1
|
Filippou A, Evripidou N, Damianou C. A high magnetic resonance imaging (MRI) contrast agar/silica-based phantom for evaluating focused ultrasound (FUS) protocols. Phys Med 2025; 131:104932. [PMID: 39938401 DOI: 10.1016/j.ejmp.2025.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/20/2024] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
PURPOSE Thermal ablation therapies require tissue mimicking phantoms for evaluating novel systems. Herein, an agar phantom exhibiting high magnetic resonance imaging (MRI) contrast to noise ratio (CNR) was developed for testing focused ultrasound (FUS) protocols. METHODS Four agar based phantoms (6 % w/v) were fabricated with varied silica concentrations (0, 2, 4, or 6 % w/v) and subjected to FUS inside a 3 T MRI. T2-Weighted Fast Spin Echo (T2-W FSE) images were acquired after sonications to assess the effect of varied silica on CNR of inflicted lesions. The highest CNR phantom was sonicated and its proton resonance frequency (PRF) coefficient, thermal dose denaturation threshold and ability to sustain good lesion CNR 0-44 min post exposures were assessed. RESULTS T2-W median lesion CNR between 1.5-453.5 was observed, exponentially increasing with increased silica concentration. High CNR was achieved with 4 % w/v silica, with the PRF coefficient of the phantom calculated at -0.00954 ppm/°C. The thermal dose denaturation threshold was revealed at 2 × 106 CEM43°C by comparing thermal dose maps with T2-W FSE lesion hyperenhancement. Progressive lesion CNR loss was observed, with CNR lost 28 min after sonications. CONCLUSIONS The proposed phantom possesses excellent T2-W contrast of inflicted lesions while exhibiting a tissue like PRF coefficient and can thus constitute an inexpensive reusable tool for validating FUS systems and protocols.
Collapse
Affiliation(s)
- Antria Filippou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| | - Nikolas Evripidou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| | - Christakis Damianou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| |
Collapse
|
2
|
Evripidou N, Antoniou A, Lazarou G, Georgiou L, Chrysanthou A, Ioannides C, Damianou C. Workflow of a Preclinical Robotic Magnetic Resonance Imaging-guided Focused Ultrasound Body System. J Med Ultrasound 2025; 33:1-14. [PMID: 40206982 PMCID: PMC11978271 DOI: 10.4103/jmu.jmu_135_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Establishing an efficient workflow is crucial for the success of magnetic resonance-guided focused ultrasound (MRgFUS) procedures. The current study provides a comprehensive description of the workflow of a customized MRgFUS robotic body device for preclinical use and accompanied software through experiments in excised porcine tissue. METHODS The employed system comprises a single-element spherically focused transducer of 2.6 MHz that can be moved along four PC-controlled axes. A detailed description of essential software functionalities and its integration with a 3T Siemens magnetic resonance imaging (MRI) scanner through Access-I for interactive remote control of the scanner and real-time access to imaging data is provided. Following treatment planning on preoperative MR images, porcine tissue samples were sonicated in rectangular and irregular grid patterns with varying ultrasonic parameters and spatial step under software-based monitoring. RESULTS MRgFUS ablations of ex vivo porcine tissue were successfully performed utilizing a multimodal monitoring approach combining MRI-based temperature, thermal dose, and necrotic area mapping, thus demonstrating an efficient procedural workflow. The simulated necrotic regions were in excellent agreement with the actual lesions revealed upon tissue dissection and highly consistent with the planned sonication patterns. The software's ability to accurately identify regions where necrosis did not occur and indicate to the user the specific points to be re-sonicated was demonstrated. CONCLUSION Overall, the study highlights critical aspects in accurately planning and executing preclinical MRgFUS protocols within an efficient workflow. The provided data could serve as the basis for other researchers in the field.
Collapse
Affiliation(s)
- Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - George Lazarou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
3
|
Antoniou A, Evripidou N, Nikolaou A, Georgiou A, Giannakou M, Chrysanthou A, Georgiou L, Ioannides C, Damianou C. Magnetic Resonance Imaging Monitoring of Thermal Lesions Produced by Focused Ultrasound. J Med Ultrasound 2024; 32:297-308. [PMID: 39801543 PMCID: PMC11717076 DOI: 10.4103/jmu.jmu_112_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The main goal of the study was to find the magnetic resonance imaging (MRI) parameters that optimize contrast between tissue and thermal lesions produced by focused ultrasound (FUS) using T1-weighted (T1-W) and T2-weighted (T2-W) fast spin echo (FSE) sequences. METHODS FUS sonications were performed in ex vivo porcine tissue using a single-element FUS transducer of 2.6 MHz in 1.5 and 3 T MRI scanners. The difference in relaxation times as well as the impact of critical MRI parameters on the resultant contrast-to-noise ratio (CNR) between coagulated and normal tissues were assessed. Discrete and overlapping lesions were inflicted in tissue with simultaneous acquisition of T2-W FSE images. RESULTS FUS lesions are characterized by lower relaxation times than intact porcine tissue. CNR values above 80 were sufficient for proper lesion visualization. For T1-W imaging, repetition time values close to 1500 ms were considered optimum for obtaining sufficiently high CNR at the minimum time cost. Echo time values close to 50 ms offered the maximum lesion contrast in T2-W FSE imaging. Monitoring of acute FUS lesions during grid sonications was performed successfully. Lesions appeared as hypointense spots with excellent contrast from surrounding tissue. CONCLUSION MRI monitoring of signal intensity changes during FUS sonication in grid patterns using optimized sequence parameters can provide useful information about lesion progression and the success of ablation. This preliminary study demonstrated the feasibility of the proposed monitoring method in ex vivo porcine tissue and should be supported by in vivo studies to assess its clinical potential.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Anastasia Nikolaou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Andreas Georgiou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Marinos Giannakou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
4
|
Zhang C, Wu Y, Zhang Q, Zhang M, Zhang D. The impact of ischemic vascular stenosis on LIPU hyperthermia efficacy investigated Based on in vivo rabbit limb ischemia model. ULTRASONICS 2024; 138:107263. [PMID: 38350312 DOI: 10.1016/j.ultras.2024.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Ischemic diseases due to arterial stenosis or occlusion are common and can have serious consequences if untreated. Therapeutic ultrasound like high-intensity focused ultrasound (HIFU) ablates tissues while low-intensity pulsed ultrasound (LIPU) promotes healing at relatively low temperatures. However, blood vessel cooling effect and reduced flow in ischemia impact temperature distribution and ultrasonic treatment efficacy. This work established a rabbit limb ischemia model by ligating the femoral artery, measuring vascular changes and temperature rise during LIPU exposures. Results showed the artery diameter was narrowed by 46.2% and the downstream velocity was reduced by 51.3% after ligation. Finite element simulations verified that the reduced flow velocity impaired heat dissipation, enhancing LIPU-induced heating. Simulation results also suggested the temperature rise was almost related linearly to vessel diameter but decayed exponentially with the increasing flow velocity. Findings indicate that the proposed model could be used as an effectively tool to model the heating effects in ischemic tissues during LIPU treatment. This research on relating varied ischemic flow to LIPU-induced thermal effects is significant for developing safe and efficacious clinical ultrasound hyperthermia treatment protocols for the patients with ischemic diseases.
Collapse
Affiliation(s)
- Chunbing Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yiyun Wu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Meimei Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dong Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
5
|
Antoniou A, Evripidou N, Georgiou L, Chrysanthou A, Ioannides C, Damianou C. Tumor phantom model for MRI-guided focused ultrasound ablation studies. Med Phys 2023; 50:5956-5968. [PMID: 37226334 DOI: 10.1002/mp.16480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The persistent development of focused ultrasound (FUS) thermal therapy in the context of oncology creates the need for tissue-mimicking tumor phantom models for early-stage experimentation and evaluation of relevant systems and protocols. PURPOSE This study presents the development and evaluation of a tumor-bearing tissue phantom model for testing magnetic resonance imaging (MRI)-guided FUS (MRgFUS) ablation protocols and equipment based on MR thermometry. METHODS Normal tissue was mimicked by a pure agar gel, while the tumor simulator was differentiated from the surrounding material by including silicon dioxide. The phantom was characterized in terms of acoustic, thermal, and MRI properties. US, MRI, and computed tomography (CT) images of the phantom were acquired to assess the contrast between the two compartments. The phantom's response to thermal heating was investigated by performing high power sonications with a 2.4 MHz single element spherically focused ultrasonic transducer in a 3T MRI scanner. RESULTS The estimated phantom properties fall within the range of literature-reported values of soft tissues. The inclusion of silicon dioxide in the tumor material offered excellent tumor visualization in US, MRI, and CT. MR thermometry revealed temperature elevations in the phantom to ablation levels and clear evidence of larger heat accumulation within the tumor owing to the inclusion of silicon dioxide. CONCLUSION Overall, the study findings suggest that the proposed tumor phantom model constitutes a simple and inexpensive tool for preclinical MRgFUS ablation studies, and potentially other image-guided thermal ablation applications upon minimal modifications.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
6
|
Filippou A, Georgiou A, Nikolaou A, Evripidou N, Damianou C. Advanced software for MRgFUS treatment planning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107726. [PMID: 37480647 DOI: 10.1016/j.cmpb.2023.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Herein, a user-friendly software platform for 3-dimensional Focused Ultrasound treatment planning based on Magnetic Resonance Imaging (MRI) images is presented. METHODS The software directly retrieves and loads MRI images. Various design tools can be used on the MRI images to define the treatment area and the sonication parameters. Based on the treatment plan, the software controls the robotic motion and motion pattern of Magnetic Resonance guided Focused Ultrasound (MRgFUS) robotic systems to execute the treatment procedure. Real-time treatment monitoring is achieved through MRI images and thermometry. The software's functionality and performance were evaluated in both laboratory and MRI environments. Different treatment plans were designed on MRI images and sonications were executed on agar-based phantoms and polymer films. RESULTS Magnetic Resonance (MR) thermometry maps were acquired in the agar-based phantoms. An exceptional agreement was observed between the software-planned treatment area and the lesions produced on the polymer films. CONCLUSIONS The developed software was successfully integrated with the MRI and robotic system controls for performing accurate treatment planning and real-time monitoring during sonications. The software provides an extremely user-friendly interface, while in the future it could be enhanced by providing dynamic modulation of the ultrasonic parameters during the treatment process.
Collapse
Affiliation(s)
- Antria Filippou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Andreas Georgiou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus
| | - Anastasia Nikolaou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Nikolas Evripidou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Christakis Damianou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| |
Collapse
|
7
|
Antoniou A, Spanoudes K, Damianou C. Treatment of mammary cancer with focused ultrasound: A pilot study in canine and feline patients. ULTRASONICS 2023; 132:106974. [PMID: 36917874 DOI: 10.1016/j.ultras.2023.106974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 05/29/2023]
Abstract
In recent years, veterinary medicine has expanded its practices beyond conventional methods, gradually integrating the Focused Ultrasound (FUS) technology in the care of companion animals like dogs and cats. The current study aimed to examine the feasibility and provide insights into the application of thermal FUS in canine and feline mammary cancer therapy. FUS was delivered by a 2-MHz single-element spherically focused ultrasonic transducer as integrated with an existing robotic positioning device. The functionality of the FUS system and sonication protocol in efficiently and safely ablating live tissue was initially validated in a rabbit thigh model in a laboratory environment. Nine (9) dogs and cats with superficial mammary cancer were recruited through a dedicated campaign according to specific safety criteria. The veterinary patients underwent FUS ablation followed by immediate surgical resection of the entire malignancy. Histopathology examination demonstrated well-defined regions of coagulative necrosis in all treated tumors with no off-target damage. Further study with a larger patient population is needed to confirm the current findings and demonstrate the safety and feasibility of complete FUS ablation of deep-seated tumors.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Kyriakos Spanoudes
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
8
|
Antoniou A, Damianou C. Simple, inexpensive, and ergonomic phantom for quality assurance control of MRI guided Focused Ultrasound systems. J Ultrasound 2023; 26:401-408. [PMID: 36329304 PMCID: PMC10247591 DOI: 10.1007/s40477-022-00740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The popularity of Magnetic Resonance guided Focused Ultrasound (MRgFUS) as a beneficial therapeutic solution for many diseases is increasing rapidly, thus raising the need for reliable quality assurance (QA) phantoms for routine testing of MRgFUS systems. In this study, we propose a thin acrylic film as the cheapest and most easily accessible phantom for assessing the functionality of MRgFUS hardware and software. METHODS Through the paper, specific QA tests are detailed in the framework of evaluating an MRgFUS preclinical robotic device comprising a single element spherically focused transducer with a nominal frequency of 2.75 MHz. These tests take advantage of the reflection of ultrasonic waves at a plastic-air interface, which results in almost immediate lesion formation on the film at a threshold of applied acoustic energy. RESULTS The phantom offered qualitative information on the power field distribution of the FUS transducer and the ability to visualize different FUS protocols. It also enabled quick and reliable assessment of various navigation algorithms as they are used in real treatments, and also allowed for the assessment of the accuracy of robotic motion. CONCLUSION Therefore, it could serve as a useful tool for detecting defects in system's performance over its lifetime after establishing a baseline while concurrently contributing to establish QA and calibration guidelines for clinical routine controls.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, 30 Archbishop Kyprianou Street, 3036, Limassol, Cyprus.
| |
Collapse
|
9
|
McNabb E, Sharma D, Sannachi L, Giles A, Yang W, Czarnota GJ. MR-guided ultrasound-stimulated microbubble therapy enhances radiation-induced tumor response. Sci Rep 2023; 13:4487. [PMID: 36934140 PMCID: PMC10024768 DOI: 10.1038/s41598-023-30286-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/20/2023] Open
Abstract
High intensity focused ultrasound (HIFU) systems have been approved for therapeutic ultrasound delivery to cause tissue ablation or induced hyperthermia. Microbubble agents have also been used in combination with sonication exposures. These require temperature feedback and monitoring to prevent unstable cavitation and prevent excess tissue heating. Previous work has utilized lower power and pressure to oscillate microbubbles and transfer energy to endothelial cells in the absence of thermally induced damage that can radiosensitize tumors. This work investigated whether reduced acoustic power and pressure on a commercial available MR-integrated HIFU system could result in enhanced radiation-induced tumor response after exposure to ultrasound-stimulated microbubbles (USMB) therapy. A commercially available MR-integrated HIFU system was used with a hyperthermia system calibration provided by the manufacturer. The ultrasound transducer was calibrated to reach a peak negative pressure of - 750 kPa. Thirty male New Zealand white rabbits bearing human derived PC3 tumors were grouped to receive no treatment, 14 min of USMB, 8 Gy of radiation in a separate irradiation cabinet, or combined treatments. In vivo temperature changes were collected using MR thermometry at the tumor center and far-field muscle region. Tissues specimens were collected 24 h post radiation therapy. Tumor cell death was measured and compared to untreated controls through hematoxylin and eosin staining and immunohistochemical analysis. The desired peak negative pressure of - 750 kPa used for previous USMB occurred at approximately an input power of 5 W. Temperature changes were limited to under 4 °C in ten of twelve rabbits monitored. The median temperature in the far-field muscle region of the leg was 2.50 °C for groups receiving USMB alone or in combination with radiation. Finally, statistically significant tumor cell death was demonstrated using immunohistochemical analysis in the combined therapy group compared to untreated controls. A commercial MR-guided therapy HIFU system was able to effectively treat PC3 tumors in a rabbit model using USMB therapy in combination with radiation exposures. Future work could find the use of reduced power and pressure levels in a commercial MR-guided therapy system to mechanically stimulate microbubbles and damage endothelial cells without requiring high thermal doses to elicit an antitumor response.
Collapse
Affiliation(s)
- Evan McNabb
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Anoja Giles
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Wenyi Yang
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Antoniou A, Georgiou A, Evripidou N, Damianou C. Full coverage path planning algorithm for MRgFUS therapy. Int J Med Robot 2022; 18:e2389. [PMID: 35257476 PMCID: PMC9286630 DOI: 10.1002/rcs.2389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND High-quality methods for Magnetic Resonance guided Focussed Ultrasound (MRgFUS) therapy planning are needed for safe and efficient clinical practices. Herein, an algorithm for full coverage path planning based on preoperative MR images is presented. METHODS The software functionalities of an MRgFUS robotic system were enhanced by implementing the developed algorithm. The algorithm's performance in accurate path planning following a Zig-Zag pathway was assessed on MR images. The planned sonication paths were performed on acrylic films using the robotic system carrying a 2.75 MHz single element transducer. RESULTS Ablation patterns were successfully planned on MR images and produced on acrylic films by overlapping lesions with excellent match between the planned and experimental lesion shapes. CONCLUSIONS The advanced software was proven efficient in planning and executing full ablation of any segmented target. The reliability of the algorithm could be enhanced through the development of a fully automated segmentation procedure.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical EngineeringComputer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| | - Andreas Georgiou
- Department of Electrical EngineeringComputer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| | - Nikolas Evripidou
- Department of Electrical EngineeringComputer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| | - Christakis Damianou
- Department of Electrical EngineeringComputer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| |
Collapse
|