1
|
Wu D, Zhou J, Shen Y, Lupo C, Sun Q, Jin T, Sturla SJ, Liang H, Mezzenga R. Highly Adhesive Amyloid-Polyphenol Hydrogels for Cell Scaffolding. Biomacromolecules 2023; 24:471-480. [PMID: 36548941 DOI: 10.1021/acs.biomac.2c01311] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rationally designing microstructures of soft hydrogels for specific biological functionalization is a challenge in tissue engineering applications. A novel and affordable soft hydrogel scaffold is constructed here by incorporating polyphenol modules with lysozyme amyloid fibrils (Lys AFs) via non-covalent self-assembly. Embedded polyphenols not only trigger hydrogel formation but also determine gel behavior by regulating the polyphenol gallol density and complex ratio. The feasibility of using a polyphenol-Lys AF hydrogel as a biocompatible cell scaffold, which is conducive to cell proliferation and spreading, is also shown. Notably, introducing polyphenols imparts the corresponding hydrogels a superior cell bioadhesive efficiency without further biofunctional decoration and thus may be successfully employed in both healthy and cancer cell lines. Confocal laser scanning microscopy also reveals that the highly expressed integrin-mediated focal adhesions form due to stimulation of the polyphenol-AF composite hydrogel, direct cell adhesion, proliferation, and spreading. Overall, this work constitutes a significant step forward in creating highly adhesive tissue culture platforms for in vitro culture of different cell types and may greatly expand prospects for future biomaterial design and development.
Collapse
Affiliation(s)
- Di Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Jiangtao Zhou
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Yang Shen
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Cristina Lupo
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Qiyao Sun
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Tonghui Jin
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland.,Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, Zurich 8093, Switzerland
| |
Collapse
|
2
|
Zhang X, Zhang T, Liu B, Zhang Y, Ji Z, Wang X. Effects of Biomimetic Micropatterned Surfaces on the Adhesion and Morphology of Cervical Cancer Cells. ACS OMEGA 2022; 7:19913-19919. [PMID: 35722016 PMCID: PMC9202008 DOI: 10.1021/acsomega.2c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
It has been demonstrated that micropatterned surfaces have an important influence on modulating cellular behavior. In recent years, with the rapid development of microfabrication techniques and in-depth study of nature, an increasing number of patterned structures imitating natural organisms have been successfully fabricated and widely evaluated. However, there are only a few reports about biomimetic patterned microstructures in biologically related fields. In our work, micropatterned polydimethylsiloxane (PDMS) was fabricated by mimicking the surface microstructures of natural Trifolium and Parthenocissus tricuspidata leaves using the template duplication method. The interactions between the two types of biomimetic micro-PDMS surfaces and two kinds of human cervical cancer cells (HeLa and SiHa) were investigated. HeLa and SiHa cells cultured on the two micropatterned PDMS samples exhibited more stretchable morphology, higher diffusion, and a much lower nuclear/cytoplasmic ratio than those cultured on flat PDMS surfaces, indicating a higher adhesion area of the cells. Both of the micro-PDMS substrates were found to induce significantly different morphological changes between HeLa and SiHa cells. This suggests that the micropatterned structure affects cell adhesion and morphology correlated with their surface geometric structure and roughness. The results reveal that biomimetic micropatterned surfaces from natural leaves significantly regulate the morphology and adhesion behavior of cervical cancer cells and are believed to be the new platforms for investigating the interaction between cells and substrates.
Collapse
Affiliation(s)
- Xiaohui Zhang
- School
of Stomatology, Key Laboratory of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou 730000, China
| | - Ting Zhang
- School/Hospital
of Stomatology Lanzhou University, Lanzhou 730000, China
| | - Bin Liu
- School/Hospital
of Stomatology Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- Lanzhou
Stomatology Hospital, Lanzhou 730000, China
| | - Zhongying Ji
- State
Key Laboratory of Solid Lubrication, , Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Yantai
Zhongke Research Institute of Advanced Materials and Green Chemical
Engineering, Yantai 264006, China
| | - Xiaolong Wang
- State
Key Laboratory of Solid Lubrication, , Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Etezadi F, Le MNT, Shahsavarani H, Alipour A, Moazzezy N, Samani S, Amanzadeh A, Pahlavan S, Bonakdar S, Shokrgozar MA, Hasegawa K. Optimization of a PDMS-Based Cell Culture Substrate for High-Density Human-Induced Pluripotent Stem Cell Adhesion and Long-Term Differentiation into Cardiomyocytes under a Xeno-Free Condition. ACS Biomater Sci Eng 2022; 8:2040-2052. [PMID: 35468288 DOI: 10.1021/acsbiomaterials.2c00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the numerous advantages of PDMS-based substrates in various biomedical applications, they are limited by their highly hydrophobic surface that does not optimally interact with cells for attachment and growth. Hence, the lack of lengthy and straightforward procedures for high-density cell production on the PDMS-based substrate is one of the significant challenges in cell production in the cell therapy field. In this study, we found that the PDMS substrate coated with a combination of polydopamine (PDA) and laminin-511 E8 fragments (PDA + LME8-coated PDMS) can support human-induced pluripotent stem cell (hiPSC) attachment and growth for the long term and satisfy their demands of differentiation into cardiomyocytes (iCMs). Compared with prior studies, the density of hiPSCs and their adhesion time on the PDMS surface were increased during iCM production. Although the differentiated iCMs beat and produce mechanical forces, which disturb cellular attachments, the iCMs on the PDA + LME8-coated PDMS substrate showed dramatically better attachment than the control condition. Further, the substrate required less manipulation by enabling one-step seeding throughout the process in iCM formation from hiPSCs under animal-free conditions. In light of the results achieved, the PDA + LME8-coated PDMS substrate will be an up-and-coming tool for cardiomyocyte production for cell therapy and tissue engineering, microfluidics, and organ-on-chip platforms.
Collapse
Affiliation(s)
- Fatemeh Etezadi
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran.,Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan.,Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Minh Nguyen Tuyet Le
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Hosein Shahsavarani
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran.,Department of Cell and Molecular Sciences, Faculty of Life Science and Biotechnology, Shahid Beheshti University, 1983963113 Tehran, Iran
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Neda Moazzezy
- Molecular Biology Department, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Saeed Samani
- Department of Tissue Engineering & Applied Cell Sciences, TUMS School of Advanced Technologies in Medicine, No. 88, Italia St, Tehran, 1417755469, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Development Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACERCR, Banihashem Ave, Tehran 16635-148, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Mohammad Ali Shokrgozar
- National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran 1316943551, Iran
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Akther F, Yakob SB, Nguyen NT, Ta HT. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices. BIOSENSORS 2020; 10:E182. [PMID: 33228050 PMCID: PMC7699314 DOI: 10.3390/bios10110182] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Microfluidic lab-on-a-chip cell culture techniques have been gaining popularity by offering the possibility of reducing the amount of samples and reagents and greater control over cellular microenvironment. Polydimethylsiloxane (PDMS) is the commonly used polymer for microfluidic cell culture devices because of the cheap and easy fabrication techniques, non-toxicity, biocompatibility, high gas permeability, and optical transparency. However, the intrinsic hydrophobic nature of PDMS makes cell seeding challenging when applied on PDMS surface. The hydrophobicity of the PDMS surface also allows the non-specific absorption/adsorption of small molecules and biomolecules that might affect the cellular behaviour and functions. Hydrophilic modification of PDMS surface is indispensable for successful cell seeding. This review collates different techniques with their advantages and disadvantages that have been used to improve PDMS hydrophilicity to facilitate endothelial cells seeding in PDMS devices.
Collapse
Affiliation(s)
- Fahima Akther
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
| | - Shazwani Binte Yakob
- School of Pharmacy, the University of Queensland, Brisbane, QLD 4102, Australia;
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
5
|
Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Sci Rep 2019; 9:9086. [PMID: 31235788 PMCID: PMC6591285 DOI: 10.1038/s41598-019-45352-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/04/2019] [Indexed: 01/26/2023] Open
Abstract
Biophysical cues influence many aspects of cell behavior. Stiffness of the extracellular matrix is probed by cells and transduced into biochemical signals through mechanotransduction protein networks, strongly influencing stem cell behavior. Cellular stemness is intimately related with mechanical properties of the cell, like intracellular contractility and stiffness, which in turn are influenced by the microenvironment. Pluripotency is associated with soft and low-contractility cells. Hence, we postulated that soft cell culture substrates, presumably inducing low cellular contractility and stiffness, increase the reprogramming efficiency of mesenchymal stem/stromal cells (MSCs) into induced pluripotent stem cells (iPSCs). We demonstrate that soft substrates (1.5 or 15 kPa polydimethylsiloxane – PDMS) caused modulation of several cellular features of MSCs into a phenotype closer to pluripotent stem cells (PSCs). MSCs cultured on soft substrates presented more relaxed nuclei, lower maturation of focal adhesions and F-actin assembling, more euchromatic and less heterochromatic nuclear DNA regions, and increased expression of pluripotency-related genes. These changes correlate with the reprogramming of MSCs, with a positive impact on the kinetics, robustness of colony formation and reprogramming efficiency. Additionally, substrate stiffness influences several phenotypic features of iPS cells and colonies, and data indicates that soft substrates favor full iPSC reprogramming.
Collapse
|
6
|
|
7
|
Wala J, Maji D, Das S. Influence of physico-mechanical properties of elastomeric material for different cell growth. ACTA ACUST UNITED AC 2017; 12:065002. [PMID: 28691693 DOI: 10.1088/1748-605x/aa7e81] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The tunable mechanical and physical properties of polydimethylsiloxane (PDMS) are commonly utilized for studying cellular dynamics. However, the inherent hydrophobic nature of PDMS limits its application as a cell culture film. Various surface modification techniques render PDMS films hydrophilic, altering their surface chemistry, elasticity, roughness and the cell attachment of anchorage-dependent cell types to the films. The surface properties of thin films lead to the alteration of the biomechano-physical properties of cells, so they can be used as a mechanical signature for the viability testing of different types of cell, such as normal and cancerous ones. In this study, 3T3 fibroblast and HaCaT keratinocyte cells were grown on different pristine and oxidized PDMS compositions by varying their base-to-curing-agent ratios (w/w). The enhanced wettability favors the cell spreading and growth rate of both 3T3 and HaCaT cells, and it varies with the film's surface chemistry and elasticity. This study focuses on the importance of understanding how various surface modification methods, like oxygen plasma and piranha treatment, can impact cell-cell and cell-substrate interaction for different cell types, thereby assisting in the preparation of various PDMS-based biomedical devices.
Collapse
Affiliation(s)
- Jyoti Wala
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | | | | |
Collapse
|
8
|
Fu J, Chuah YJ, Ang WT, Zheng N, Wang DA. Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation. Biomater Sci 2017; 5:1156-1173. [DOI: 10.1039/c7bm00266a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Optimization of a polydopamine (PD)-based coating method and PDMS substrates for improved ESC pluripotency maintenance and cardiac differentiation.
Collapse
Affiliation(s)
- Jiayin Fu
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| | - Yon Jin Chuah
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| | - Wee Tong Ang
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| | - Nan Zheng
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| | - Dong-An Wang
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
| |
Collapse
|
9
|
Zuchowska A, Kwiatkowski P, Jastrzebska E, Chudy M, Dybko A, Brzozka Z. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis 2015; 37:536-44. [PMID: 26311334 DOI: 10.1002/elps.201500250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/15/2015] [Accepted: 07/24/2015] [Indexed: 01/09/2023]
Abstract
PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer).
Collapse
Affiliation(s)
- Agnieszka Zuchowska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Piotr Kwiatkowski
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Elzbieta Jastrzebska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Michal Chudy
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Artur Dybko
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Zbigniew Brzozka
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
10
|
Prauzner-Bechcicki S, Raczkowska J, Madej E, Pabijan J, Lukes J, Sepitka J, Rysz J, Awsiuk K, Bernasik A, Budkowski A, Lekka M. PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells. J Mech Behav Biomed Mater 2014; 41:13-22. [PMID: 25460399 DOI: 10.1016/j.jmbbm.2014.09.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022]
Abstract
A deep understanding of the interaction between cancerous cells and surfaces is particularly important for the design of lab-on-chip devices involving the use of polydimethylsiloxane (PDMS). In our studies, the effect of PDMS substrate stiffness on mechanical properties of cancerous cells was investigated in conditions where the PDMS substrate is not covered with any of extracellular matrix proteins. Two human prostate cancer (Du145 and PC-3) and two melanoma (WM115 and WM266-4) cell lines were cultured on two groups of PDMS substrates that were characterized by distinct stiffness, i.e. 0.75 ± 0.06 MPa and 2.92 ± 0.12 MPa. The results showed the strong effect on cellular behavior and morphology. The detailed analysis of chemical and physical properties of substrates revealed that cellular behavior occurs only due to substrate elasticity.
Collapse
Affiliation(s)
- Szymon Prauzner-Bechcicki
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Joanna Raczkowska
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Ewelina Madej
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Joanna Pabijan
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Jaroslav Lukes
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16607 Prague, Czech Republic
| | - Josef Sepitka
- Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16607 Prague, Czech Republic
| | - Jakub Rysz
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Kamil Awsiuk
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science & Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Reymonta 19, 30-049 Kraków, Poland
| | - Andrzej Budkowski
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Małgorzata Lekka
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland.
| |
Collapse
|
11
|
Huang WC, Liu KH, Liu TC, Liu DM, Chen SY. Synergistic hierarchical silicone-modified polysaccharide hybrid as a soft scaffold to control cell adhesion and proliferation. Acta Biomater 2014; 10:3546-56. [PMID: 24793655 DOI: 10.1016/j.actbio.2014.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 12/19/2022]
Abstract
In this study, a new type of polydimethylsiloxane-modified chitosan (PMSC) amphiphilic hydrogel was developed as a soft substrate to explore cellular responses for dermal reconstruction. The hydrogel wettability, mechanical stiffness and topography were controllable through manipulation of the degree of esterification (DE) between hydrophobic polydimethylsiloxane (PDMS) and hydrophilic N,O-(carboxymethyl)-chitosan (NOCC). Based on microphase separation, the incorporation of PDMS into NOCC increased the stiffness of the hybrid through the formation of self-assembled aggregates, which also provided anchor sites for cell adhesion. As the DE exceeded 0.39, the size of the PDMS-rich aggregates changed from nanoscale to microscale. Subsequently, the hierarchical architecture resulted in an increase in the tensile modulus of the hybrid gel up to fourfold, which simultaneously provided mechano-topographic guidance and allowed the cells to completely spread to form spindle shapes instead of forming a spherical morphology, as on NOCC (DE=0). The results revealed that the incorporation of hydrophobic PDMS not only impeded acidic damage resulting from NOCC but also acted as an adhesion modification agent to facilitate long-term cell adhesion and proliferation on the soft substrate. As proved by the promotion on long-term type-I collagen production, the PMSC hybrid with self-assembled mechano-topography offers great promise as an advanced scaffold material for use in healing applications.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kun-Ho Liu
- Advanced Delivery Technology Co. Ltd, 5F, D Building, No. 120, Zhonghua Rd, Hsinchu Industrial Park, Hukou Township, Hsinchu 30352, Taiwan
| | - Ta-Chung Liu
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Dean-Mo Liu
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - San-Yuan Chen
- Department of Materials Sciences and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
12
|
Jeon H, Simon CG, Kim G. A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J Biomed Mater Res B Appl Biomater 2014; 102:1580-94. [DOI: 10.1002/jbm.b.33158] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 12/17/2022]
Affiliation(s)
- HoJun Jeon
- Department of Bio-Mechatronic Engineering; College of Biotechnology and Bioengineering, Sungkyunkwan University; Suwon South Korea
| | - Carl G. Simon
- Biosystems and Biomaterials Division; National Institute of Standards and Technology; Gaithersburg Maryland
| | - GeunHyung Kim
- Department of Bio-Mechatronic Engineering; College of Biotechnology and Bioengineering, Sungkyunkwan University; Suwon South Korea
| |
Collapse
|
13
|
Choi S, Hong Y, Lee I, Huh D, Jeon TJ, Kim SM. Effects of various extracellular matrix proteins on the growth of HL-1 cardiomyocytes. Cells Tissues Organs 2014; 198:349-56. [PMID: 24662367 DOI: 10.1159/000358755] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2014] [Indexed: 11/19/2022] Open
Abstract
We present the physical and biochemical effects of extracellular matrixes (ECMs) on HL-1 cardiomyocytes. ECMs play major roles in cell growth, adhesion and the maintenance of native cell functions. We investigated the effects of 6 different cell culture systems: 5 different ECM-treated surfaces (fibronectin, laminin, collagen I, gelatin and a gelatin/fibronectin mixture) and 1 nontreated surface. Surface morphology was scanned and analyzed using atomic force microscopy in order to investigate the physical effects of ECMs. The attachment, growth, viability, proliferation and phenotype of the cells were analyzed using phase-contrast microscopy and immunocytochemistry to elucidate the biochemical effects of ECMs. Our study provides basic information for understanding cell-ECM interactions and should be utilized in future cardiac cell research and tissue engineering.
Collapse
Affiliation(s)
- Seongkyun Choi
- Department of Mechanical Engineering, Inha University, Incheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
14
|
Kim JH, Seo S, Min J. Epithelial cell patterns on a PDMS polymer surface using a micro plasma structure. J Biotechnol 2011; 155:308-11. [DOI: 10.1016/j.jbiotec.2011.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/11/2011] [Accepted: 07/09/2011] [Indexed: 01/09/2023]
|
15
|
Chumbimuni-Torres KY, Coronado RE, Mfuh AM, Castro-Guerrero C, Silva MF, Negrete GR, Bizios R, Garcia CD. Adsorption of Proteins to Thin-Films of PDMS and Its Effect on the Adhesion of Human Endothelial Cells. RSC Adv 2011; 1:706-714. [PMID: 25068038 DOI: 10.1039/c1ra00198a] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper describes a simple and inexpensive procedure to produce thin-films of poly(dimethylsiloxane). Such films were characterized by a variety of techniques (ellipsometry, nuclear magnetic resonance, atomic force microscopy, and goniometry) and used to investigate the adsorption kinetics of three model proteins (fibrinogen, collagen type-I, and bovine serum albumin) under different conditions. The information collected from the protein adsorption studies was then used to investigate the adhesion of human dermal microvascular endothelial cells. The results of these studies suggest that these films can be used to model the surface properties of microdevices fabricated with commercial PDMS. Moreover, the paper provides guidelines to efficiently attach cells in BioMEMS devices.
Collapse
Affiliation(s)
| | - Ramon E Coronado
- Department of Biomedical Engineering, The University of Texas at San Antonio
| | - Adelphe M Mfuh
- Department of Chemistry, The University of Texas at San Antonio
| | | | - Maria Fernanda Silva
- School of Agronomic Sciences - IBAM-CONICET, National University of Cuyo, Mendoza, Argentina
| | | | - Rena Bizios
- Department of Biomedical Engineering, The University of Texas at San Antonio
| | - Carlos D Garcia
- Department of Chemistry, The University of Texas at San Antonio
| |
Collapse
|