1
|
Nan JH, Yin LL, Tang ZS, Xiang T, Ma GJ, Li XY, Liu XL, Zhao SH, Liu XD. Identification of novel variants and candidate genes associated with porcine bone mineral density using genome-wide association study. J Anim Sci 2020; 98:5736012. [PMID: 32055823 PMCID: PMC7166125 DOI: 10.1093/jas/skaa052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
Pig leg weakness not only causes huge economic losses for producers but also affects animal welfare. However, genes with large effects on pig leg weakness have not been identified and suitable methods to study porcine leg weakness are urgently needed. Bone mineral density (BMD) is an important indicator for determining leg soundness in pigs. Increasing pig BMD is likely to improve pig leg soundness. In this study, porcine BMD was measured using an ultrasound bone densitometer in a population with 212 Danish Landrace pigs and 537 Danish Yorkshires. After genotyping all the individuals using GeneSeek Porcine 50K SNP chip, genetic parameter estimation was performed to evaluate the heritability of BMD. Genome-wide association study and haplotype analysis were also performed to identify the variants and candidate genes associated with porcine BMD. The results showed that the heritability of BMD was 0.21 in Landrace and 0.31 in Yorkshire. Five single-nucleotide polymorphisms on chromosome 6 identified were associated with porcine BMD at suggestive significance level. Two candidate quantitative trait loci (74.47 to 75.33 Mb; 80.20 to 83.83 Mb) and three potential candidate genes (ZBTB40, CNR2, and Lin28a) of porcine BMD were detected in this study.
Collapse
Affiliation(s)
- Jiuhong-H Nan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Lilin-L Yin
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zhenshuang-S Tang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Tao Xiang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Guanjun-J Ma
- Key Lab of Swine Healthy Breeding of Ministry of Agriculture and Rural Affairs, Guangxi Yangxiang Co., Ltd., Guigang, Guangxi, P.R. China
| | - Xinyun-Y Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiaolei-L Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Shuhong-H Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiangdong-D Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, P.R. China.,Key Lab of Swine Healthy Breeding of Ministry of Agriculture and Rural Affairs, Guangxi Yangxiang Co., Ltd., Guigang, Guangxi, P.R. China
| |
Collapse
|
2
|
Wear KA. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:454-482. [PMID: 31634127 PMCID: PMC7050438 DOI: 10.1109/tuffc.2019.2947755] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultrasound is now a clinically accepted modality in the management of osteoporosis. The most common commercial clinical devices assess fracture risk from measurements of attenuation and sound speed in cancellous bone. This review discusses fundamental mechanisms underlying the interaction between ultrasound and cancellous bone. Because of its two-phase structure (mineralized trabecular network embedded in soft tissue-marrow), its anisotropy, and its inhomogeneity, cancellous bone is more difficult to characterize than most soft tissues. Experimental data for the dependencies of attenuation, sound speed, dispersion, and scattering on ultrasound frequency, bone mineral density, composition, microstructure, and mechanical properties are presented. The relative roles of absorption, scattering, and phase cancellation in determining attenuation measurements in vitro and in vivo are delineated. Common speed of sound metrics, which entail measurements of transit times of pulse leading edges (to avoid multipath interference), are greatly influenced by attenuation, dispersion, and system properties, including center frequency and bandwidth. However, a theoretical model has been shown to be effective for correction for these confounding factors in vitro and in vivo. Theoretical and phantom models are presented to elucidate why cancellous bone exhibits negative dispersion, unlike soft tissue, which exhibits positive dispersion. Signal processing methods are presented for separating "fast" and "slow" waves (predicted by poroelasticity theory and supported in cancellous bone) even when the two waves overlap in time and frequency domains. Models to explain dependencies of scattering on frequency and mean trabecular thickness are presented and compared with measurements. Anisotropy, the effect of the fluid filler medium (marrow in vivo or water in vitro), phantoms, computational modeling of ultrasound propagation, acoustic microscopy, and nonlinear properties in cancellous bone are also discussed.
Collapse
|
3
|
Alomari AH, Wille ML, Langton CM. The dependence of broadband ultrasound attenuation on phase interference in thin plates of variable thickness and curvature: a comparison of experimental measurement and computer simulation. Proc Inst Mech Eng H 2018; 232:468-478. [PMID: 29589802 DOI: 10.1177/0954411918762145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The measurement of broadband ultrasound attenuation describes the linear increase in ultrasound attenuation with frequency (dB/MHz); this is generally performed at the calcaneus, consisting of a high proportion of metabolically active cancellous bone. Although broadband ultrasound attenuation is not routinely implemented within clinical management since it cannot provide a reliable estimation of bone mineral density and hence clinical definition of osteopenia and osteoporosis, it offers a reliable means to predict osteoporotic fracture risk. One of the potential factors that can influence the accuracy of broadband ultrasound attenuation measurement is the effect of cortical end plates. This study aimed to explore this, performing a comparison of experimental study and computer simulation prediction. A total of three categories of thin discs were three-dimensional (3D) printed to replicate cortical shells of (1) variable constant thickness (planar), (2) variable constant thickness (curved), and (3) variable thickness. A through-transmission technique was used, where two single-element, unfocused, 1 MHz broadband transducers, as utilised clinically, were positioned coaxially in a cylindrical holder and immersed in water. Both quantitative and qualitative analyses demonstrated that broadband ultrasound attenuation measurements of the 'planar' and 'curved' discs were not statistically different (p-values > 0.01). A cyclic relationship between broadband ultrasound attenuation and disc thickness was observed; this was replicated within a computer simulation of phase interference created by a double-reflection echo within each disc (R2 = 97.0%). Variable-thickness discs provided broadband ultrasound attenuation measurements ranging between 31.6 ± 0.1 and 40.60 ± 0.1 dB/MHz. Again applying the double-reflection echo simulation, a high level of agreement between experimental and simulation was recorded (R2 = 93.4%). This study indicates that the cortical end plate can significantly affect the broadband ultrasound attenuation measurement of cancellous bone as a result of phase interference and, therefore, warrants further investigation to minimise its effect on clinical assessment.
Collapse
Affiliation(s)
- Ali Hamed Alomari
- 1 Science and Engineering Faculty, Queensland University of Technology, Kelvin Grove, QLD, Australia.,2 Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,3 Al-Qunfudhah University College, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Marie-Luise Wille
- 1 Science and Engineering Faculty, Queensland University of Technology, Kelvin Grove, QLD, Australia.,2 Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Christian M Langton
- 1 Science and Engineering Faculty, Queensland University of Technology, Kelvin Grove, QLD, Australia.,2 Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,4 Laboratory of Ultrasonic Electronics, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
4
|
Alomari AH, Wille ML, Langton CM. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT. Bone 2018; 107:145-153. [PMID: 29198979 DOI: 10.1016/j.bone.2017.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/07/2017] [Accepted: 11/29/2017] [Indexed: 11/30/2022]
Abstract
Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm-1) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R2) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R2=0.567 and 0.618 respectively) and mechanical strength (R2=0.747 and 0.736 respectively). When respective structural parameters were incorporated to BV/TV, multiple regression analysis indicated that none of the μCT histomorphometric parameters could improve the prediction of mechanical stiffness and strength, while for UTTS, adding TTMP to BV/TV increased the prediction of mechanical stiffness to R2=0.711 and strength to R2=0.827. It is therefore envisaged that UTTS may have the ability to estimate BV/TV along with providing an improved prediction of osteoporotic fracture risk, within routine clinical practice in the future.
Collapse
Affiliation(s)
- Ali Hamed Alomari
- Science & Engineering Faculty and Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; The University College in Al-Qunfudah, Umm Al-Qura University, Saudi Arabia
| | - Marie-Luise Wille
- Science & Engineering Faculty and Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Christian M Langton
- Science & Engineering Faculty and Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Laboratory of Ultrasonic Electronics, Doshisha University, Kyotanabe, Japan.
| |
Collapse
|
5
|
Alomari AH, Wille ML, Langton CM. Soft-tissue thickness compensation for ultrasound transit time spectroscopy estimated bone volume fraction—an experimental replication study. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa7b47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Dajah SA, Muthusamy H. Effects of back and respiratory muscle exercises on posture and respiratory function in elderly patients with osteoporosis. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2015. [DOI: 10.12968/ijtr.2015.22.5.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aims: To examine the impact of respiratory and thoracic muscle strengthening exercises on kyphosis, chest expansion, dyspnoea and peak expiratory flow rate in elderly people with osteoporosis. Methods: Twenty elderly patients with mild osteoporosis-related kyphosis and respiratory impairment participated in this study. Participants undertook breathing and thoracic extension exercises three times a week for 6 weeks, in which they performed 40 minutes of resistive diaphragmatic exercise with 50% of their one repetition maximum (1RM). Results: Participants in this study demonstrated improvements in: i) dyspnoea, with a reduction in mean score of 8 to 5 on a 10-point dyspnoea grading scale; ii) chest expansion, with a mean increase of 2.01 inches (95% CI 1.59–2.42); iii) peak expiratory flow rate, with a mean increase of 82.50 litre/minute (95% CI 67.25–97.75); iv) range of motion of the spine, with a mean increase of 1.66 inches (95% CI 1.39–1.93). Conclusions: A combination of breathing and thoracic muscle strengthening exercises improves respiratory function and dyspnoea relief. Thus, strengthening exercise programmes should be a part of the rehabilitation protocol for improving the respiratory function of elderly patients with osteoporosis.
Collapse
Affiliation(s)
- Salameh Al Dajah
- Professor and Head of physical therapy and rehabilitation, College of Allied Medical Sciences, The Hashemite University, Jordan
| | - Hariraj Muthusamy
- Lecturer, Physical Therapy Department, Majmaah University, Saudi Arabia
| |
Collapse
|
7
|
Wear KA. Nonlinear attenuation and dispersion in human calcaneus in vitro: statistical validation and relationships to microarchitecture. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:1126-1133. [PMID: 25786928 PMCID: PMC9204557 DOI: 10.1121/1.4908310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Through-transmission measurements were performed on 30 human calcaneus samples in vitro. Nonlinear attenuation and dispersion measurements were investigated by estimating 95% confidence intervals of coefficients of polynomial expansions of log magnitude and phase of transmission coefficients. Bone mineral density (BMD) was measured with dual x-ray absorptiometry. Microarchitecture was measured with microcomputed tomography. Statistically significant nonlinear attenuation and nonzero dispersion were confirmed for a clinical bandwidth of 300-750 kHz in 40%-43% of bone samples. The mean linear coefficient for attenuation was 10.3 dB/cm MHz [95% confidence interval (CI): 9.0-11.6 dB/cm MHz]. The mean quadratic coefficient for attenuation was 1.6 dB/cm MHz(2) (95% CI: 0.4-2.8 dB/cm MHz(2)). Nonlinear attenuation provided little information regarding BMD or microarchitecture. The quadratic coefficient for phase (which is related to dispersion) showed moderate correlations with BMD (r = -0.65; 95% CI: -0.82 to -0.36), bone surface-to-volume ratio (r = 0.47; 95% CI: 0.12-0.72) and trabecular thickness (r = -0.40; 95% CI: -0.67 to -0.03). Dispersion was proportional to bone volume fraction raised to an exponent of 2.1 ± 0.2, which is similar to the value for parallel nylon-wire phantoms (2.4 ± 0.2) and supports a multiple-scattering model for dispersion.
Collapse
Affiliation(s)
- Keith A Wear
- United States Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland 20993
| |
Collapse
|
8
|
Stein EM, Rosete F, Young P, Kamanda-Kosseh M, McMahon DJ, Luo G, Kaufman JJ, Shane E, Siffert RS. Clinical assessment of the 1/3 radius using a new desktop ultrasonic bone densitometer. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:388-95. [PMID: 23312957 PMCID: PMC3570600 DOI: 10.1016/j.ultrasmedbio.2012.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/20/2012] [Accepted: 09/27/2012] [Indexed: 05/23/2023]
Abstract
The objectives of this study were to evaluate the capability of a novel ultrasound device to clinically estimate bone mineral density (BMD) at the 1/3 radius. The device rests on a desktop and is portable, and permits real-time evaluation of the radial BMD. The device measures two net time delay (NTD) parameters, NTD(DW) and NTD(CW). NTD(DW) is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue, cortex and medullary cavity, and the transit time through soft tissue only of equal overall distance. NTD(CW) is defined as the difference between the transit time of an ultrasound pulse to travel through soft-tissue and cortex only, and the transit time through soft tissue only again of equal overall distance. The square root of the product of these two parameters is a measure of the radial BMD at the 1/3 location as measured by dual-energy X-ray absorptiometry (DXA). A clinical IRB-approved study measured ultrasonically 60 adults at the 1/3 radius. BMD was also measured at the same anatomic site and time using DXA. A linear regression using NTD produced a linear correlation coefficient of 0.93 (p < 0.001). These results are consistent with previously reported simulation and in vitro studies. In conclusion, although X-ray methods are effective in bone mass assessment, osteoporosis remains one of the largest undiagnosed and under-diagnosed diseases in the world today. The research described here should enable significant expansion of diagnosis and monitoring of osteoporosis through a desktop device that ultrasonically assesses bone mass at the 1/3 radius.
Collapse
Affiliation(s)
- Emily M Stein
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lin L, Cheng J, Lin W, Qin YX. Prediction of trabecular bone principal structural orientation using quantitative ultrasound scanning. J Biomech 2012; 45:1790-5. [PMID: 22560370 DOI: 10.1016/j.jbiomech.2012.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/12/2012] [Accepted: 04/13/2012] [Indexed: 11/15/2022]
Abstract
Bone has the ability to adapt its structure in response to the mechanical environment as defined as Wolff's Law. The alignment of trabecular structure is intended to adapt to the particular mechanical milieu applied to it. Due to the absence of normal mechanical loading, it will be extremely important to assess the anisotropic deterioration of bone during the extreme conditions, i.e., long term space mission and disease orientated disuse, to predict risk of fractures. The propagation of ultrasound wave in trabecular bone is substantially influenced by the anisotropy of the trabecular structure. Previous studies have shown that both ultrasound velocity and amplitude is dependent on the incident angle of the ultrasound signal into the bone sample. In this work, seven bovine trabecular bone balls were used for rotational ultrasound measurement around three anatomical axes to elucidate the ability of ultrasound to identify trabecular orientation. Both ultrasound attenuation (ATT) and fast wave velocity (UV) were used to calculate the principal orientation of the trabecular bone. By comparing to the mean intercept length (MIL) tensor obtained from μCT, the angle difference of the prediction by UV was 4.45°, while it resulted in 11.67° angle difference between direction predicted by μCT and the prediction by ATT. This result demonstrates the ability of ultrasound as a non-invasive measurement tool for the principal structural orientation of the trabecular bone.
Collapse
Affiliation(s)
- Liangjun Lin
- Orthopaedic Bioengineering Research Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | | | | | | |
Collapse
|
10
|
Wear KA. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:2191-203. [PMID: 20968389 PMCID: PMC9130964 DOI: 10.1121/1.3478779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.
Collapse
Affiliation(s)
- Keith A Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Room 3108, Building 62, 10903 New Hampshire Boulevard, Silver Spring, Maryland 20993, USA.
| |
Collapse
|
11
|
Parmar BJ, Longsine W, Sabonghy EP, Han A, Tasciotti E, Weiner BK, Ferrari M, Righetti R. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques. Phys Med Biol 2010; 55:4839-59. [PMID: 20679698 DOI: 10.1088/0031-9155/55/16/014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.
Collapse
Affiliation(s)
- Biren J Parmar
- Department of Electrical and Computer Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wear KA. Decomposition of two-component ultrasound pulses in cancellous bone using modified least squares prony method--phantom experiment and simulation. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:276-87. [PMID: 20113862 PMCID: PMC9180631 DOI: 10.1016/j.ultrasmedbio.2009.06.1092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/27/2009] [Accepted: 06/08/2009] [Indexed: 05/22/2023]
Abstract
Porous media such as cancellous bone often support the simultaneous propagation of two compressional waves. When small bone samples are interrogated in through-transmission with broadband sources, these two waves often overlap in time. The modified least-squares Prony's (MLSP) method was tested for decomposing a 500 kHz-center-frequency signal containing two overlapping components: one passing through a polycarbonate plate (to produce the "fast" wave) and another passing through a cancellous-bone-mimicking phantom (to produce the "slow" wave). The MLSP method yielded estimates of attenuation slopes accurate to within 7% (polycarbonate plate) and 2% (cancellous bone phantom). The MLSP method yielded estimates of phase velocities accurate to within 1.5% (both media). The MLSP method was also tested on simulated data generated using attenuation slopes and phase velocities corresponding to bovine cancellous bone. Throughout broad ranges of signal-to-noise ratio (SNR), the MLSP method yielded estimates of attenuation slope that were accurate to within 1.0% and estimates of phase velocity that were accurate to within 4.3% (fast wave) and 1.3% (slow wave).
Collapse
Affiliation(s)
- Keith A Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
13
|
Wear KA. Frequency dependence of average phase shift from human calcaneus in vitro. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 126:3291-300. [PMID: 20000943 DOI: 10.1121/1.3257550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
If dispersion in a medium is weak and approximately linear with frequency (over the experimental band of frequencies), then it can be shown that the constant term in a polynomial representation of phase shift as a function of frequency can produce errors in measurements of phase-velocity differences in through-transmission, substitution experiments. A method for suppressing the effects of the constant phase shift in the context of the single-wave-model was tested on measurements from 30 cancellous human calcaneus samples in vitro. Without adjustment for constant phase shifts, the estimated phase velocity at 500 kHz was 1516+/-6 m/s (mean+/-standard error), and the estimated dispersion was -24+/-4 m/s MHz (mean+/-standard error). With adjustment for constant phase shifts, the estimated mean velocity decreased by 4-9 m/s, and the estimated magnitude of mean dispersion decreased by 50%-100%. The average correlation coefficient between the measured attenuation coefficient and frequency was 0.997+/-0.0026 (mean+/-standard deviation), suggesting that the signal for each sample was dominated by one wave. A single-wave, linearly dispersive model conformed to measured complex transfer functions from the 30 cancellous-bone samples with an average root-mean-square error of 1.9%+/-1.0%.
Collapse
Affiliation(s)
- Keith A Wear
- Center for Devices and Radiological Health, U. S. Food and Drug Administration, Silver Spring, Maryland 20993, USA.
| |
Collapse
|
14
|
Le Floch V, Luo G, Kaufman JJ, Siffert RS. Ultrasonic assessment of the radius in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1972-9. [PMID: 18692295 PMCID: PMC2607572 DOI: 10.1016/j.ultrasmedbio.2008.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/15/2008] [Accepted: 05/22/2008] [Indexed: 05/26/2023]
Abstract
The overall objective of this research is to develop an ultrasonic system for noninvasive assessment of the distal radius. The specific objective of this study was to examine the relationship between geometrical features of cortical bone and ultrasound measurements in vitro. Nineteen radii were measured in through transmission in a water bath. A 3.5 MHz rectangular (1 cm x 4.8 cm) single element transducer served as the source and a 3.5 MHz rectangular (1 cm x 4.8 cm) linear array transducer served as the receiver. The linear array consisted of 64 elements with a pitch of 0.75 mm. Ultrasound measurements were carried out at a location that was 1/3rdrd of the length from the distal end of each radius and two net time delay parameters, tau(NetDW) and tau(NetCW), associated with a direct wave (DW) and a circumferential wave (CW), respectively, were evaluated. The cortical thickness (CT), medullar thickness (MT) and cross-sectional area (CSA) of each radius was also evaluated based on a digital image of the cross-section at the 1/3rd location. The linear correlations between CT and tau(NetDW) was r = 0.91 (p < 0.001) and between MT and tau(NetCW) - tau(NetDW) was r = 0.63 (p < 0.05). The linear correlation between CSA and a nonlinear combination of the two net time delays, tau(NetDW) and tau(NetCW), was r = 0.95 (p < 0.001). The study shows that ultrasound measurements can be used to noninvasively assess cortical bone geometrical features in vitro as represented by cortical thickness, medullar thickness and cross-sectional area.
Collapse
Affiliation(s)
- Vincent Le Floch
- Ecole Nationale Superieure d’Arts et Metiers, Aix-en-Provence, Provence-Alpes-Cote-d’Azur, France
- CyberLogic, Inc., New York, NY, USA
| | - Gangming Luo
- CyberLogic, Inc., New York, NY, USA
- VA New York Harbor HealthCare System; New York, NY, USA
- New York University School of Medicine, Dept of Rehabilitation Medicine
| | - Jonathan J. Kaufman
- CyberLogic, Inc., New York, NY, USA
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA
| | - Robert S. Siffert
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Floch VL, McMahon DJ, Luo G, Cohen A, Kaufman JJ, Shane E, Siffert RS. Ultrasound simulation in the distal radius using clinical high-resolution peripheral-CT images. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1317-26. [PMID: 18343017 PMCID: PMC2562908 DOI: 10.1016/j.ultrasmedbio.2008.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 01/04/2008] [Accepted: 01/12/2008] [Indexed: 05/10/2023]
Abstract
The overall objective of this research is to develop an ultrasonic method for noninvasive assessment of the distal radius. The specific objective of this study was to examine the propagation of ultrasound through the distal radius and determine the relationships between bone mass and architecture and ultrasound parameters. Twenty-six high-resolution peripheral-CT clinical images were obtained from a set of subjects that were part of a larger study on secondary osteoporosis. A single midsection binary slice from each image was selected and used in the two-dimensional (2D) simulation of an ultrasound wave propagating from the anterior to the posterior surfaces of each radius. Mass and architectural parameters associated with each radius, including total (trabecular and cortical) bone mass, trabecular volume fraction, trabecular number and trabecular thickness were computed. Ultrasound parameters, including net time delay (NTD), broadband ultrasound attenuation (BUA) and ultrasound velocity (UV) were also evaluated. Significant correlations were found between NTD and total bone mass (R2 = 0.92, p < 0.001), BUA and trabecular number (R2 = 0.78, p < 0.01) and UV and trabecular bone volume fraction (R2 = 0.82, p < 0.01). There was only weak, statistically insignificant correlation (R2 < 0.14, p = 0.21) found between trabecular thickness and any of the ultrasound parameters. The study shows that ultrasound measurements are correlated with bone mass and architecture at the distal radius and, thus, ultrasound may prove useful as a method for noninvasive assessment of osteoporosis and fracture risk.
Collapse
Affiliation(s)
- Vincent Le Floch
- Ecole Nationale Superieure d'Arts et Metiers, Aix-en-Provence, Provence-Alpes-Cote-d'Azur, France
- CyberLogic, Inc., New York, NY, USA
| | - Donald J. McMahon
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gangming Luo
- CyberLogic, Inc., New York, NY, USA
- VA New York Harbor HealthCare System, New York, NY, USA
- New York University School of Medicine, Department of Rehabilitation Medicine, New York, NY, USA
| | - Adi Cohen
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jonathan J. Kaufman
- CyberLogic, Inc., New York, NY, USA
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA
| | - Elizabeth Shane
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Robert S. Siffert
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
16
|
Kaufman JJ, Luo G, Siffert RS. Ultrasound simulation in bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2008; 55:1205-1218. [PMID: 18599409 DOI: 10.1109/tuffc.2008.784] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The manner in which ultrasound interacts with bone is of key interest in therapy and diagnosis alike. These may include applications directly to bone, as, for example, in treatment to accelerate the healing of bone fractures and in assessment of bone density in osteoporosis, or indirectly in diagnostic imaging of soft tissue with interest in assessing exposure levels to nearby bone. Because of the lack of analytic solutions to virtually every "practical problem" encountered clinically, ultrasound simulation has become a widely used technique for evaluating ultrasound interactions in bone. This paper provides an overview of the use of ultrasound simulation in bone. A brief description of the mathematical model used to characterize ultrasound propagation in bone is first provided. A number of simulation examples are then presented that explain how simulation may be utilized in a variety of practical configurations. The focus of this paper in terms of examples presented is on diagnostic applications in bone, and, in particular, for assessment of osteoporosis. However, the use of simulation in other areas of interest can easily be extrapolated from the examples presented. In conclusion, this paper describes the use of ultrasound simulation in bone and demonstrates the power of computational methods for ultrasound research in general and tissue and bone applications in particular.
Collapse
Affiliation(s)
- Jonathan J Kaufman
- Department of Orthopedics, The Mount Sinai School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|