cell survival. A double-membrane structure, the phagophore, is generated to sequester cytosolic cargos destined for degradation in the vacuole. The mechanism involved in the biogenesis of the phagophore is still an open question. We focused on 4 autophagy-related (Atg) proteins (Atg2, Atg9, Atg14, and Atg18), which are involved in the formation of the phagophore in order to gain a more complete understanding of the membrane dynamics that occur during formation of the autophagosome. The corresponding mutants, while defective in autophagy, nonetheless generate the membrane-bound form of Atg8, allowing us to use this protein as a marker for the nascent autophagosome precursor membrane. Using electron microscopy (EM), we discovered in these atg mutants a novel single-membrane structure (~120 to 150 nm in size). Electron tomography revealed that this structure originates from a part of the nuclear membrane, and we have named it the alphasome. Our data suggest that the alphasome is associated with Atg8, and sequesters selective cargo, the Cvt complex, during autophagy. Abbreviations: 3D: three-dimensional; AB: autophagic body; AP: autophagosome; Atg: autophagy-related; Cvt: cytoplasm-to-vacuole targeting; EM: electron microscopy; IEM: immunoelectron microscopy; L: lipid droplet; N: nucleus; NM: nuclear membrane; PAS: phagophore assembly site; PE: phosphatidylethanolamine; prApe1: precursor aminopeptidase I; rER: rough endoplasmic reticulum; TEM: transmission electron microscopy; V: vacuole; VLP: virus-like particle.
Collapse
Affiliation(s)
- Misuzu Baba
- a Research Institute for Science and Technology , Kogakuin University , Hachioji, Tokyo , Japan
| | - Sachihiko Tomonaga
- b Major of Informatics , Graduate School, Kogakuin University , Hachioji, Tokyo , Japan
| | - Masato Suzuki
- b Major of Informatics , Graduate School, Kogakuin University , Hachioji, Tokyo , Japan
| | - Maeda Gen
- b Major of Informatics , Graduate School, Kogakuin University , Hachioji, Tokyo , Japan
| | - Eigo Takeda
- c Department of Nanobiology , Graduate School of Advanced Integration Science, Chiba University , Inage-ku, Chiba , Japan
| | - Akira Matsuura
- c Department of Nanobiology , Graduate School of Advanced Integration Science, Chiba University , Inage-ku, Chiba , Japan.,d Department of Biology , Graduate School of Science, Chiba University , Inage-ku, Chiba , Japan
| | - Yoshiaki Kamada
- e Laboratory of Biological Diversity , National Institute for Basic Biology, and School of Life Science, Graduate School of Advanced Studies , Myodaiji Okazaki, Aichi , Japan
| | - Norio Baba
- a Research Institute for Science and Technology , Kogakuin University , Hachioji, Tokyo , Japan.,b Major of Informatics , Graduate School, Kogakuin University , Hachioji, Tokyo , Japan
| |
Collapse
|
6
|
Cao M, Nishi R, Wang F. Automatic system for electron tomography data collection in the ultra-high voltage electron microscope. Micron 2017; 103:29-33. [PMID: 28946024 DOI: 10.1016/j.micron.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
In this study, we report an automatic system for collection of tilt series for electron tomography based on the ultra-HVEM in Osaka University. By remotely controlling the microscope and reading the observation image, the system can track the field of view and do focus in each tilt angle. The automatic tracking is carried out with an image matching technique based on normalized correlation coefficient. Auto focus is realized by the optimization of image sharpness. A toolkit that can expand the field of view with technique of image stitching is also developed. The system can automatically collect the tilt series with much smaller time consumption.
Collapse
Affiliation(s)
- Meng Cao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Research Centre for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | - Ryuji Nishi
- Research Centre for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Fang Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
7
|
Hayashida M, Malac M. Practical electron tomography guide: Recent progress and future opportunities. Micron 2016; 91:49-74. [PMID: 27728842 DOI: 10.1016/j.micron.2016.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|
8
|
Hosaki-Takamiya R, Hashimoto M, Imai Y, Nishida T, Yamada N, Mori H, Tanaka T, Kawanabe N, Yamashiro T, Kamioka H. Collagen production of osteoblasts revealed by ultra-high voltage electron microscopy. J Bone Miner Metab 2016. [PMID: 26224362 DOI: 10.1007/s00774-015-0692-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the bone, collagen fibrils form a lamellar structure called the "twisted plywood-like model." Because of this unique structure, bone can withstand various mechanical stresses. However, the formation of this structure has not been elucidated because of the difficulty of observing the collagen fibril production of the osteoblasts via currently available methods. This is because the formation occurs in the very limited space between the osteoblast layer and bone matrix. In this study, we used ultra-high-voltage electron microscopy (UHVEM) to observe collagen fibril production three-dimensionally. UHVEM has 3-MV acceleration voltage and enables us to use thicker sections. We observed collagen fibrils that were beneath the cell membrane of osteoblasts elongated to the outside of the cell. We also observed that osteoblasts produced collagen fibrils with polarity. By using AVIZO software, we observed collagen fibrils produced by osteoblasts along the contour of the osteoblasts toward the bone matrix area. Immediately after being released from the cell, the fibrils run randomly and sparsely. But as they recede from the osteoblast, the fibrils began to run parallel to the definite direction and became thick, and we observed a periodical stripe at that area. Furthermore, we also observed membrane structures wrapped around filamentous structures inside the osteoblasts. The filamentous structures had densities similar to the collagen fibrils and a columnar form and diameter. Our results suggested that collagen fibrils run parallel and thickly, which may be related to the lateral movement of the osteoblasts. UHVEM is a powerful tool for observing collagen fibril production.
Collapse
Affiliation(s)
- Rumiko Hosaki-Takamiya
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8525, Japan
| | - Mana Hashimoto
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8525, Japan
| | - Yuichi Imai
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8525, Japan
| | - Tomoki Nishida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Naoko Yamada
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Hirotaro Mori
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tomoyo Tanaka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8525, Japan
| | - Noriaki Kawanabe
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8525, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, Okayama, 700-8525, Japan.
| |
Collapse
|
9
|
Wang F, Sun Y, Cao M, Nishi R. The influence of structure depth on image blurring of micrometres-thick specimens in MeV transmission electron imaging. Micron 2016; 83:54-61. [PMID: 26897587 DOI: 10.1016/j.micron.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/18/2022]
Abstract
This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Ying Sun
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Meng Cao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| | - Ryuji Nishi
- Research Center for Ultrahigh Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
10
|
A Development of Nucleic Chromatin Measurements as a New Prognostic Marker for Severe Chronic Heart Failure. PLoS One 2016; 11:e0148209. [PMID: 26845691 PMCID: PMC4742272 DOI: 10.1371/journal.pone.0148209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Background Accurate prediction of both mortality and morbidity is of significant importance, but it is challenging in patients with severe heart failure. It is especially difficult to detect the optimal time for implanting mechanical circulatory support devices in such patients. We aimed to analyze the morphometric ultrastructure of nuclear chromatin in cardiomyocytes by developing an original clinical histopathological method. Using this method, we developed a biomarker to predict poor outcome in patients with dilated cardiomyopathy (DCM). Methods and Results As a part of their diagnostic evaluation, 171 patients underwent endomyocardial biopsy (EMB). Of these, 63 patients diagnosed with DCM were included in this study. We used electron microscopic imaging of cardiomyocyte nuclei and an automated image analysis software program to assess whether it was possible to detect discontinuity of the nuclear periphery. Twelve months after EMB, all patients with a discontinuous nuclear periphery (Group A, n = 11) died from heart failure or underwent left ventricular assist device (VAD) implantation. In contrast, in patients with a continuous nuclear periphery (Group N, n = 52) only 7 patients (13%) underwent VAD implantation and there were no deaths (p<0.01). We then evaluated chromatin particle density (Nuc-CS) and chromatin thickness in the nuclear periphery (Per-CS) in Group N patients; these new parameters were able to identify patients with poor prognosis. Conclusions We developed novel morphometric methods based on cardiomyocyte nuclear chromatin that may provide pivotal information for early prediction of poor prognosis in patients with DCM.
Collapse
|
11
|
Oral biosciences: The annual review 2015. J Oral Biosci 2016. [DOI: 10.1016/j.job.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
|
13
|
Nishi R, Cao M, Kanaji A, Nishida T, Yoshida K, Isakozawa S. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope. Microscopy (Oxf) 2014; 63 Suppl 1:i25. [PMID: 25359822 DOI: 10.1093/jmicro/dfu066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ultra-high voltage electron microscope (UHVEM) H-3000 with the world highest acceleration voltage of 3 MV can observe remarkable three dimensional microstructures of microns-thick samples[1]. Acquiring a tilt series of electron tomography is laborious work and thus an automatic technique is highly desired. We proposed the Auto-Focus system using image Sharpness (AFS)[2,3] for UHVEM tomography tilt series acquisition. In the method, five images with different defocus values are firstly acquired and the image sharpness are calculated. The sharpness are then fitted to a quasi-Gaussian function to decide the best focus value[3]. Defocused images acquired by the slow scan CCD (SS-CCD) camera (Hitachi F486BK) are of high quality but one minute is taken for acquisition of five defocused images.In this study, we introduce a high-definition video camera (HD video camera; Hamamatsu Photonics K. K. C9721S) for fast acquisition of images[4]. It is an analog camera but the camera image is captured by a PC and the effective image resolution is 1280×1023 pixels. This resolution is lower than that of the SS-CCD camera of 4096×4096 pixels. However, the HD video camera captures one image for only 1/30 second. In exchange for the faster acquisition the S/N of images are low. To improve the S/N, 22 captured frames are integrated so that each image sharpness is enough to become lower fitting error. As countermeasure against low resolution, we selected a large defocus step, which is typically five times of the manual defocus step, to discriminate different defocused images.By using HD video camera for autofocus process, the time consumption for each autofocus procedure was reduced to about six seconds. It took one second for correction of an image position and the total correction time was seven seconds, which was shorter by one order than that using SS-CCD camera. When we used SS-CCD camera for final image capture, it took 30 seconds to record one tilt image. We can obtain a tilt series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan.
Collapse
Affiliation(s)
- Ryuji Nishi
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 MIhogaoka, Ibaraki, Osaka, Japan
| | - Meng Cao
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 MIhogaoka, Ibaraki, Osaka, Japan Department of Electronic Science & Technology, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, China
| | - Atsuko Kanaji
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 MIhogaoka, Ibaraki, Osaka, Japan
| | - Tomoki Nishida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 MIhogaoka, Ibaraki, Osaka, Japan
| | - Kiyokazu Yoshida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 MIhogaoka, Ibaraki, Osaka, Japan
| | - Shigeto Isakozawa
- Advanced Microscope Systems Design Dept., Hitachi High-Technologies Corporation, 882, Ichige, Hitachinaka, Ibaraki, Japan
| |
Collapse
|
14
|
Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography. Ultramicroscopy 2014; 146:39-45. [DOI: 10.1016/j.ultramic.2014.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/07/2014] [Accepted: 05/24/2014] [Indexed: 11/19/2022]
|
15
|
Tomonaga S, Baba M, Baba N. Alternative automatic alignment method for specimen tilt-series images based on back-projected volume data cross-correlations. Microscopy (Oxf) 2014; 63:279-94. [PMID: 24815505 DOI: 10.1093/jmicro/dfu014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We devised a new automatic image alignment method for a specimen tilt series; this method is based on the volume data cross-correlation among 3-D cross-sections reconstructed from different sets of projection images (including a single image) for tilt-series alignment or tilt-axis search purposes. This method requires neither markers nor image feature points traceable through the tilt series, and it was examined through simulations and applied to biological thin sections. The method automatically aligned tilt series centred at the correctly detected tilt axis with a precision sufficient for practical applications.
Collapse
Affiliation(s)
- Sachihiko Tomonaga
- Major of Informatics, Graduate School, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
| | - Misuzu Baba
- Research Institute for Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
| | - Norio Baba
- Major of Informatics, Graduate School, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
| |
Collapse
|
16
|
Morphological Diversity of Mitochondria in Cultured Astrocyte, HeLa, COS7 Cells under High Voltage Electron Microscopy. Appl Microsc 2013. [DOI: 10.9729/am.2013.43.3.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Oshima Y, Nishi R, Asayama K, Arakawa K, Yoshida K, Sakata T, Taguchi E, Yasuda H. Lorentzian-like image blur of gold nanoparticles on thick amorphous silicon films in ultra-high-voltage transmission electron microscopy. Microscopy (Oxf) 2013; 62:521-31. [PMID: 23677968 DOI: 10.1093/jmicro/dft031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yoshifumi Oshima
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nishi R, Moriyama Y, Yoshida K, Kajimura N, Mogaki H, Ozawa M, Isakozawa S. An autofocus method using quasi-Gaussian fitting of image sharpness in ultra-high-voltage electron microscopy. Microscopy (Oxf) 2013; 62:515-9. [DOI: 10.1093/jmicro/dft030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
Cao M, Wang F, Qiao ZW, Zhang HB, Nishi R. Electron tomographic resolution of microns-thick specimens in the ultrahigh voltage electron microscope. Micron 2013; 49:71-4. [PMID: 23528481 DOI: 10.1016/j.micron.2013.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 11/29/2022]
Abstract
In this study, we determine the electron tomography (ET) resolution for microns-thick specimens by experiment in the ultra-high voltage electron microscope. A tilt series of projection images of a tilted 8μm thick epoxy-resin film are first acquired. Tomographic reconstructions are then calculated and the resolution is evaluated with the Fourier shell correlation method. The ET resolution of 32nm is achieved under the condition of 2MV accelerating voltage. We also demonstrate that some high tilt angle projections may be little useful for improving the final ET resolution because of the corresponding poor image qualities. These results are helpful to understand the possibility and limitation of ET applications in microns-thick specimens.
Collapse
Affiliation(s)
- Meng Cao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Kamioka H, Kameo Y, Imai Y, Bakker AD, Bacabac RG, Yamada N, Takaoka A, Yamashiro T, Adachi T, Klein-Nulend J. Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model. Integr Biol (Camb) 2013; 4:1198-206. [PMID: 22858651 DOI: 10.1039/c2ib20092a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteocytes play a pivotal role in the regulation of skeletal mass. Osteocyte processes are thought to sense the flow of interstitial fluid that is driven through the osteocyte canaliculi by mechanical stimuli placed upon bone, but how this flow elicits a cellular response is virtually unknown. Modern theoretical models assume that osteocyte canaliculi contain ultrastructural features that amplify the fluid flow-derived mechanical signal. Unfortunately the calcified bone matrix has considerably hampered studies on the osteocyte process within its canaliculus. Using one of the few ultra high voltage electron microscopes (UHVEM) available worldwide, we applied UHVEM tomography at 2 MeV to reconstruct unique three-dimensional images of osteocyte canaliculi in 1 μm sections of human bone. A realistic three-dimensional image-based model of a single canaliculus was constructed, and the fluid dynamics of a Newtonian fluid flow within the canaliculus was analyzed. We created virtual 2.2 nm thick sections through a canaliculus and found that traditional TEM techniques create a false impression that osteocyte processes are directly attached to the canalicular wall. The canalicular wall had a highly irregular surface and contained protruding axisymmetric structures similar in size and shape to collagen fibrils. We also found that the microscopic surface roughness of the canalicular wall strongly influenced the fluid flow profiles, whereby highly inhomogeneous flow patterns emerged. These inhomogeneous flow patterns may induce deformation of cytoskeletal elements in the osteocyte process, thereby amplifying mechanical signals. Based on these observations, new and realistic models can be developed that will significantly enhance our understanding of the process of mechanotransduction in bone.
Collapse
Affiliation(s)
- Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Presynaptic dystroglycan-pikachurin complex regulates the proper synaptic connection between retinal photoreceptor and bipolar cells. J Neurosci 2012; 32:6126-37. [PMID: 22553019 DOI: 10.1523/jneurosci.0322-12.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dystroglycan (DG) is a key component of the dystrophin-glycoprotein complex (DGC) at the neuromuscular junction postsynapse. In the mouse retina, the DGC is localized at the presynapse of photoreceptor cells, however, the function of presynaptic DGC is poorly understood. Here, we developed and analyzed retinal photoreceptor-specific DG conditional knock-out (DG CKO) mice. We found that the DG CKO retina showed a reduced amplitude and a prolonged implicit time of the ERG b-wave. Electron microscopic analysis revealed that bipolar dendrite invagination into the photoreceptor terminus is perturbed in the DG CKO retina. In the DG CKO retina, pikachurin, a DG ligand in the retina, is markedly decreased at photoreceptor synapses. Interestingly, in the Pikachurin(-/-) retina, the DG signal at the ribbon synaptic terminus was severely reduced, suggesting that pikachurin is required for the presynaptic accumulation of DG at the photoreceptor synaptic terminus, and conversely DG is required for pikachurin accumulation. Furthermore, we found that overexpression of pikachurin induces formation and clustering of a DG-pikachurin complex on the cell surface. The Laminin G repeats of pikachurin, which are critical for its oligomerization and interaction with DG, were essential for the clustering of the DG-pikachurin complex as well. These results suggest that oligomerization of pikachurin and its interaction with DG causes DG assembly on the synapse surface of the photoreceptor synaptic terminals. Our results reveal that the presynaptic interaction of pikachurin with DG at photoreceptor terminals is essential for both the formation of proper photoreceptor ribbon synaptic structures and normal retinal electrophysiology.
Collapse
|
22
|
Kim HW, Oh SH, Kim JW, Cho B, Park IS, Sun W, Rhyu IJ. Efficient and accurate analysis of mitochondrial morphology in a whole cell with a high-voltage electron microscopy. Microscopy (Oxf) 2012; 61:127-131. [PMID: 22345710 DOI: 10.1093/jmicro/dfs001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Mitochondria in all eukaryotes are essential organelles responsible for adenosine triphosphate synthesis, calcium homeostasis and steroidogenesis. Because the structure and distribution of mitochondria are highly diverse depending on their function and cellular conditions, it is important to develop a rapid and accurate method to assess their morphology. In this study, we visualize whole mitochondria in cultured cells using high-voltage electron microscopy (HVEM). Compared with conventional transmission electron microscopic approaches, the present method does not require thin sectioning and thus requires less time for image acquisition and processing. Furthermore, compared with fluorescence-based light microscopic approaches, our method provides more accurate size information. Thus, we propose that HVEM is a useful tool for rapid and accurate analysis of mitochondrial morphology and distribution in a cell.
Collapse
Affiliation(s)
- Hyun-Wook Kim
- Department of Anatomy, College of Medicine, Korea University, Anam-Dong 5 Ga, Seongbuk-gu, Seoul 136-705, South Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell 2012; 148:189-200. [PMID: 22265411 DOI: 10.1016/j.cell.2011.10.052] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/15/2011] [Accepted: 10/31/2011] [Indexed: 01/09/2023]
Abstract
Coordinated beating of cilia in the trachea generates a directional flow of mucus required to clear the airways. Each cilium originates from a barrel-shaped basal body, from the side of which protrudes a structure known as the basal foot. We generated mice in which exons 6 and 7 of Odf2, encoding a basal body and centrosome-associated protein Odf2/cenexin, are disrupted. Although Odf2(ΔEx6,7/ΔEx6,7) mice form cilia, ciliary beating is uncoordinated, and the mice display a coughing/sneezing phenotype. Whereas residual expression of the C-terminal region of Odf2 in these mice is sufficient for ciliogenesis, the resulting basal bodies lack basal feet. Loss of basal feet in ciliated epithelia disrupted the polarized organization of apical microtubule lattice without affecting planar cell polarity. The requirement for Odf2 in basal foot formation, therefore, reveals a crucial role of this structure in the polarized alignment of basal bodies and coordinated ciliary beating.
Collapse
|
24
|
Schneider P, Meier M, Wepf R, Müller R. Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network. Bone 2011; 49:304-11. [PMID: 21514408 DOI: 10.1016/j.bone.2011.04.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/15/2011] [Accepted: 04/06/2011] [Indexed: 11/18/2022]
Abstract
Up to now, a quantitative three-dimensional (3D) assessment of the lacuno-canalicular network (LCN) within bone has not been achieved in a comprehensive way and the LCN has mostly been investigated using two-dimensional imaging methods only. First attempts for the 3D assessment of the osteocytes and their cell processes have been reported using different imaging techniques. Nevertheless, various experimental limitations allowed for assessment of isolated or incompletely interconnected osteocytes only. On the other hand, serial focused ion beam/scanning electron microscopy (FIB/SEM) currently seems to be a promising imaging method for quantitative 3D assessment of the LCN. However, combined 3D visualization and quantification of the LCN using serial FIB/SEM imaging has not been reported so far. The aim of this study was to provide a proof of concept that serial FIB/SEM meets all requirements for quantitative 3D imaging of the LCN. To this end, we developed a new bone sample preparation protocol for serial FIB/SEM imaging providing a resolution on the order of 30nm. This technique was successfully applied to the mid-diaphysis of a mouse femur. Moreover, we devised and applied novel measures for subsequent quantitative 3D morphometry of the LCN. Briefly, serial FIB/SEM was shown to be an appropriate technique to quantify the morphology of the LCN truly in 3D. This will allow investigating bone matrix changes on an ultrastructural level, which result from aging, disease, and treatment.
Collapse
|
25
|
Wang F, Cao M, Zhang HB, Nishi R, Takaoka A. Note: direct measurement of the point-to-point resolution for microns-thick specimens in the ultrahigh-voltage electron microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:066101. [PMID: 21721736 DOI: 10.1063/1.3597672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report on a direct measurement method and results of the point-to-point resolution for microns-thick amorphous specimens in the ultrahigh-voltage electron microscope (ultra-HVEM). We first obtain the ultra-HVEM images of nanometer gold particles with different sizes on the top surfaces of the thick epoxy-resin specimens. Based on the Rayleigh criterion, the point-to-point resolution is then determined as the minimum distance between centers of two resolvable tangent gold particles. Some values of resolution are accordingly acquired for the specimens with different thicknesses at the accelerating voltage of 2 MV, for example, 18.5 nm and 28.4 nm for the 5 μm and 8 μm thick epoxy-resin specimens, respectively. The presented method and results provide a reliable and useful approach to quantifying and comparing the achievable spatial resolution for the thick specimens imaged in the mode of transmission electron including the scanning transmission electron microscope.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
ITO T, MATSUWAKI U, OTSUKA Y, HATTA M, HAYAKAWA K, MATSUTANI K, TADA T, JINNAI H. Three-Dimensional Spatial Distributions of Pt Catalyst Nanoparticles on Carbon Substrates in Polymer Electrolyte Fuel Cells. ELECTROCHEMISTRY 2011. [DOI: 10.5796/electrochemistry.79.374] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Application of Bioimaging to Osteocyte Biology. Clin Rev Bone Miner Metab 2010. [DOI: 10.1007/s12018-010-9077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Wang F, Zhang HB, Cao M, Nishi R, Takaoka A. Image quality of microns-thick specimens in the ultra-high voltage electron microscope. Micron 2010; 41:490-7. [DOI: 10.1016/j.micron.2010.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 11/25/2022]
|
29
|
Abstract
We have analysed the formation of streak artefacts in the reconstruction based on the filtered back projection algorithm in electron tomography (ET) and accordingly applied an adaptive interpolation technique to artefact reduction. In the adaptive interpolation to recover the missing information, the edge positions in a projection curve were tracked to reduce the interpolation error. A simulation was used to demonstrate the effectiveness of the artefact reduction. Furthermore, image reconstruction of integrated circuit specimens in the ET experiments with the ultra-high voltage electron microscope show that the strong streak artefacts can be reduced effectively by our artefact reduction technique.
Collapse
Affiliation(s)
- M Cao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Wang F, Zhang HB, Cao M, Nishi R, Takaoka A. Multiple scattering effects of MeV electrons in very thick amorphous specimens. Ultramicroscopy 2010; 110:259-68. [DOI: 10.1016/j.ultramic.2009.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 12/08/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
|
31
|
Kamioka H, Murshid SA, Ishihara Y, Kajimura N, Hasegawa T, Ando R, Sugawara Y, Yamashiro T, Takaoka A, Takano-Yamamoto T. A method for observing silver-stained osteocytes in situ in 3-microm sections using ultra-high voltage electron microscopy tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2009; 15:377-383. [PMID: 19709463 DOI: 10.1017/s1431927609990420] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Osteocytes are surrounded by hard bone matrix, and it has not been possible previously to directly observe the in situ architecture of osteocyte morphology in bone. Electron microscope tomography, however, is a technique that has the unique potential to provide three-dimensional (3D) visualization of cellular ultrastructure. This approach is based on reconstruction of 3D volumes from a tilt series of electron micrographs of cells, and resolution at the nanometer level has been achieved. We applied electron microscope tomography to thick sections of silver-stained osteocytes in bone using a Hitachi H-3000 ultra-high voltage electron microscope equipped with a 360 degrees tilt specimen holder, at an accelerating voltage of 2 MeV. Osteocytes with numerous processes and branches were clearly seen in the serial tilt series acquired from 3-microm-thick sections. Reconstruction of young osteocytes showed the 3D topographic morphology of the cell body and processes at high resolution. This morphological data on osteocytes should provide useful information to those who study osteocyte physiology and the several models used to explain their mechanosensory properties.
Collapse
Affiliation(s)
- Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The membrane dynamics of autophagy in yeast were resolved mostly by using various electron microscopy (EM) methods combined with the cryofixation technique. In addition, the similarity of the dynamic process between autophagy and the cytoplasm-to-vacuole targeting (Cvt) pathway was first clarified through EM studies. In this chapter the application of several EM methods to detect the dynamic events involving cellular structures are described, and examples are provided of the typical images obtained in autophagy and the Cvt pathway.
Collapse
|