1
|
Park JH, Lee YK, Lee H, Choi DH, Rhee KJ, Kim HS, Seo JB. Sonoporation with Echogenic Liposomes: The Evaluation of Glioblastoma Applicability Using In Vivo Xenograft Models. Pharmaceutics 2025; 17:509. [PMID: 40284504 PMCID: PMC12030003 DOI: 10.3390/pharmaceutics17040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Objective: In previous studies, echogenic liposomes with liquid and gas cores were analyzed as alternative carriers of drug molecules and cavitation nuclei for sonoporation. The possibility of small interfering RNA (si-RNA) encapsulation has also been presented. In this study, the usability of echogenic liposomes as drug carriers and cavitation seeds was evaluated using an in vivo model. Methods: A doxorubicin-loaded echogenic liposome was synthesized as a drug carrier. The size distribution and the number of formed echogenic liposomes were measured. Five comparative in vivo experiments were conducted with and without doxorubicin-loaded echogenic liposomes, and the results were statically analyzed. Results: Sonoporation with doxorubicin-loaded echogenic liposomes at 3.05 W/cm2 of ISPTA ultrasound sonication and 0.98 MHz results in an average tumor volume growth of less than 25% of that following the simple administration of doxorubicin. Considering the p-value between the two groups is approximately 0.03, doxorubicin-loaded echogenic liposomes were effectively applicable as cavitation nuclei for sonoporation. Conclusions: Although further studies are needed to clarify the responses to incident ultrasound fields, the proposed echogenic liposome appears to be a promising alternative cavitation nuclei/carrier for sonoporation.
Collapse
Affiliation(s)
- Ju-Hyun Park
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Yoo-Kyung Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dong-Hyun Choi
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, Yonsei University, Wonju 26493, Republic of Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Jong-Bum Seo
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
2
|
Zhou A, Kong D, Zhou X, Liu Y, Zhang Y, Li J, Xu Y, Ning X. Bioengineered Neutrophils for Smart Response in Brain Infection Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311661. [PMID: 38252744 DOI: 10.1002/adma.202311661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Brain infections, frequently accompanied by significant inflammation, necessitate comprehensive therapeutic approaches targeting both infections and associated inflammation. A major impediment to such combined treatment is the blood-brain barrier (BBB), which significantly restricts therapeutic agents from achieving effective concentrations within the central nervous system. Here, a neutrophil-centric dual-responsive delivery system, coined "CellUs," is pioneered. This system is characterized by live neutrophils enveloping liposomes of dexamethasone, ceftriaxone, and oxygen-saturated perfluorocarbon (Lipo@D/C/P). CellUs is meticulously engineered to co-deliver antibiotics, anti-inflammatory agents, and oxygen, embodying a comprehensive strategy against brain infections. CellUs leverages the intrinsic abilities of neutrophils to navigate through BBB, accurately target infection sites, and synchronize the release of Lipo@D/C/P with local inflammatory signals. Notably, the incorporation of ultrasound-responsive perfluorocarbon within Lipo@D/C/P ensures the on-demand release of therapeutic agents at the afflicted regions. CellUs shows considerable promise in treating Staphylococcus aureus infections in mice with meningitis, particularly when combined with ultrasound treatments. It effectively penetrates BBB, significantly eliminates bacteria, reduces inflammation, and delivers oxygen to the affected brain tissue, resulting in a substantial improvement in survival rates. Consequently, CellUs harnesses the natural chemotactic properties of neutrophils and offers an innovative pathway to improve treatment effectiveness while minimizing adverse effects.
Collapse
Affiliation(s)
- Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Delian Kong
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211000, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yao Liu
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211000, China
| | - Yiping Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Junrong Li
- Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211000, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
3
|
Zou Q, Zhong X, Zhang B, Gao A, Wang X, Li Z, Qin D. Bubble pulsation characteristics in multi-bubble systems affected by bubble size polydispersity and spatial structure. ULTRASONICS 2023; 134:107089. [PMID: 37406389 DOI: 10.1016/j.ultras.2023.107089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
This study seeks to explore the bubble pulsation characteristics in multi-bubble environment with a special focus on the influences of the size polydispersity and the two-dimensional structure of bubbles. Three representative configurations of three interacting bubbles are formed by setting the initial radii of cavitation bubbles and inter-bubble distances appropriately, then the pulsation characteristics of a small bubble are investigated and compared by the bifurcation analysis. The results illustrate that the bubble size polydispersity and two-dimensional structure would greatly affect the bubble pulsations (i.e., the amplitude and nonlinearity of pulsations). Furthermore, the effects of two-dimensional structure are strong at a small inter-bubble distance of the large and small bubbles while the bubble size polydispersity always significantly affects the bubble pulsations for all cases. Moreover, the influences of both bubble size polydispersity and two-dimensional structure can be enhanced as the acoustic pressure increases, which can also become stronger when the large bubble is located at the same side as the small bubble and the initial radius of large bubble increases. Additionally, the effects would also be increased when the tissue viscoelasticity varies within a certain range. The present findings shed new light on the dynamics of multiple polydisperse microbubbles in viscoelastic tissues, potentially contributing to an optimization of their applications with ultrasound excitation.
Collapse
Affiliation(s)
- Qingqin Zou
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Xianhua Zhong
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Bingyu Zhang
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Angyu Gao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Xia Wang
- Department of Respiratory and Critical Care Medicine, Chonggang General Hospital Affiliated to Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Zhangyong Li
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Dui Qin
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
4
|
Honari A, Sirsi SR. The Evolution and Recent Trends in Acoustic Targeting of Encapsulated Drugs to Solid Tumors: Strategies beyond Sonoporation. Pharmaceutics 2023; 15:1705. [PMID: 37376152 DOI: 10.3390/pharmaceutics15061705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite recent advancements in ultrasound-mediated drug delivery and the remarkable success observed in pre-clinical studies, no delivery platform utilizing ultrasound contrast agents has yet received FDA approval. The sonoporation effect was a game-changing discovery with a promising future in clinical settings. Various clinical trials are underway to assess sonoporation's efficacy in treating solid tumors; however, there are disagreements on its applicability to the broader population due to long-term safety issues. In this review, we first discuss how acoustic targeting of drugs gained importance in cancer pharmaceutics. Then, we discuss ultrasound-targeting strategies that have been less explored yet hold a promising future. We aim to shed light on recent innovations in ultrasound-based drug delivery including newer designs of ultrasound-sensitive particles specifically tailored for pharmaceutical usage.
Collapse
Affiliation(s)
- Arvin Honari
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shashank R Sirsi
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
5
|
Xu X, Chang S, Zhang X, Hou T, Yao H, Zhang S, Zhu Y, Cui X, Wang X. Fabrication of a controlled-release delivery system for relieving sciatica nerve pain using an ultrasound-responsive microcapsule. Front Bioeng Biotechnol 2022; 10:1072205. [PMID: 36507268 PMCID: PMC9729723 DOI: 10.3389/fbioe.2022.1072205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Lidocaine, a potent local anesthetic, is clinically used in nerve block and pain management. However, due to its short half-life, repeated administration is required. For this reason, here we designed and prepared a lidocaine-encapsulated polylactic acid-glycolic acid (Lidocaine@PLGA) microcapsule with ultrasound responsiveness to relieve the sciatica nerve pain. With a premixed membrane emulsification strategy, the fabricated lidocaine-embedded microcapsules possessed uniform particle size, good stability, injectability, and long-term sustained release both in vitro and in vivo. More importantly, Lidocaine@PLGA microcapsules had the function of ultrasonic responsive release, which made the drug release controllable with the effect of on-off administration. Our research showed that using ultrasound as a trigger switch could promote the rapid release of lidocaine from the microcapsules, achieving the dual effects of long-term sustained release and short-term ultrasound-triggered rapid release, which can enable the application of ultrasound-responsive Lidocaine@PLGA microcapsules to nerve root block and postoperative pain relief.
Collapse
Affiliation(s)
- Xiong Xu
- Department of Orthopaedics, The 8th Medical Center of PLA General Hospital, Beijing, China,Department of Graduate, Hebei North University, Zhangjiakou, China,Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Shuai Chang
- Orthopedics Department, Peking University Third Hospital, Beijing, China
| | - Xiaoyi Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Taotao Hou
- Department of Graduate, Hebei North University, Zhangjiakou, China
| | - Hui Yao
- Department of Orthopedics, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shusheng Zhang
- ShenYang Tiantai Remote Medical Tech Development Co., Ltd., Shenyang, China
| | - Yuqi Zhu
- Department of Orthopedics, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Correspondence: Yuqi Zhu, ; Xu Cui, ; Xing Wang,
| | - Xu Cui
- Department of Orthopaedics, The 8th Medical Center of PLA General Hospital, Beijing, China,Correspondence: Yuqi Zhu, ; Xu Cui, ; Xing Wang,
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China,Correspondence: Yuqi Zhu, ; Xu Cui, ; Xing Wang,
| |
Collapse
|
6
|
Mukhopadhyay D, Sano C, AlSawaftah N, El-Awady R, Husseini GA, Paul V. Ultrasound-Mediated Cancer Therapeutics Delivery using Micelles and Liposomes: A Review. Recent Pat Anticancer Drug Discov 2021; 16:498-520. [PMID: 34911412 DOI: 10.2174/1574892816666210706155110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/02/2021] [Accepted: 03/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Existing cancer treatment methods have many undesirable side effects that greatly reduce the quality of life of cancer patients. OBJECTIVE This review will focus on the use of ultrasound-responsive liposomes and polymeric micelles in cancer therapy. METHODS This review presents a survey of the literature regarding ultrasound-triggered micelles and liposomes using articles recently published in various journals, as well as some new patents in this field. RESULTS Nanoparticles have proven promising as cancer theranostic tools. Nanoparticles are selective in nature, have reduced toxicity, and controllable drug release patterns making them ideal carriers for anticancer drugs. Numerous nanocarriers have been designed to combat malignancies, including liposomes, micelles, dendrimers, solid nanoparticles, quantum dots, gold nanoparticles, and, more recently, metal-organic frameworks. The temporal and spatial release of therapeutic agents from these nanostructures can be controlled using internal and external triggers, including pH, enzymes, redox, temperature, magnetic and electromagnetic waves, and ultrasound. Ultrasound is an attractive modality because it is non-invasive, can be focused on the diseased site, and has a synergistic effect with anticancer drugs. CONCLUSION The functionalization of micellar and liposomal surfaces with targeting moieties and the use of ultrasound as a triggering mechanism can help improve the selectivity and enable the spatiotemporal control of drug release from nanocarriers.
Collapse
Affiliation(s)
- Debasmita Mukhopadhyay
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Catherine Sano
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Nour AlSawaftah
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghaleb A Husseini
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Al Rifai N, Desgranges S, Le Guillou-Buffello D, Giron A, Urbach W, Nassereddine M, Charara J, Contino-Pépin C, Taulier N. Ultrasound-triggered delivery of paclitaxel encapsulated in an emulsion at low acoustic pressures. J Mater Chem B 2021; 8:1640-1648. [PMID: 32011617 DOI: 10.1039/c9tb02493j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigated the in vitro ultrasound-triggered delivery of paclitaxel, a well known anti-cancerous drug, encapsulated in an emulsion and in the presence of CT26 tumor cells. The emulsion was made of nanodroplets, whose volume comprised 95% perfluoro-octyl bromide and 5% tributyl O-acetylcitrate, in which paclitaxel was solubilized. These nanodroplets, prepared using a high-pressure microfluidizer, were stabilized by a tailor-made and recently patented biocompatible fluorinated surfactant. The delivery investigations were performed at 37 °C using a high intensity focused ultrasound transducer at a frequency of 1.1 MHz. The ultrasonic pulse was made of 275 sinusoidal periods and the pulse repetition frequency was 200 Hz with a duty cycle of 5%. The measured viabilities of CT26 cells showed that paclitaxel delivery was achievable for peak-to-peak pressures of 0.4 and 3.5 MPa, without having to vaporize the perfluorocarbon part of the droplet or to induce inertial cavitation.
Collapse
Affiliation(s)
- N Al Rifai
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France. and Faculté des Sciences, Université Libanaise, Liban
| | - S Desgranges
- Équipe Chimie Bioorganique et Systèmes Amphiphiles, Institut des Biomolécules Max Mousseron, UMR 5247, Université d'Avignon, Avignon, France
| | - D Le Guillou-Buffello
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France.
| | - A Giron
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France.
| | - W Urbach
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France. and Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | | | - J Charara
- Faculté des Sciences, Université Libanaise, Liban
| | - C Contino-Pépin
- Équipe Chimie Bioorganique et Systèmes Amphiphiles, Institut des Biomolécules Max Mousseron, UMR 5247, Université d'Avignon, Avignon, France
| | - N Taulier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France.
| |
Collapse
|
8
|
Cimorelli M, Flynn MA, Angel B, Reimold E, Fafarman A, Huneke R, Kohut A, Wrenn S. A Voltage-Sensitive Ultrasound Enhancing Agent for Myocardial Perfusion Imaging in a Rat Model. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2388-2399. [PMID: 32593498 DOI: 10.1016/j.ultrasmedbio.2020.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Echocardiographers with specialized expertise sometimes perform myocardial perfusion imaging using U.S. Food and Drug Administration-approved microbubbles in an off-label capacity, correlating microbubble replenishment in the near field with blood flow through the myocardium. This study reports the in vivo clinical feasibility of a voltage-sensitive ultrasound enhancing agent (UEA) for myocardial perfusion imaging. Four UEAs were injected into Sprague-Dawley rats while ultrasound images were collected to quantify brightness in the left ventricular (LV) cavity, septal wall, and posterior wall in systole and diastole. Formulation IV, a phase change agent nested within a negatively charged phospholipid bilayer, increased the tissue-to-cavity ratio in both systole and diastole in the septal wall, 6 dB, and in the posterior wall, 5 dB, while leaving the LV cavity at baseline. This outcome improves the signal of the myocardium relative to the LV cavity and shows promise as a myocardial perfusion UEA.
Collapse
Affiliation(s)
- Michael Cimorelli
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michael A Flynn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Brett Angel
- Cardiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily Reimold
- University Laboratory Animal Resources, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Aaron Fafarman
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Richard Huneke
- University Laboratory Animal Resources, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew Kohut
- Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Wrenn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Cimorelli M, Flynn MA, Angel B, Fafarman A, Kohut A, Wrenn S. An Ultrasound Enhancing Agent with Nonlinear Acoustic Activity that Depends on the Presence of an Electric Field. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2370-2387. [PMID: 32616427 DOI: 10.1016/j.ultrasmedbio.2020.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The nonlinear acoustic properties of microbubble ultrasound enhancing agents have allowed for the development of subharmonic, second harmonic, and contrast-pulse sequence ultrasound imaging modes, which enhance the quality, reduce the noise, and improve the diagnostic capabilities of clinical ultrasound. This study details acoustic scattering responses of perfluorobutane (PFB) microbubbles, an un-nested perfluoropentane (PFP) nanoemulsion, and two nested PFP nanoemulsions-one comprising a negatively charged phospholipid bilayer and another comprising a zwitterionic phospholipid bilayer-when excited at 1 or 2.25 MHz over a peak negative pressure range of 200 kPa to 4 MPa in the absence and presence of a 1-Hz, 1-V/cm electric field. The only sample that exhibited an increase in nonlinear activity in the presence of an electric field at both excitation frequencies was the negatively charged nested PFP nanoemulsion; the most pronounced effect was observed at an excitation of 2.25 MHz. Interestingly, the application of an electric field not only increased the nonlinear acoustic activity of the negatively charged nested PFP nanoemulsion but increased it beyond that seen when the nanoemulsion is un-nested and on the same scale as PFB microbubbles.
Collapse
Affiliation(s)
- Michael Cimorelli
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michael A Flynn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Brett Angel
- Cardiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Aaron Fafarman
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Andrew Kohut
- Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Wrenn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Wang J, Li Y, Ma Q, Huang J. miR‑378 in combination with ultrasonic irradiation and SonoVue microbubbles transfection inhibits hepatoma cell growth. Mol Med Rep 2020; 21:2493-2501. [PMID: 32236628 PMCID: PMC7185276 DOI: 10.3892/mmr.2020.11045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Ultrasonic microbubbles in combination with microRNA (miRNAs/miRs) exhibited promising effects on cancer treatments. The aim was to investigate the role of miR-378 in hepatoma cells and the efficiency of it in combination with ultrasonic irradiation and SonoVue® microbubbles method for cell transfection. HuH-7, Hep3B and SK-Hep1 cells were transfected with an miR-378 mimic using only Lipofectamine® 3000 or combined with SonoVue microbubbles and ultrasonic irradiation at 0.5 W/cm2 for 30 sec. mRNAs and protein levels of Cyclin D1, Bcl-2, Bax, Akt, p53 and Survivin were detected by reverse transcription-quantitative PCR and western blotting, respectively. Cell survival rate, proliferation, cell cycle and apoptosis were determined by Cell Counting Kit-8, cell double cytochemical staining and flow cytometry, respectively. It was found that using a combination of ultrasonic irradiation and the SonoVue microbubbles method increased the effectiveness of miR-378 transfection into hepatocellular carcinoma (HCC) cells, and increased the inhibition of cell survival and proliferation. Moreover, miR-378 increased the rate of apoptosis and upregulated the expression of Bax and p53, and suppressed the cell cycle and downregulated the expression of Cyclin D1, Bcl-2, Akt, β-catenin and Survivin much more effectively in the HCC cell line by applying the combined method. Thus, miR-378 was shown to be a suppressive factor to reduce proliferation and increase apoptosis in HCC cells. Additionally, the combination of ultrasonic irradiation and SonoVue microbubbles method was more efficient in the transfection of miRNA.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Ultrasonography, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yunchun Li
- Laboratory Center, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Qianfeng Ma
- Department of Ultrasonography, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jiaxin Huang
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| |
Collapse
|
11
|
Tabata H, Koyama D, Matsukawa M, Yoshida K, Krafft MP. Vibration Characteristics and Persistence of Poloxamer- or Phospholipid-Coated Single Microbubbles under Ultrasound Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11322-11329. [PMID: 31419140 DOI: 10.1021/acs.langmuir.9b02006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbubbles shelled with soft materials are expected to find applications as ultrasound-sensitive drug delivery systems, including through sonoporation. Microbubbles with specific vibrational characteristics and long intravascular persistence are required for clinical uses. To achieve this aim, the kinetics of the microbubble shell components at the gas/liquid interface while being subjected to ultrasound need to be better understood. This paper investigates the vibration characteristics and lifetime of single microbubbles coated with a poloxamer surfactant, Pluronic F-68, and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) under ultrasound irradiation. Air- and perfluorohexane (PFH)-filled microbubbles coated with Pluronic F-68 and DMPC at several concentrations (0 to 10-2 mol L-1) were produced. An optical measurement system using a laser Doppler vibrometer and microscope was used to observe the radial vibration mode of single microbubbles. The vibrational displacement amplitude and resonance radius of Pluronic- or DMPC-coated microbubbles were found to depend very little on the concentrations. The resonance radius was around 65 μm at 38.8 kHz under all the experimental conditions investigated. The lifetime of the microbubbles was investigated simultaneously by measuring their temporal change in volume, and it was increased with Pluronic concentration. Remarkably, the oscillation amplitude of the bubble has an effect on the bubble lifetime. In other words, larger oscillation under the resonance condition accelerates the diffusion of the inner gas.
Collapse
Affiliation(s)
- Hiraku Tabata
- Faculty of Science and Engineering , Doshisha University , 1-3 Tataramiyakodani , Kyotanabe , Kyoto 610-0321 , Japan
| | - Daisuke Koyama
- Faculty of Science and Engineering , Doshisha University , 1-3 Tataramiyakodani , Kyotanabe , Kyoto 610-0321 , Japan
| | - Mami Matsukawa
- Faculty of Science and Engineering , Doshisha University , 1-3 Tataramiyakodani , Kyotanabe , Kyoto 610-0321 , Japan
| | - Kenji Yoshida
- Center for Frontier Medical Engineering , Chiba University , 1-33 Yayoicho , Inage-ku , Chiba 263-8522 , Japan
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS) , University of Strasbourg , 23 rue du Loess , 67034 Strasbourg , France
| |
Collapse
|
12
|
Shafi AS, McClements J, Albaijan I, Abou-Saleh RH, Moran C, Koutsos V. Probing phospholipid microbubbles by atomic force microscopy to quantify bubble mechanics and nanostructural shell properties. Colloids Surf B Biointerfaces 2019; 181:506-515. [DOI: 10.1016/j.colsurfb.2019.04.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022]
|
13
|
Gao X, Nan Y, Yuan Y, Gong X, Sun Y, Zhou H, Zong Y, Zhang L, Yu M. Gas‑filled ultrasound microbubbles enhance the immunoactivity of the HSP70‑MAGEA1 fusion protein against MAGEA1‑expressing tumours. Mol Med Rep 2018; 18:315-321. [PMID: 29749485 PMCID: PMC6059686 DOI: 10.3892/mmr.2018.9003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/16/2018] [Indexed: 11/10/2022] Open
Abstract
Advanced malignant melanoma is characterized by rapid development, poor prognosis and insensitivity to chemoradiotherapy. Immunotherapy has become one of the primary clinical treatments for malignant melanomas. In recent decades, identifying specific tumour antigens and the enhanced immunoactivity of tumour vaccines has become critical for engineering successful tumour vaccines. As a widely used vaccine carrier, heat shock protein 70 (HSP70) clearly increases the immunogenicity of tumour antigens, such as melanoma-associated antigen A1 (MAGEA1). Based on previous studies, gas-filled ultrasound microbubbles (MBs) were engineered to carry an HSP70-MAGEA1 fusion protein (FP). Following subcutaneous injection around the lymphatic nodes the FP was directly released into the lymph nodes under ultrasonic imaging. The results indicated that the microbubbles enhanced the immunoactivity of FPs more effectively than HSP70-MAGEA1 fusion alone. Additionally, HSP70-MAGEA1 delivered via microbubbles clearly inhibited and delayed the growth of MAGEA1-expressing B16 melanomas in mice and improved the survival times of these animals compared with the fusion protein alone. The results of the present study demonstrated that controlled MBs enhance the immunoactivity of FPs and also highlights novel, potential vaccine carriers and a new strategy for engineering controllable tumour vaccine designs.
Collapse
Affiliation(s)
- Xing Gao
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Nan
- Department of Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Gong
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuanyuan Sun
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huihui Zhou
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yujin Zong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Lijun Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ming Yu
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
14
|
Tang J, Mi J, Huang W, Zhong H, Li Y, Zhou J, Johri AM. Controlled drug release from ultrasound-visualized elastic eccentric microcapsules using different resonant modes. J Mater Chem B 2018; 6:1920-1929. [DOI: 10.1039/c7tb03164e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The release rate of drug from elastic eccentric microcapsules can be regulated, based on their mode shapes and resonant natural frequencies.
Collapse
Affiliation(s)
- Junyun Tang
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Jiaomei Mi
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Wenwei Huang
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Huixiang Zhong
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Yan Li
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Jianhua Zhou
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Amer M. Johri
- Department of Medicine
- Division of Cardiology
- Cardiovascular Imaging Network at Queen's University
- Kingston
- Canada
| |
Collapse
|
15
|
Bastarrachea LJ, Walsh M, Wrenn SP, Tikekar RV. Enhanced antimicrobial effect of ultrasound by the food colorant Erythrosin B. Food Res Int 2017; 100:344-351. [DOI: 10.1016/j.foodres.2017.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
|
16
|
Bear JC, Patrick PS, Casson A, Southern P, Lin FY, Powell MJ, Pankhurst QA, Kalber T, Lythgoe M, Parkin IP, Mayes AG. Magnetic hyperthermia controlled drug release in the GI tract: solving the problem of detection. Sci Rep 2016; 6:34271. [PMID: 27671546 PMCID: PMC5037467 DOI: 10.1038/srep34271] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
Drug delivery to the gastrointestinal (GI) tract is highly challenging due to the harsh environments any drug- delivery vehicle must experience before it releases it's drug payload. Effective targeted drug delivery systems often rely on external stimuli to effect release, therefore knowing the exact location of the capsule and when to apply an external stimulus is paramount. We present a drug delivery system for the GI tract based on coating standard gelatin drug capsules with a model eicosane- superparamagnetic iron oxide nanoparticle composite coating, which is activated using magnetic hyperthermia as an on-demand release mechanism to heat and melt the coating. We also show that the capsules can be readily detected via rapid X-ray computed tomography (CT) and magnetic resonance imaging (MRI), vital for progressing such a system towards clinical applications. This also offers the opportunity to image the dispersion of the drug payload post release. These imaging techniques also influenced capsule content and design and the delivered dosage form. The ability to easily change design demonstrates the versatility of this system, a vital advantage for modern, patient-specific medicine.
Collapse
Affiliation(s)
- Joseph C. Bear
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - P. Stephen Patrick
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine and Institute of Child Health, University College London, London WC1E 6DD, UK
| | - Alfred Casson
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Paul Southern
- UCL Healthcare Biomagnetics Laboratories, Royal Institution of Great Britain, 21 Albemarle Street, London, W1S 4BS, UK
| | - Fang-Yu Lin
- UCL Healthcare Biomagnetics Laboratories, Royal Institution of Great Britain, 21 Albemarle Street, London, W1S 4BS, UK
| | - Michael J. Powell
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Quentin A. Pankhurst
- UCL Healthcare Biomagnetics Laboratories, Royal Institution of Great Britain, 21 Albemarle Street, London, W1S 4BS, UK
- Institute of Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine and Institute of Child Health, University College London, London WC1E 6DD, UK
| | - Mark Lythgoe
- Centre for Advanced Biomedical Imaging (CABI), Department of Medicine and Institute of Child Health, University College London, London WC1E 6DD, UK
| | - Ivan P. Parkin
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Andrew G. Mayes
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk. NR4 7TJ, United Kingdom
| |
Collapse
|
17
|
Hua X, Ding J, Li R, Zhang Y, Huang Z, Guo Y, Chen Q. Anti-tumor effect of ultrasound-induced Nordy-loaded microbubbles destruction. J Drug Target 2016; 24:703-8. [PMID: 26811100 DOI: 10.3109/1061186x.2016.1144058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Synthesized dl-Nordihydroguaiaretic acid (dl-NGDA or "Nordy") can inhibit the growth of malignant human tumors, especially the tumor angiogenesis. However, its liposoluble nature limits its in vivo efficacy in the hydrosoluble circulation of human. PURPOSE We tried to use the ultrasonic microbubble as the carrier and the ultrasound-induced destruction for the targeted release of Nordy and evaluate its in vitro and in vivo anti-tumor effect. METHODS Nordy-loaded lipid microbubbles were prepared by mechanical vibration. Effects of ultrasound-induced Nordy-loaded microbubbles destruction on proliferation of human umbilical vein endothelial cells (HUVECs), tumor derived endothelial cells (Td-ECs), and rabbit transplanted VX2 tumor models were evaluated. RESULTS The ultrasound-induced Nordy-loaded microbubbles destruction inhibited the proliferations of HUVECs and Td-ECs in vitro, and inhibited the tumor growth and the microvasculature in vivo. Its efficacy was higher than those of Nordy used only and Nordy with ultrasound exposure. CONCLUSION Ultrasonic microbubbles can be used as the carrier of Nordy and achieve its targeted release with improved anti-tumor efficacy in the condition of ultrasound-induced microbubbles destruction.
Collapse
Affiliation(s)
- Xing Hua
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Jun Ding
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Rui Li
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Ying Zhang
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Zejun Huang
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Yanli Guo
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Qinghai Chen
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| |
Collapse
|