1
|
Ren J, Li J, Chen S, Liu Y, Ta D. Unveiling the potential of ultrasound in brain imaging: Innovations, challenges, and prospects. ULTRASONICS 2025; 145:107465. [PMID: 39305556 DOI: 10.1016/j.ultras.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 09/08/2024] [Indexed: 11/12/2024]
Abstract
Within medical imaging, ultrasound serves as a crucial tool, particularly in the realms of brain imaging and disease diagnosis. It offers superior safety, speed, and wider applicability compared to Magnetic Resonance Imaging (MRI) and X-ray Computed Tomography (CT). Nonetheless, conventional transcranial ultrasound applications in adult brain imaging face challenges stemming from the significant acoustic impedance contrast between the skull bone and soft tissues. Recent strides in ultrasound technology encompass a spectrum of advancements spanning tissue structural imaging, blood flow imaging, functional imaging, and image enhancement techniques. Structural imaging methods include traditional transcranial ultrasound techniques and ultrasound elastography. Transcranial ultrasound assesses the structure and function of the skull and brain, while ultrasound elastography evaluates the elasticity of brain tissue. Blood flow imaging includes traditional transcranial Doppler (TCD), ultrafast Doppler (UfD), contrast-enhanced ultrasound (CEUS), and ultrasound localization microscopy (ULM), which can be used to evaluate the velocity, direction, and perfusion of cerebral blood flow. Functional ultrasound imaging (fUS) detects changes in cerebral blood flow to create images of brain activity. Image enhancement techniques include full waveform inversion (FWI) and phase aberration correction techniques, focusing on more accurate localization and analysis of brain structures, achieving more precise and reliable brain imaging results. These methods have been extensively studied in clinical animal models, neonates, and adults, showing significant potential in brain tissue structural imaging, cerebral hemodynamics monitoring, and brain disease diagnosis. They represent current hotspots and focal points of ultrasound medical research. This review provides a comprehensive summary of recent developments in brain imaging technologies and methods, discussing their advantages, limitations, and future trends, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiahao Ren
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jian Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shili Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yang Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China; International Institute for Innovative Design and Intelligent Manufacturing of Tianjin University in Zhejiang, Shaoxing 312000, China.
| | - Dean Ta
- School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Li S, Shea QTK, Ling YT, Zheng YP. Investigation of 3D vessel reconstruction under Doppler imaging with phantoms: Towards reconstruction of the Circle of Willis. ULTRASONICS 2024; 141:107332. [PMID: 38718460 DOI: 10.1016/j.ultras.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 04/23/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Stroke is the second leading cause of death across the globe. Early screening and risk detection could provide early intervention and possibly prevent its incidence. Imaging modalities, including 1D-Transcranial Doppler Ultrasound (1D-TCD) or Transcranial Color-code sonography (TCCS), could only provide low spatial resolution or 2D image information, respectively. Notably, 3D imaging modalities including CT have high radiation exposure, whereas MRI is expensive and cannot be adopted in patients with implanted devices. This study proposes an alternative imaging solution for reconstructing 3D Doppler ultrasound geared towards providing a screening tool for the 3D vessel structure of the brain. METHODS The system comprises an ultrasound phased array attached to a servo motor, which can rotate 180˚ at a speed of 2˚/s. We extracted the color Doppler ROI from the image before reconstructing it into a 3D view using a customized pixel-based algorithm. Different vascular diameters, flow velocity, and depth were tested using a vascular phantom with a pumped flow to confirm the system for imaging blood flow. These variables were set to mimic the vessel diameter, flow speed, and depth of the Circle of Willis (CoW) during a transcranial screening. RESULTS AND CONCLUSIONS The lower values of absolute error and ratio were found in the larger vascular channels, and vessel diameter overrepresentation was observed. Under different flow velocities, such diameter overrepresentation in the reconstructed flow did not change much; however, it did change with different depths. Meanwhile, the setting of the velocity scale and the color gain affected the dimension of reconstructed objectives. Moreover, we presented a 3D image of CoW from a subject to demonstrate its potential. The findings of this work can provide a good reference for further studies on the reconstruction of the CoW or other blood vessels using Doppler imaging.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Queenie Tsung Kwan Shea
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yan To Ling
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
3
|
Zhou S, Gao X, Park G, Yang X, Qi B, Lin M, Huang H, Bian Y, Hu H, Chen X, Wu RS, Liu B, Yue W, Lu C, Wang R, Bheemreddy P, Qin S, Lam A, Wear KA, Andre M, Kistler EB, Newell DW, Xu S. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 2024; 629:810-818. [PMID: 38778234 PMCID: PMC11875229 DOI: 10.1038/s41586-024-07381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.
Collapse
Affiliation(s)
- Sai Zhou
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Geonho Park
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Xinyi Yang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Muyang Lin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Hao Huang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Yizhou Bian
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Hongjie Hu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Xiangjun Chen
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Ray S Wu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Boyu Liu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Wentong Yue
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Chengchangfeng Lu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ruotao Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Pranavi Bheemreddy
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Siyu Qin
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Arthur Lam
- Department of Anesthesiology and Critical Care, University of California San Diego, La Jolla, CA, USA
| | - Keith A Wear
- U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Andre
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Erik B Kistler
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - David W Newell
- Department of Neurosurgery, Seattle Neuroscience Institute, Seattle, WA, USA
| | - Sheng Xu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA.
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Bureau F, Robin J, Le Ber A, Lambert W, Fink M, Aubry A. Three-dimensional ultrasound matrix imaging. Nat Commun 2023; 14:6793. [PMID: 37880210 PMCID: PMC10600255 DOI: 10.1038/s41467-023-42338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Matrix imaging paves the way towards a next revolution in wave physics. Based on the response matrix recorded between a set of sensors, it enables an optimized compensation of aberration phenomena and multiple scattering events that usually drastically hinder the focusing process in heterogeneous media. Although it gave rise to spectacular results in optical microscopy or seismic imaging, the success of matrix imaging has been so far relatively limited with ultrasonic waves because wave control is generally only performed with a linear array of transducers. In this paper, we extend ultrasound matrix imaging to a 3D geometry. Switching from a 1D to a 2D probe enables a much sharper estimation of the transmission matrix that links each transducer and each medium voxel. Here, we first present an experimental proof of concept on a tissue-mimicking phantom through ex-vivo tissues and then, show the potential of 3D matrix imaging for transcranial applications.
Collapse
Affiliation(s)
- Flavien Bureau
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Justine Robin
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
- Physics for Medicine, ESPCI Paris, PSL University, INSERM, CNRS, Paris, France
| | - Arthur Le Ber
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - William Lambert
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
- Hologic / SuperSonic Imagine, 135 Rue Emilien Gautier, 13290, Aix-en-Provence, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.
| |
Collapse
|
5
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
6
|
Ali R, Brevett T, Zhuang L, Bendjador H, Podkowa AS, Hsieh SS, Simson W, Sanabria SJ, Herickhoff CD, Dahl JJ. Aberration correction in diagnostic ultrasound: A review of the prior field and current directions. Z Med Phys 2023; 33:267-291. [PMID: 36849295 PMCID: PMC10517407 DOI: 10.1016/j.zemedi.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 02/27/2023]
Abstract
Medical ultrasound images are reconstructed with simplifying assumptions on wave propagation, with one of the most prominent assumptions being that the imaging medium is composed of a constant sound speed. When the assumption of a constant sound speed are violated, which is true in most in vivoor clinical imaging scenarios, distortion of the transmitted and received ultrasound wavefronts appear and degrade the image quality. This distortion is known as aberration, and the techniques used to correct for the distortion are known as aberration correction techniques. Several models have been proposed to understand and correct for aberration. In this review paper, aberration and aberration correction are explored from the early models and correction techniques, including the near-field phase screen model and its associated correction techniques such as nearest-neighbor cross-correlation, to more recent models and correction techniques that incorporate spatially varying aberration and diffractive effects, such as models and techniques that rely on the estimation of the sound speed distribution in the imaging medium. In addition to historical models, future directions of ultrasound aberration correction are proposed.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Thurston Brevett
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Louise Zhuang
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Hanna Bendjador
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony S Podkowa
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott S Hsieh
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Walter Simson
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergio J Sanabria
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; University of Deusto/ Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Carl D Herickhoff
- Department of Biomedical Engineering, University of Memphis, TN, USA
| | - Jeremy J Dahl
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Robin J, Demené C, Heiles B, Blanvillain V, Puke L, Perren F, Tanter M. In vivoadaptive focusing for clinical contrast-enhanced transcranial ultrasound imaging in human. Phys Med Biol 2023; 68. [PMID: 36595330 DOI: 10.1088/1361-6560/acabfb] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective. Imaging the human brain vasculature with high spatial and temporal resolution remains challenging in the clinic today. Transcranial ultrasound is still scarcely used for cerebrovascular imaging, due to low sensitivity and strong phase aberrations induced by the skull bone that only enable the proximal part major brain vessel imaging, even with ultrasound contrast agent injection (microbubbles).Approach. Here, we propose an adaptive aberration correction technique for skull bone aberrations based on the backscattered signals coming from intravenously injected microbubbles. Our aberration correction technique was implemented to image brain vasculature in human adults through temporal and occipital bone windows. For each subject, an effective speed of sound, as well as a phase aberration profile, were determined in several isoplanatic patches spread across the image. This information was then used in the beamforming process.Main results. This aberration correction method reduced the number of artefacts, such as ghost vessels, in the images. It improved image quality both for ultrafast Doppler imaging and ultrasound localization microscopy (ULM), especially in patients with thick bone windows. For ultrafast Doppler images, the contrast was increased by 4 dB on average, and for ULM, the number of detected microbubble tracks was increased by 38%.Significance. This technique is thus promising for better diagnosis and follow-up of brain pathologies such as aneurysms, arterial stenoses, arterial occlusions, microvascular disease and stroke and could make transcranial ultrasound imaging possible even in particularly difficult-to-image human adults.
Collapse
Affiliation(s)
- Justine Robin
- Physics for Medicine Paris, INSERM, ESPCI Paris, PSL Research University, CNRS, France.,LUNIC Laboratory, Neurocenter University of Geneva, Switzerland
| | - Charlie Demené
- Physics for Medicine Paris, INSERM, ESPCI Paris, PSL Research University, CNRS, France.,LUNIC Laboratory, Neurocenter University of Geneva, Switzerland
| | - Baptiste Heiles
- Physics for Medicine Paris, INSERM, ESPCI Paris, PSL Research University, CNRS, France
| | - Victor Blanvillain
- Physics for Medicine Paris, INSERM, ESPCI Paris, PSL Research University, CNRS, France
| | - Liene Puke
- LUNIC Laboratory, Neurocenter University of Geneva, Switzerland
| | - Fabienne Perren
- LUNIC Laboratory, Neurocenter University of Geneva, Switzerland.,Dept. of Clinical Neurosciences, Universities of Geneva and Fribourg, Switzerland
| | - Mickael Tanter
- Physics for Medicine Paris, INSERM, ESPCI Paris, PSL Research University, CNRS, France
| |
Collapse
|
8
|
Ramalli A, Boni E, Roux E, Liebgott H, Tortoli P. Design, Implementation, and Medical Applications of 2-D Ultrasound Sparse Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2739-2755. [PMID: 35333714 DOI: 10.1109/tuffc.2022.3162419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An ultrasound sparse array consists of a sparse distribution of elements over a 2-D aperture. Such an array is typically characterized by a limited number of elements, which in most cases is compatible with the channel number of the available scanners. Sparse arrays represent an attractive alternative to full 2-D arrays that may require the control of thousands of elements through expensive application-specific integrated circuits (ASICs). However, their massive use is hindered by two main drawbacks: the possible beam profile deterioration, which may worsen the image contrast, and the limited signal-to-noise ratio (SNR), which may result too low for some applications. This article reviews the work done for three decades on 2-D ultrasound sparse arrays for medical applications. First, random, optimized, and deterministic design methods are reviewed together with their main influencing factors. Then, experimental 2-D sparse array implementations based on piezoelectric and capacitive micromachined ultrasonic transducer (CMUT) technologies are presented. Sample applications to 3-D (Doppler) imaging, super-resolution imaging, photo-acoustic imaging, and therapy are reported. The final sections discuss the main shortcomings associated with the use of sparse arrays, the related countermeasures, and the next steps envisaged in the development of innovative arrays.
Collapse
|
9
|
Mozaffarzadeh M, Verschuur DJE, Verweij MD, de Jong N, Renaud G. Accelerated 2-D Real-Time Refraction-Corrected Transcranial Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2599-2610. [PMID: 35797321 DOI: 10.1109/tuffc.2022.3189600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In a recent study, we proposed a technique to correct aberration caused by the skull and reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. Given a sound speed map, the arrival times were calculated using a fast marching technique (FMT), which solves the Eikonal equation and, therefore, is computationally expensive for real-time imaging. In this article, we introduce a two-point ray tracing method, based on Fermat's principle, for fast calculation of the travel times in the presence of a layered aberrator in front of the ultrasound probe. The ray tracing method along with the reconstruction technique is implemented on a graphical processing unite (GPU). The point spread function (PSF) in a wire phantom image reconstructed with the FMT and the GPU implementation was studied with numerical synthetic data and experiments with a bone-mimicking plate and a sagittally cut human skull. The numerical analysis showed that the error on travel times is less than 10% of the ultrasound temporal period at 2.5 MHz. As a result, the lateral resolution was not significantly degraded compared with images reconstructed with FMT-calculated travel times. The results using the synthetic, bone-mimicking plate, and skull dataset showed that the GPU implementation causes a lateral/axial localization error of 0.10/0.20, 0.15/0.13, and 0.26/0.32 mm compared with a reference measurement (no aberrator in front of the ultrasound probe), respectively. For an imaging depth of 70 mm, the proposed GPU implementation allows reconstructing 19 frames/s with full synthetic aperture (96 transmission events) and 32 frames/s with multiangle plane wave imaging schemes (with 11 steering angles) for a pixel size of [Formula: see text]. Finally, refraction-corrected power Doppler imaging is demonstrated with a string phantom and a bone-mimicking plate placed between the probe and the moving string. The proposed approach achieves a suitable frame rate for clinical scanning while maintaining the image quality.
Collapse
|
10
|
Mozaffarzadeh M, Verschuur E, Verweij MD, Daeichin V, De Jong N, Renaud G. Refraction-Corrected Transcranial Ultrasound Imaging Through the Human Temporal Window Using a Single Probe. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1191-1203. [PMID: 35100111 DOI: 10.1109/tuffc.2022.3148121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcranial ultrasound imaging (TUI) is a diagnostic modality with numerous applications, but unfortunately, it is hindered by phase aberration caused by the skull. In this article, we propose to reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. First, the compressional sound velocity of the aberrator (i.e., the skull) is estimated using the bidirectional headwave technique. The medium is described with four layers (i.e., lens, water, skull, and water), and a fast marching method calculates the travel times between individual array elements and image pixels. Finally, a delay-and-sum algorithm is used for image reconstruction with coherent compounding. The point spread function (PSF) in a wire phantom image and reconstructed with the conventional technique (using a constant sound speed throughout the medium), and the proposed method was quantified with numerical synthetic data and experiments with a bone-mimicking plate and a human skull, compared with the PSF achieved in a ground truth image of the medium without the aberrator (i.e., the bone plate or skull). A phased-array transducer (P4-1, ATL/Philips, 2.5 MHz, 96 elements, pitch = 0.295 mm) was used for the experiments. The results with the synthetic signals, the bone-mimicking plate, and the skull indicated that the proposed method reconstructs the scatterers with an average lateral/axial localization error of 0.06/0.14 mm, 0.11/0.13 mm, and 1.0/0.32 mm, respectively. With the human skull, an average contrast ratio (CR) and full-width-half-maximum (FWHM) of 37.1 dB and 1.75 mm were obtained with the proposed approach, respectively. This corresponds to an improvement of CR and FWHM by 7.1 dB and 36% compared with the conventional method, respectively. These numbers were 12.7 dB and 41% with the bone-mimicking plate.
Collapse
|
11
|
Jing B, Lindsey BD. Effect of Skull Porous Trabecular Structure on Transcranial Ultrasound Imaging in the Presence of Elastic Wave Mode Conversion at Varying Incidence Angle. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2734-2748. [PMID: 34140169 DOI: 10.1016/j.ultrasmedbio.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
With the advancement of aberration correction techniques, transcranial ultrasound imaging has exhibited great potential in applications such as imaging neurological function and guiding therapeutic ultrasound. However, the feasibility of transcranial imaging varies among individuals because of the differences in skull acoustic properties. To better understand the fundamental mechanisms underlying the variation in imaging performance, the effect of the structure of the porous trabecular bone on transcranial imaging performance (i.e., target localization errors and resolution) was investigated for the first time through the use of elastic wave simulations and experiments. Simulation studies using high-resolution computed tomography data from ex vivo skull samples revealed that imaging at large incidence angles reduced the target localization error for skulls having low porosity; however, as skull porosity increased, large angles of incidence resulted in degradation of resolution and increased target localization errors. Experimental results indicate that imaging at normal incidence introduced a localization error of 1.85 ± 0.10 mm, while imaging at a large incidence angle (40°) resulted in an increased localization error of 6.54 ± 1.33 mm and caused a single point target to no longer appear as a single, coherent target in the resulting image, which is consistent with simulation results. This first investigation of the effects of skull microstructure on transcranial ultrasound imaging indicates that imaging performance is highly dependent on the porosity of the skull, particularly at non-normal angles of incidence.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
12
|
Qiu W, Bouakaz A, Konofagou EE, Zheng H. Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:6-20. [PMID: 32866096 DOI: 10.1109/tuffc.2020.3019932] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emergence of new ultrasound technologies has improved our understanding of the brain functions and offered new opportunities for the treatment of brain diseases. Ultrasound has become a valuable tool in preclinical animal and clinical studies as it not only provides information about the structure and function of brain tissues but can also be used as a therapy alternative for brain diseases. High-resolution cerebral flow images with high sensitivity can be acquired using novel functional ultrasound and super-resolution ultrasound imaging techniques. The noninvasive treatment of essential tremors has been clinically approved and it has been demonstrated that the ultrasound technology can revolutionize the currently existing treatment methods. Microbubble-mediated ultrasound can remotely open the blood-brain barrier enabling targeted drug delivery in the brain. More recently, ultrasound neuromodulation received a great amount of attention due to its noninvasive and deep penetration features and potential therapeutic benefits. This review provides a thorough introduction to the current state-of-the-art research on brain ultrasound and also introduces basic knowledge of brain ultrasound including the acoustic properties of the brain/skull and engineering techniques for ultrasound. Ultrasound is expected to play an increasingly important role in the diagnosis and therapy of brain diseases.
Collapse
|
13
|
Mozaffarzadeh M, Minonzio C, de Jong N, Verweij MD, Hemm S, Daeichin V. Lamb Waves and Adaptive Beamforming for Aberration Correction in Medical Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:84-91. [PMID: 32746204 DOI: 10.1109/tuffc.2020.3007345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phase aberration in transcranial ultrasound imaging (TUI) caused by the human skull leads to an inaccurate image reconstruction. In this article, we present a novel method for estimating the speed of sound and an adaptive beamforming technique for phase aberration correction in a flat polyvinylchloride (PVC) slab as a model for the human skull. First, the speed of sound of the PVC slab is found by extracting the overlapping quasi-longitudinal wave velocities of symmetrical Lamb waves in the frequency-wavenumber domain. Then, the thickness of the plate is determined by the echoes from its front and back side. Next, an adaptive beamforming method is developed, utilizing the measured sound speed map of the imaging medium. Finally, to minimize reverberation artifacts caused by strong scatterers (i.e., needles), a dual probe setup is proposed. In this setup, we image the medium from two opposite directions, and the final image can be the minimum intensity projection of the inherently co-registered images of the opposed probes. Our results confirm that the Lamb wave method estimates the longitudinal speed of the slab with an error of 3.5% and is independent of its shear wave speed. Benefiting from the acquired sound speed map, our adaptive beamformer reduces (in real time) a mislocation error of 3.1, caused by an 8 mm slab, to 0.1 mm. Finally, the dual probe configuration shows 7 dB improvement in removing reverberation artifacts of the needle, at the cost of only 2.4-dB contrast loss. The proposed image formation method can be used, e.g., to monitor deep brain stimulation procedures and localization of the electrode(s) deep inside the brain from two temporal bones on the sides of the human skull.
Collapse
|
14
|
Du B, Wang J, Zheng H, Xiao C, Fang S, Lu M, Mao R. A novel transcranial ultrasound imaging method with diverging wave transmission and deep learning approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 186:105308. [PMID: 31978869 DOI: 10.1016/j.cmpb.2019.105308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Real time brain transcranial ultrasound imaging is extremely intriguing because of its numerous applications. However, the skull causes phase distortion and amplitude attenuation of ultrasound signals due to its density: the speed of sound is significantly different in bone tissue than in soft tissue. In this study, we propose an ultrafast transcranial ultrasound imaging technique with diverging wave (DW) transmission and a deep learning approach to achieve large field-of-view with high resolution and real time brain ultrasound imaging. DW transmission provides a frame rate of several kiloHz and a large field of view that is suitable for human brain imaging via a small acoustic window. However, it suffers from poor image quality because the diverging waves are all unfocused. Here, we adopted adaptive beamforming algorithms to improve both the image contrast and the lateral resolution. Both simulated and in situ experiments with a human skull resulted in significant image improvements. However, the skull still introduces a wavefront offset and distortion, which degrades the image quality even when adaptive beamforming methods are used. Thus, we also employed a U-Net neural network to detect the contour and position of the skull directly from the acquired RF signal matrix. This approach avoids the need for beamforming, image reconstruction, and image segmentation, making it more suitable for clinical use.
Collapse
Affiliation(s)
- Bin Du
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China
| | - Jinyan Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China
| | - Haoteng Zheng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China
| | - Chenhui Xiao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China
| | - Siyuan Fang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China
| | - Minhua Lu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 518060, China.
| | - Rui Mao
- Guangdong Province Engineering Center of China-made High Performance Data Computing System, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Montrief T, Alerhand S, Jewell C, Scott J. Incorporation of Transcranial Doppler into the ED for the neurocritical care patient. Am J Emerg Med 2019; 37:1144-1152. [PMID: 30894296 DOI: 10.1016/j.ajem.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION In the catastrophic neurologic emergency, a complete neurological exam is not always possible or feasible given the time-sensitive nature of the underlying disease process, or if emergent airway management is indicated. As the neurologic exam may be limited in some patients, the emergency physician is reliant on the assessment of brainstem structures to determine neurological function. Physicians thus routinely depend on advanced imaging modalities to further investigate for potential catastrophic diagnoses. Acquiring these tests introduces the risks of transport as well as delays in managing time-sensitive neurologic processes. A more immediate, non-invasive bedside approach complementing these modalities has evolved: Transcranial Doppler (TCD). OBJECTIVE This narrative review will provide a description of scenarios in which TCD may be applicable. It will summarize the sonographic findings and associated underlying pathophysiology in such neurocritical care patients. An illustrated tutorial, along with pearls and pitfalls, is provided. DISCUSSION Although there are numerous formalized TCD protocols utilizing four views (transtemporal, submandibular, suboccipital, and transorbital), point-of-care TCD is best accomplished through the transtemporal window. The core applications include the evaluation of midline shift, vasospasm after subarachnoid hemorrhage, acute ischemic stroke, and elevated intracranial pressure. An illustrative tutorial is provided. CONCLUSIONS With the wide dissemination of bedside ultrasound within the emergency department, there is a unique opportunity for the emergency physician to utilize TCD for a variety of conditions. While barriers to training exist, emergency physician performance of limited point-of-care TCD is feasible and may provide rapid and reliable clinical information with high temporal resolution.
Collapse
Affiliation(s)
- Tim Montrief
- Department of Emergency Medicine, Jackson Memorial Health System, Miami, FL 33136, USA.
| | - Stephen Alerhand
- Department of Emergency Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Corlin Jewell
- Berbee Walsh Department of Emergency Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jeffery Scott
- Department of Emergency Medicine, Jackson Memorial Health System, Miami, FL 33136, USA
| |
Collapse
|
16
|
Langton CM, AlQahtani SM, Wille ML. A 3D-printed passive ultrasound phase-interference compensator for reduced wave degradation in cancellous bone - an experimental study in replica models. J Tissue Eng 2018; 9:2041731418766418. [PMID: 29636893 PMCID: PMC5888813 DOI: 10.1177/2041731418766418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 02/26/2018] [Indexed: 11/18/2022] Open
Abstract
The current ‘active’ solution to overcome the impediment of ultrasound wave degradation associated with transit-time variation in complex tissue structures, such as the skull, is to vary the transmission delay of ultrasound pulses from individual transducer elements. This article considers a novel ‘passive’ solution in which constant transit time is achieved by propagating through an additional material layer positioned between the ultrasound transducer and the test sample. To test the concept, replica models based on four cancellous bone natural tissue samples and their corresponding passive ultrasound phase-interference compensator were 3D-printed. Normalised broadband ultrasound attenuation was used as a quantitative measure of wave degradation, performed in transmission mode at a frequency of 1 MHz and yielding a reduction ranging from 57% to 74% when the ultrasound phase-interference compensator was incorporated. It is suggested that the passive compensator offers a broad utility and, hence, it may be applied to any ultrasound transducer, of any complexity (single element or array), frequency and dimension.
Collapse
Affiliation(s)
- Christian M Langton
- Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Laboratory of Ultrasonic Electronics, Doshisha University, Kyotanabe, Japan
| | - Saeed M AlQahtani
- Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,University College in Al Jamoom, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Marie-Luise Wille
- Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Urban A, Golgher L, Brunner C, Gdalyahu A, Har-Gil H, Kain D, Montaldo G, Sironi L, Blinder P. Understanding the neurovascular unit at multiple scales: Advantages and limitations of multi-photon and functional ultrasound imaging. Adv Drug Deliv Rev 2017; 119:73-100. [PMID: 28778714 DOI: 10.1016/j.addr.2017.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Developing efficient brain imaging technologies by combining a high spatiotemporal resolution and a large penetration depth is a key step for better understanding the neurovascular interface that emerges as a main pathway to neurodegeneration in many pathologies such as dementia. This review focuses on the advances in two complementary techniques: multi-photon laser scanning microscopy (MPLSM) and functional ultrasound imaging (fUSi). MPLSM has become the gold standard for in vivo imaging of cellular dynamics and morphology, together with cerebral blood flow. fUSi is an innovative imaging modality based on Doppler ultrasound, capable of recording vascular brain activity over large scales (i.e., tens of cubic millimeters) at unprecedented spatial and temporal resolution for such volumes (up to 10μm pixel size at 10kHz). By merging these two technologies, researchers may have access to a more detailed view of the various processes taking place at the neurovascular interface. MPLSM and fUSi are also good candidates for addressing the major challenge of real-time delivery, monitoring, and in vivo evaluation of drugs in neuronal tissue.
Collapse
Affiliation(s)
- Alan Urban
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Golgher
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Clément Brunner
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Amos Gdalyahu
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Hagai Har-Gil
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - David Kain
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Montaldo
- Neuroelectronics Research Flanders, Leuven, Belgium; VIB, Leuven, Belgium and/or IMEC, Leuven, Belgium
| | - Laura Sironi
- Physics Dept., Universita degli Studi di Milano Bicocca, Italy
| | - Pablo Blinder
- Neurobiology Dept., Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
18
|
Jakovljevic M, Byram BC, Hyun D, Dahl JJ, Trahey GE. Short-lag spatial coherence imaging on matrix arrays, part II: Phantom and in vivo experiments. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1113-22. [PMID: 24960701 PMCID: PMC4234201 DOI: 10.1109/tuffc.2014.3011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In Part I of the paper, we demonstrated through simulation the potential of volumetric short-lag spatial coherence (SLSC) imaging to improve visualization of hypoechoic targets in three dimensions. Here, we demonstrate the application of volumetric SLSC imaging in phantom and in vivo experiments using a clinical 3-D ultrasound scanner and matrix array. Using a custom single-channel acquisition tool, we collected partially beamformed channel data from the fully sampled matrix array at high speeds and created matched Bmode and SLSC volumes of a vessel phantom and in vivo liver vasculature. 2-D and 3-D images rendered from the SLSC volumes display reduced clutter and improved visibility of the vessels when compared with their B-mode counterparts. We use concurrently acquired color Doppler volumes to confirm the presence of the vessels of interest and to define the regions inside the vessels used in contrast and contrast-to-noise ratio (CNR) calculations. SLSC volumes show higher CNR values than their matched B-mode volumes, while the contrast values appear to be similar between the two imaging methods.
Collapse
|
19
|
Lindsey BD, Nicoletto HA, Bennett ER, Laskowitz DT, Smith SW. 3-D transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: a pilot human study with microbubble contrast enhancement. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:90-101. [PMID: 24239360 PMCID: PMC3849324 DOI: 10.1016/j.ultrasmedbio.2013.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/20/2013] [Accepted: 09/01/2013] [Indexed: 05/03/2023]
Abstract
With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on health care outcomes and costs. Although clinical examination and standard computed tomography alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well suited to the task of examining blood flow dynamics in real time and may allow for localization of a clot. A prototype bilateral 3-D ultrasound imaging system using two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in five healthy volunteers with Definity microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3-D color flow mode. The number of color flow voxels above a common threshold increased as a result of aberration correction in five of five subjects, with a mean increase of 33.9%. The percentage of large arteries visualized by 3-D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
We present the first correction of refraction in three-dimensional (3D) ultrasound imaging using an iterative approach that traces propagation paths through a two-layer planar tissue model, applying Snell's law in 3D. This approach is applied to real-time 3D transcranial ultrasound imaging by precomputing delays offline for several skull thicknesses, allowing the user to switch between three sets of delays for phased array imaging at the push of a button. Simulations indicate that refraction correction may be expected to increase sensitivity, reduce beam steering errors, and partially restore lost spatial resolution, with the greatest improvements occurring at the largest steering angles. Distorted images of cylindrical lesions were created by imaging through an acrylic plate in a tissue-mimicking phantom. As a result of correcting for refraction, lesions were restored to 93.6% of their original diameter in the lateral direction and 98.1% of their original shape along the long axis of the cylinders. In imaging two healthy volunteers, the mean brightness increased by 8.3% and showed no spatial dependency.
Collapse
Affiliation(s)
- Brooks D. Lindsey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Stephen W. Smith
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
21
|
Wang T, Jing Y. Transcranial ultrasound imaging with speed of sound-based phase correction: a numerical study. Phys Med Biol 2013; 58:6663-81. [PMID: 24018632 DOI: 10.1088/0031-9155/58/19/6663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper presents a numerical study for ultrasound transcranial imaging. To correct for the phase aberration from the skull, two critical steps are needed prior to brain imaging. In the first step, the skull shape and speed of sound are acquired by either CT scans or ultrasound scans. In the ultrasound scan approach, phased array and double focusing technique are utilized, which are able to estimate the thickness of the skull with a maximum error of around 10% and the average speed of sound in the skull is underestimated by less than 2%. In the second step, the fast marching method is used to compute the phase delay based on the known skull shape and sound speed from the first step, and the computation can be completed in seconds for 2D problems. The computed phase delays are then used in combination with the conventional delay-and-sum algorithm for generating B-mode images. Images of wire phantoms with CT or ultrasound scan-based phase correction are shown to have much less artifact than the ones without correction. Errors of deducing speed of sound from CT scans are also discussed regarding its effect on the transcranial ultrasound images. Assuming the speed of sound grows linearly with the density, this study shows that, the CT-based phase correction approach can provide clear images of wire phantoms even if the speed of sound is overestimated by 400 m s(-1), or the linear coefficient is overestimated by 40%. While in this study, ultrasound scan-based phase correction performs almost equally well with the CT-based approach, potential problems are identified and discussed.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
22
|
Lindsey BD, Nicoletto HA, Bennett ER, Laskowitz DT, Smith SW. Simultaneous bilateral real-time 3-d transcranial ultrasound imaging at 1 MHz through poor acoustic windows. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:721-34. [PMID: 23415287 PMCID: PMC3764922 DOI: 10.1016/j.ultrasmedbio.2012.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/19/2023]
Abstract
Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%-29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging-the ultrasound brain helmet-and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
23
|
Lindsey BD, Smith SW. Pitch-catch phase aberration correction of multiple isoplanatic patches for 3-D transcranial ultrasound imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:463-80. [PMID: 23475914 PMCID: PMC3843527 DOI: 10.1109/tuffc.2013.2590] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Having previously presented the ultrasound brain helmet, a system for simultaneous 3-D ultrasound imaging via both temporal bone acoustic windows, the scanning geometry of this system is utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals, followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3-D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e., several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing, or beacon, array, updates the transmit and receive delays of 5 isoplanatic patches within a 64° x 64° volume. In phantom experiments, color flow voxels above a common threshold have also increased by an average of 92%, whereas color flow variance decreased by an average of 10%. This approach has been applied to both temporal acoustic windows of two human subjects, yielding increases in echo brightness in 5 isoplanatic patches with a mean value of 24.3 ± 9.1%, suggesting that such a technique may be beneficial in the future for performing noninvasive 3-D color flow imaging of cerebrovascular disease, including stroke.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | |
Collapse
|
24
|
Li Y, Robinson B. Timing-error-difference calibration of a two-dimensional array imaging system using the overlapping-subaperture algorithm. ULTRASONICS 2012; 52:1005-1009. [PMID: 22947242 DOI: 10.1016/j.ultras.2012.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/13/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
Timing errors in the transmitting and receiving electronic channels of an imaging system can generate different transmission and reception phase-aberration profiles. To decide if these two profiles need to be measured separately, an overlapping-subaperture algorithm has been proposed in a previous paper to measure the difference between timing errors in transmitting and receiving channels connected to each element in a two-dimensional array. This algorithm has been used to calibrate a custom built imaging system with a curved linear two-dimensional array, and the results are presented in this paper. The experimental results have demonstrated that the overlapping-subaperture algorithm is capable of calibrating the timing-error-difference profile of this imaging system with a standard deviation of only a few nanoseconds. Experimental results have also shown that the time-error-difference profile of this imaging system is smaller than one tenth of a wavelength and there is no need to measure the transmission and reception phase-aberration profiles separately. The derived average phase-aberration profile using the near-field signal-redundancy algorithm can be used to correct phase aberrations for both transmission and reception.
Collapse
Affiliation(s)
- Yue Li
- Information and Communication Technologies Center, Commonwealth Scientific and Industrial Research Organisation, Marsfield, NSW 2122, Australia.
| | | |
Collapse
|
25
|
Li Y, Robinson B. Correction of tissue-motion effects on common-midpoint signals using reciprocal signals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:872-882. [PMID: 22894210 DOI: 10.1121/1.4730913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The near field signal redundancy algorithm for phase-aberration correction is sensitive to tissue motion because several separated transmissions are usually needed to acquire a set of common-midpoint signals. If tissues are moving significantly due to, for example, heart beats, the effects of tissue motion on common-midpoint signals need to be corrected before the phase-aberration profile can be successfully measured. Theoretical analyses in this paper show that the arrival-time difference between a pair of common-midpoint signals due to tissue motion is usually very similar to that between the pair of reciprocal signals acquired using the same two transmissions. Based on this conclusion, an algorithm for correcting tissue-motion effects on the peak position of cross-correlation functions between common-midpoint signals is proposed and initial experimental results are also presented.
Collapse
Affiliation(s)
- Yue Li
- Information and Communication Technologies Centre, Commonwealth Scientific and Industrial Research Organisation, Marsfield, New South Wales 2122, Australia.
| | | |
Collapse
|
26
|
Lindsey BD, Light ED, Nicoletto HA, Bennett ER, Laskowitz DT, Smith SW. The ultrasound brain helmet: new transducers and volume registration for in vivo simultaneous multi-transducer 3-D transcranial imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:1189-202. [PMID: 21693401 PMCID: PMC3271736 DOI: 10.1109/tuffc.2011.1929] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Because stroke remains an important and time-sensitive health concern in developed nations, we present a system capable of fusing 3-D transcranial ultrasound volumes acquired from two sides of the head. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging through both temporal acoustic windows, allowing for potential registration of multiple real-time 3-D scans of cerebral vasculature. We examine hardware considerations for new matrix arrays-transducer design and interconnects-in this application. Specifically, it is proposed that SNR may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented, showing cerebral arteries with and without the use of microbubble contrast agent; they have been registered and fused using a simple algorithm which maximizes normalized cross-correlation.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Jiang J, Strother C, Johnson K, Baker S, Consigny D, Wieben O, Zagzebski J. Comparison of blood velocity measurements between ultrasound Doppler and accelerated phase-contrast MR angiography in small arteries with disturbed flow. Phys Med Biol 2011; 56:1755-73. [PMID: 21346280 PMCID: PMC3385874 DOI: 10.1088/0031-9155/56/6/015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ultrasound Doppler (UD) velocity measurements are commonly used to quantify blood flow velocities in vivo. The aim of our work was to investigate the accuracy of in vivo spectral Doppler measurements of velocity waveforms. Waveforms were derived from spectral Doppler signals and corrected for intrinsic spectral broadening errors by applying a previously published algorithm. The method was tested in a canine aneurysm model by determining velocities in small arteries (3-4 mm diameter) near the aneurysm where there was moderately disturbed flow. Doppler results were compared to velocity measurements in the same arteries acquired with a rapid volumetric phase contrast MR angiography technique named phase contrast vastly undersampled isotropic projection reconstruction magnetic resonance angiography (PC-VIPR MRA). After correcting for intrinsic spectral broadening, there was a high degree of correlation between velocities obtained by the real-time UD and the accelerated PC-MRA technique. The peak systolic velocity yielded a linear correlation coefficient of r = 0.83, end diastolic velocity resulted in r = 0.81, and temporally averaged mean velocity resulted in r = 0.76. The overall velocity waveforms obtained by the two techniques were also highly correlated (r = 0.89 ± 0.06). There were, however, only weak correlations for the pulsatility index (PI: 0.25) and resistive index (RI: 0.14) derived from the two techniques. Results demonstrate that to avoid overestimations of peak systolic velocities, the results for UD must be carefully corrected to compensate for errors caused by intrinsic spectral broadening.
Collapse
Affiliation(s)
- Jingfeng Jiang
- Medical Physics Department, University of Wisconsin-Madison School of Medicine and Public Health, WI, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Pinton G, Aubry JF, Fink M, Tanter M. Effects of nonlinear ultrasound propagation on high intensity brain therapy. Med Phys 2011; 38:1207-16. [DOI: 10.1118/1.3531553] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
29
|
Ivancevich NM, Dahl JJ, Smith SW. Comparison of 3-D multi-lag cross- correlation and speckle brightness aberration correction algorithms on static and moving targets. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2009; 56:2157-66. [PMID: 19942503 PMCID: PMC2814551 DOI: 10.1109/tuffc.2009.1298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively.
Collapse
|
30
|
Herickhoff CD, Light ED, Bing KF, Mukundan S, Grant GA, Wolf PD, Smith SW. Dual-mode intracranial catheter integrating 3D ultrasound imaging and hyperthermia for neuro-oncology: feasibility study. ULTRASONIC IMAGING 2009; 31:81-100. [PMID: 19630251 PMCID: PMC2810199 DOI: 10.1177/016173460903100201] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we investigated the feasibility of an intracranial catheter transducer with dual-mode capability of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. Feasibility is demonstrated in two ways: first by using a 50-element linear array transducer (17 mm x 3.1 mm aperture) operating at 4.4 MHz with our Volumetrics diagnostic scanner and custom, electrical impedance-matching circuits to achieve a temperature rise over 4 degrees C in excised pork muscle, and second, by designing and constructing a 12 Fr, integrated matrix and linear-array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements diced on a 0.2 mm pitch, with a total aperture size of 8.4 mm x 2.3 mm. This 3.64 MHz array achieved a 3.5 degrees C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav catheter as a gold standard in experiments assessing image quality and therapeutic potential and both probes were used in an in vivo canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/diagnostic imaging
- Brain Neoplasms/therapy
- Catheterization/instrumentation
- Catheterization/methods
- Dogs
- Equipment Design
- Feasibility Studies
- Hyperthermia, Induced/instrumentation
- Hyperthermia, Induced/methods
- Imaging, Three-Dimensional/instrumentation
- Imaging, Three-Dimensional/methods
- Phantoms, Imaging
- Swine
- Transducers
- Ultrasonography, Doppler, Color/instrumentation
- Ultrasonography, Doppler, Color/methods
- Ultrasonography, Interventional/instrumentation
- Ultrasonography, Interventional/methods
Collapse
Affiliation(s)
- Carl D Herickhoff
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Smith SW, Ivancevich NM, Lindsey BD, Whitman J, Light E, Fronheiser M, Nicoletto HA, Laskowitz DT. The ultrasound brain helmet: feasibility study of multiple simultaneous 3D scans of cerebral vasculature. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:329-338. [PMID: 18947918 DOI: 10.1016/j.ultrasmedbio.2008.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 06/25/2008] [Accepted: 08/21/2008] [Indexed: 05/27/2023]
Abstract
We describe early stage experiments to test the feasibility of an ultrasound brain helmet to produce multiple simultaneous real-time three-dimensional (3D) scans of the cerebral vasculature from temporal and suboccipital acoustic windows of the skull. The transducer hardware and software of the Volumetrics Medical Imaging (Durham, NC, USA) real-time 3D scanner were modified to support dual 2.5 MHz matrix arrays of 256 transmit elements and 128 receive elements which produce two simultaneous 64 degrees pyramidal scans. The real-time display format consists of two coronal B-mode images merged into a 128 degrees sector, two simultaneous parasagittal images merged into a 128 degrees x 64 degrees C-mode plane and a simultaneous 64 degrees axial image. Real-time 3D color Doppler scans from a skull phantom with latex blood vessel were obtained after contrast agent injection as a proof of concept. The long-term goal is to produce real-time 3D ultrasound images of the cerebral vasculature from a portable unit capable of internet transmission thus enabling interactive 3D imaging, remote diagnosis and earlier therapeutic intervention. We are motivated by the urgency for rapid diagnosis of stroke due to the short time window of effective therapeutic intervention.
Collapse
Affiliation(s)
- Stephen W Smith
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lopata RGP, Hansen HHG, Nillesen MM, Thijssen JM, De Korte CL. Comparison of one-dimensional and two-dimensional least-squares strain estimators for phased array displacement data. ULTRASONIC IMAGING 2009; 31:1-16. [PMID: 19507679 DOI: 10.1177/016173460903100101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, the performances of one-dimensional and two-dimensional least-squares strain estimators (LSQSE) are compared. Furthermore, the effects of kernel size are examined using simulated raw frequency data of a widely-adapted hard lesion/soft tissue model. The performances of both methods are assessed in terms of root-mean-squared errors (RMSE), elastographic signal-to-noise ratio (SNRe) and contrast-to-noise ratio (CNRe). RMSE analysis revealed that the 2D LSQSE yields better results for phased array data, especially for larger insonification angles. Using a 2D LSQSE enabled the processing of unfiltered displacement data, in particular for the lateral/horizontal strain components. The SNRe and CNRe analysis showed an improvement in precision and almost no loss in contrast using 2D LSQSE. However, the RMSE images for different kernel sizes revealed that the optimal 2D kernel size depends on the region-of-interest and showed that the LSQ kernel size should be limited to avoid loss in resolution.
Collapse
Affiliation(s)
- Richard G P Lopata
- Clinical Physics Laboratory-833, Department ofPediatrics, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|