1
|
Jia Y, Han S, Li B, Liu C, Ta D. Backscatter measurement of cancellous bone using the ultrasound transit time spectroscopy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:2670-2686. [PMID: 38639562 DOI: 10.1121/10.0025689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Recently, ultrasound transit time spectroscopy (UTTS) was proposed as a promising method for bone quantitative ultrasound measurement. Studies have showed that UTTS could estimate the bone volume fraction and other trabecular bone structure in ultrasonic through-transmission measurements. The goal of this study was to explore the feasibility of UTTS to be adapted in ultrasonic backscatter measurement and further evaluate the performance of backscattered ultrasound transit time spectrum (BS-UTTS) in the measurement of cancellous bone density and structure. First, taking ultrasonic attenuation into account, the concept of BS-UTTS was verified on ultrasonic backscatter signals simulated from a set of scatterers with different positions and intensities. Then, in vitro backscatter measurements were performed on 26 bovine cancellous bone specimens. After a logarithmic compression of the BS-UTTS, a linear fitting of the log-compressed BS-UTTS versus ultrasonic propagated distance was performed and the slope and intercept of the fitted line for BS-UTTS were determined. The associations between BS-UTTS parameters and cancellous bone features were analyzed using simple linear regression. The results showed that the BS-UTTS could make an accurate deconvolution of the backscatter signal and predict the position and intensity of the simulated scatterers eliminating phase interference, even the simulated backscatter signal was with a relatively low signal-to-noise ratio. With varied positions and intensities of the scatterers, the slope of the fitted line for the log-compressed BS-UTTS versus ultrasonic propagated distance (i.e., slope of BS-UTTS for short) yield a high agreement (r2 = 99.84%-99.96%) with ultrasonic attenuation in simulated backscatter signal. Compared with the high-density cancellous bone, the low-density specimen showed more abundant backscatter impulse response in the BS-UTTS. The slope of BS-UTTS yield a significant correlation with bone mineral density (r = 0.87; p < 0.001), BV/TV (r = 0.87; p < 0.001), and cancellous bone microstructures (r up to 0.87; p < 0.05). The intercept of BS-UTTS was also significantly correlated with bone densities (r = -0.87; p < 0.001) and trabecular structures (|r|=0.43-0.80; p < 0.05). However, the slope of the BS-UTTS underestimated attenuation when measurements were performed experimentally. In addition, a significant non-linear relationship was observed between the measured attenuation and the attenuation estimated by the slope of the BS-UTTS. This study demonstrated that the UTTS method could be adapted to ultrasonic backscatter measurement of cancellous bone. The derived slope and intercept of BS-UTTS could be used in the measurement of bone density and microstructure. The backscattered ultrasound transit time spectroscopy might have potential in the diagnosis of osteoporosis in the clinic.
Collapse
Affiliation(s)
- Yan Jia
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Shuai Han
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Boyi Li
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Chengcheng Liu
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 201203, China
| | - Dean Ta
- Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 201203, China
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China
| |
Collapse
|
2
|
Alomari A, Langton C. Comparison of deconvoluted-convoluted reconstituted ultrasound signals with their experimental original in a porous composite, cancellous bone. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2022.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Wear KA. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:454-482. [PMID: 31634127 PMCID: PMC7050438 DOI: 10.1109/tuffc.2019.2947755] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultrasound is now a clinically accepted modality in the management of osteoporosis. The most common commercial clinical devices assess fracture risk from measurements of attenuation and sound speed in cancellous bone. This review discusses fundamental mechanisms underlying the interaction between ultrasound and cancellous bone. Because of its two-phase structure (mineralized trabecular network embedded in soft tissue-marrow), its anisotropy, and its inhomogeneity, cancellous bone is more difficult to characterize than most soft tissues. Experimental data for the dependencies of attenuation, sound speed, dispersion, and scattering on ultrasound frequency, bone mineral density, composition, microstructure, and mechanical properties are presented. The relative roles of absorption, scattering, and phase cancellation in determining attenuation measurements in vitro and in vivo are delineated. Common speed of sound metrics, which entail measurements of transit times of pulse leading edges (to avoid multipath interference), are greatly influenced by attenuation, dispersion, and system properties, including center frequency and bandwidth. However, a theoretical model has been shown to be effective for correction for these confounding factors in vitro and in vivo. Theoretical and phantom models are presented to elucidate why cancellous bone exhibits negative dispersion, unlike soft tissue, which exhibits positive dispersion. Signal processing methods are presented for separating "fast" and "slow" waves (predicted by poroelasticity theory and supported in cancellous bone) even when the two waves overlap in time and frequency domains. Models to explain dependencies of scattering on frequency and mean trabecular thickness are presented and compared with measurements. Anisotropy, the effect of the fluid filler medium (marrow in vivo or water in vitro), phantoms, computational modeling of ultrasound propagation, acoustic microscopy, and nonlinear properties in cancellous bone are also discussed.
Collapse
|
4
|
Alomari AH, Wille ML, Langton CM. The dependence of broadband ultrasound attenuation on phase interference in thin plates of variable thickness and curvature: a comparison of experimental measurement and computer simulation. Proc Inst Mech Eng H 2018; 232:468-478. [PMID: 29589802 DOI: 10.1177/0954411918762145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The measurement of broadband ultrasound attenuation describes the linear increase in ultrasound attenuation with frequency (dB/MHz); this is generally performed at the calcaneus, consisting of a high proportion of metabolically active cancellous bone. Although broadband ultrasound attenuation is not routinely implemented within clinical management since it cannot provide a reliable estimation of bone mineral density and hence clinical definition of osteopenia and osteoporosis, it offers a reliable means to predict osteoporotic fracture risk. One of the potential factors that can influence the accuracy of broadband ultrasound attenuation measurement is the effect of cortical end plates. This study aimed to explore this, performing a comparison of experimental study and computer simulation prediction. A total of three categories of thin discs were three-dimensional (3D) printed to replicate cortical shells of (1) variable constant thickness (planar), (2) variable constant thickness (curved), and (3) variable thickness. A through-transmission technique was used, where two single-element, unfocused, 1 MHz broadband transducers, as utilised clinically, were positioned coaxially in a cylindrical holder and immersed in water. Both quantitative and qualitative analyses demonstrated that broadband ultrasound attenuation measurements of the 'planar' and 'curved' discs were not statistically different (p-values > 0.01). A cyclic relationship between broadband ultrasound attenuation and disc thickness was observed; this was replicated within a computer simulation of phase interference created by a double-reflection echo within each disc (R2 = 97.0%). Variable-thickness discs provided broadband ultrasound attenuation measurements ranging between 31.6 ± 0.1 and 40.60 ± 0.1 dB/MHz. Again applying the double-reflection echo simulation, a high level of agreement between experimental and simulation was recorded (R2 = 93.4%). This study indicates that the cortical end plate can significantly affect the broadband ultrasound attenuation measurement of cancellous bone as a result of phase interference and, therefore, warrants further investigation to minimise its effect on clinical assessment.
Collapse
Affiliation(s)
- Ali Hamed Alomari
- 1 Science and Engineering Faculty, Queensland University of Technology, Kelvin Grove, QLD, Australia.,2 Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,3 Al-Qunfudhah University College, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Marie-Luise Wille
- 1 Science and Engineering Faculty, Queensland University of Technology, Kelvin Grove, QLD, Australia.,2 Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Christian M Langton
- 1 Science and Engineering Faculty, Queensland University of Technology, Kelvin Grove, QLD, Australia.,2 Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,4 Laboratory of Ultrasonic Electronics, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
5
|
Alomari AH, Wille ML, Langton CM. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT. Bone 2018; 107:145-153. [PMID: 29198979 DOI: 10.1016/j.bone.2017.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/07/2017] [Accepted: 11/29/2017] [Indexed: 11/30/2022]
Abstract
Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm-1) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R2) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R2=0.567 and 0.618 respectively) and mechanical strength (R2=0.747 and 0.736 respectively). When respective structural parameters were incorporated to BV/TV, multiple regression analysis indicated that none of the μCT histomorphometric parameters could improve the prediction of mechanical stiffness and strength, while for UTTS, adding TTMP to BV/TV increased the prediction of mechanical stiffness to R2=0.711 and strength to R2=0.827. It is therefore envisaged that UTTS may have the ability to estimate BV/TV along with providing an improved prediction of osteoporotic fracture risk, within routine clinical practice in the future.
Collapse
Affiliation(s)
- Ali Hamed Alomari
- Science & Engineering Faculty and Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; The University College in Al-Qunfudah, Umm Al-Qura University, Saudi Arabia
| | - Marie-Luise Wille
- Science & Engineering Faculty and Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Christian M Langton
- Science & Engineering Faculty and Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Laboratory of Ultrasonic Electronics, Doshisha University, Kyotanabe, Japan.
| |
Collapse
|
6
|
Alomari AH, Wille ML, Langton CM. Soft-tissue thickness compensation for ultrasound transit time spectroscopy estimated bone volume fraction—an experimental replication study. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7b47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|