1
|
Fernandez Ainaga DL, Roncal-Herrero T, Ilett M, Aslam Z, Cheng C, Hitchcock JP, Cayre OJ, Hondow N. Native state structural and chemical characterisation of Pickering emulsions: A cryo-electron microscopy study. J Microsc 2025; 298:92-105. [PMID: 39887717 DOI: 10.1111/jmi.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Transmission electron microscopy can be used for the characterisation of a wide range of thin specimens, but soft matter and aqueous samples such as gels, nanoparticle dispersions, and emulsions will dry out and collapse under the microscope vacuum, therefore losing information on their native state and ultimately limiting the understanding of the sample. This study examines commonly used techniques in transmission electron microscopy when applied to the characterisation of cryogenically frozen Pickering emulsion samples. Oil-in-water Pickering emulsions stabilised by 3 to 5 nm platinum nanoparticles were cryogenically frozen by plunge-freezing into liquid ethane to retain the native structure of the system without inducing crystallisation of the droplet oil cores. A comparison between the droplet morphology following different sample preparation methods has confirmed the effectiveness of using plunge-freezing to prepare these samples. Scanning transmission electron microscopy imaging showed that dry droplets collapse under the microscope vacuum, changing their shape and size (average apparent diameter: ∼342 nm) compared to frozen samples (average diameter: ∼183 nm). Cryogenic electron tomography was used to collect additional information of the 3D shape and size of the emulsion droplets, and the position of the stabilising nanoparticles relative to the droplet surface. Cryogenic energy dispersive X-ray and electron energy loss spectroscopy were used to successfully obtain elemental data and generate elemental maps to identify the stabilising nanoparticles and the oil phase. Elemental maps generated from spectral data were used in conjunction with electron tomography to obtain 3D information of the oil phase in the emulsion droplets. Beam-induced damage to the ice was the largest limiting factor to the sample characterisation, limiting the effective imaging resolution and signal-to-noise ratio, though careful consideration of the imaging parameters used allowed for the characterisation of the samples presented in this study. Ultimately this study shows that cryo-methods are effective for the representative characterisation of Pickering emulsions.
Collapse
Affiliation(s)
| | | | - Martha Ilett
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Zabeada Aslam
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Cheng Cheng
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - James P Hitchcock
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Olivier J Cayre
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Daneshmandi L, Holt BD, Arnold AM, Laurencin CT, Sydlik SA. Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Sci Rep 2022; 12:6960. [PMID: 35484292 PMCID: PMC9050648 DOI: 10.1038/s41598-022-10603-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
Bone regenerative engineering could replace autografts; however, no synthetic material fulfills all design criteria. Nanocarbons incorporated into three-dimensional printed (3DP) matrices can improve properties, but incorporation is constrained to low wt%. Further, unmodified nanocarbons have limited osteogenic potential. Functionalization to calcium phosphate graphene (CaPG) imparts osteoinductivity and osteoconductivity, but loading into matrices remained limited. This work presents ultra-high content (90%), 3DP-CaPG matrices. 3DP-CaPG matrices are highly porous (95%), moderately stiff (3 MPa), and mechanically robust. In vitro, they are cytocompatible and induce osteogenic differentiation of human mesenchymal stem cells (hMSCs), indicated by alkaline phosphatase, mineralization, and COL1α1 expression. In vivo, bone regeneration was studied using a transgenic fluorescent-reporter mouse non-union calvarial defect model. 3DP-CaPG stimulates cellular ingrowth, retains donor cells, and induces osteogenic differentiation. Histology shows TRAP staining around struts, suggesting potential osteoclast activity. Apparent resorption of 3DP-CaPG was observed and presented no toxicity. 3DP-CaPG represents an advancement towards a synthetic bone regeneration matrix.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Brian D Holt
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Anne M Arnold
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA.
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA.
- Department of Material Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
3
|
Adsorption of Hyperbranched Arabinogalactan-Proteins from Plant Exudate at the Solid–Liquid Interface. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3020049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adsorption of hyperbranched arabinogalactan-proteins (AGPs) from two plant exudates, A. senegal and A. seyal, was thoroughly studied at the solid–liquid interface using quartz crystal microbalance with dissipation monitoring (QCM-D), surface plasmon resonance (SPR), and atomic force microscopy (AFM). Isotherms of the adsorption reveal that 3.3 fold more AGPs from A. seyal (500 ppm) are needed to cover the gold surface compared to A. senegal (150 ppm). The pH and salt concentration of the environment greatly affected the adsorption behavior of both gums, with the surface density ranging from 0.92 to 3.83 mg m−2 using SPR (i.e., “dry” mass) and from 1.16 to 19.07 mg m−2 using QCM-D (wet mass). Surprisingly, the mass adsorbed was the highest in conditions of strong electrostatic repulsions between the gold substrate and AGPs, i.e., pH 7.0, highlighting the contribution of other interactions involved in the adsorption process. Structural changes of AGPs induced by pH would result in swelling of the polysaccharide blocks and conformational changes of the polypeptide backbone, therefore increasing the protein accessibility and hydrophobic interactions and/or hydrogen bonds with the gold substrate.
Collapse
|
4
|
Fernandes RMF, Dai J, Regev O, Marques EF, Furó I. Block Copolymers as Dispersants for Single-Walled Carbon Nanotubes: Modes of Surface Attachment and Role of Block Polydispersity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13672-13679. [PMID: 30335395 DOI: 10.1021/acs.langmuir.8b02658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When using amphiphilic polymers to exfoliate and disperse carbon nanotubes in water, the balance between the hydrophobic and hydrophilic moieties is critical and nontrivial. Here, we investigate the mode of surface attachment of a triblock copolymer, Pluronics F127, composed of a central hydrophobic polypropylene oxide block flanked by hydrophilic polyethylene oxide blocks, onto single-walled carbon nanotubes (SWNTs). Crucially, we analyze the composition in dispersant of both the as-obtained dispersion (the supernatant) and the precipitate-containing undispersed materials. For this, we combine the carefully obtained data from 1H NMR peak intensities and self-diffusion and thermogravimetric analysis. The molecular motions behind the observed NMR features are clarified. We find that the hydrophobic blocks attach to the dispersed SWNT surface and remain significantly immobilized leading to 1H NMR signal loss. On the other hand, the hydrophilic blocks remain highly mobile and thus readily detectable by NMR. The dispersant is shown to possess significant block polydispersity that has a large effect on dispersibility. Polymers with large hydrophobic blocks adsorb on the surface of the carbonaceous particles that precipitate, indicating that although a larger hydrophobic block is good for enhancing adsorption, it may be less effective in dispersing the tubes. A model is also proposed that consistently explains our observations in SWNT dispersions and some contradicting findings obtained previously in carbon nanohorn dispersions. Overall, our findings help elucidating the molecular picture of the dispersion process for SWNTs and are of interest when looking for more effective (i.e., well-balanced) polymeric dispersants.
Collapse
Affiliation(s)
- Ricardo M F Fernandes
- Division of Applied Physical Chemistry, Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , P-4169-007 Porto , Portugal
| | - Jing Dai
- Division of Applied Physical Chemistry, Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| | - Oren Regev
- Department of Chemical Engineering and the Ilse Katz Institute for Nanotechnology , Ben-Gurion University of Negev , 84105 Beer-Sheva , Israel
| | - Eduardo F Marques
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , P-4169-007 Porto , Portugal
| | - István Furó
- Division of Applied Physical Chemistry, Department of Chemistry , KTH Royal Institute of Technology , SE-10044 Stockholm , Sweden
| |
Collapse
|
5
|
Sanchez C, Nigen M, Mejia Tamayo V, Doco T, Williams P, Amine C, Renard D. Acacia gum: History of the future. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Cohen N, Levi-Kalisman Y, Yerushalmi – Rozen R. Concentration dependent response to pH modification and salt addition of polymeric dispersions of C60 fullerenes. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Cohen N, Binyamin L, Levi-Kalisman Y, Berguig GY, Convertine A, Stayton P, Yerushalmi Rozen R. pH and Salt Effects on Surface Activity and Self-Assembly of Copolymers Containing a Weak Polybase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9286-9292. [PMID: 27556595 DOI: 10.1021/acs.langmuir.6b02452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Copolymers with well-defined architectures, controlled molecular weights, and narrow molar mass dispersities (Đ) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The resultant polymers contain different combinations of the pH-responsive monomer 2-(diethylaminoethyl) methacrylate (DEAEMA), the hydrophobic comonomer butyl methacrylate (BMA), and a neutral hydrophilic stabilizing monomer polyethylene glycol monomethyl ether methacrylate (designated O950). Surface tension and cryo-TEM measurements of native and heavy-atom stained samples were used to characterize the pH and salt responsiveness of the different polymers as a function of their composition. These studies indicate that while the polymers predominately self-assemble to form spherical micelles, a narrow size distribution is observed in aqueous solutions of poly(O950)-b-(BMA) and poly(O950)-b-(DEAEMA-co-BMA), whereas a broad size distribution characterizes the assemblies of poly(O950)-b-(DEAEMA) and poly(DEAEMA-co-BMA). In the latter case, micelles having diameters around 15-25 nm are found along with smaller aggregates (about 10 nm) mostly arranged in elongated necklace-like structures. The pH and salt-responsiveness of the DEAEMA residue, as indicated by the surface activity of the copolymers, was found to depend on the nature of the additional components: covalently linked hydrophobic groups (BMA) moderated the pH response of the copolymer as compared to nonionic and hydrophilic groups as in poly(O950)-b-(DEAEMA). These results suggest that mutual interactions among the building blocks of self-assembling copolymers should be taken into account when designing responsive copolymers.
Collapse
Affiliation(s)
- Neta Cohen
- Department of Chemical Engineering, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
| | - Lana Binyamin
- Department of Chemical Engineering, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
| | - Yael Levi-Kalisman
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
- The Institute for Life Sciences, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Geoffrey Y Berguig
- Department of Bioengineering, University of Washington , Seattle, Washington 98105, United States
| | - Anthony Convertine
- Department of Bioengineering, University of Washington , Seattle, Washington 98105, United States
| | - Patrick Stayton
- Department of Bioengineering, University of Washington , Seattle, Washington 98105, United States
| | - Rachel Yerushalmi Rozen
- Department of Chemical Engineering, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, The Ben-Gurion University of the Negev , Beersheba 8410501, Israel
| |
Collapse
|
8
|
Talom RM, Fuks G, Kaps L, Oberdisse J, Cerclier C, Gaillard C, Mingotaud C, Gauffre F. DNA-polymer micelles as nanoparticles with recognition ability. Chemistry 2011; 17:13495-501. [PMID: 22025327 DOI: 10.1002/chem.201101561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/25/2011] [Indexed: 01/01/2023]
Abstract
The Watson-Crick binding of DNA single strands is a powerful tool for the assembly of nanostructures. Our objective is to develop polymer nanoparticles equipped with DNA strands for surface-patterning applications, taking advantage of the DNA technology, in particular, recognition and reversibility. A hybrid DNA copolymer is synthesized through the conjugation of a ssDNA (22-mer) with a poly(ethylene oxide)-poly(caprolactone) diblock copolymer (PEO-b-PCl). It is shown that, in water, the PEO-b-PCl-ssDNA(22) polymer forms micelles with a PCl hydrophobic core and a hydrophilic corona made of PEO and DNA. The micelles are thoroughly characterized using electron microscopy (TEM and cryoTEM) and small-angle neutron scattering. The binding of these DNA micelles to a surface through DNA recognition is monitored using a quartz crystal microbalance and imaged by atomic force microscopy. The micelles can be released from the surface by a competitive displacement event.
Collapse
Affiliation(s)
- Renée Mayap Talom
- Université de Toulouse, CNRS, Laboratoire des IMRCP, UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
De Carlo S, Harris JR. Negative staining and cryo-negative staining of macromolecules and viruses for TEM. Micron 2011; 42:117-31. [PMID: 20634082 PMCID: PMC2978762 DOI: 10.1016/j.micron.2010.06.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
In this review we cover the technical background to negative staining of biomolecules and viruses, and then expand upon the different possibilities and limitations. Topics range from conventional air-dry negative staining of samples adsorbed to carbon support films, the variant termed the "negative staining-carbon film" technique and negative staining of samples spread across the holes of holey-carbon support films, to a consideration of dynamic/time-dependent negative staining. For each of these approaches examples of attainable data are given. The cryo-negative staining technique for the specimen preparation of frozen-hydrated/vitrified samples is also presented. A detailed protocol to successfully achieve cryo-negative staining with ammonium molybdate is given, as well as examples of data, which support the claim that cryo-negative staining provides a useful approach for the high-resolution study of macromolecular and viral structure.
Collapse
Affiliation(s)
- Sacha De Carlo
- Department of Chemistry, and Institute of Macromolecular Assembly, The City College of CUNY, 160 Convent Ave, New York, NY, USA
| | - J. Robin Harris
- Institute of Zoology, University of Mainz, Mainz, Germany and Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle-upon-Tyne, UK
| |
Collapse
|