1
|
Pakula M. What kind of waves are measured in trabecular bone? ULTRASONICS 2022; 123:106692. [PMID: 35176689 DOI: 10.1016/j.ultras.2022.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The paper discusses the fundamental mechanisms underlying the interaction between ultrasound and trabecular bone, which is considered a two-phase material. When fluid-saturated cancellous bone is interrogated by ultrasound, in some cases, one or two wave modes are observed. Many authors claim that these waves correspond to the fast and slow waves predicted by Biot's theory of elastic wave propagation in fluid-saturated porous media. Within our analysis of the physical conditions, predictions of the existing two-phase models of the propagation of ultrasonic waves in the material as well as numerical simulations for fluid-saturated trabecular bone were performed. On the basis of the theoretical results (from numerical studies) and arguments presented in this paper, we aimed to answer the question of whether two waves observed in ultrasonic wave transmission studies can be interpreted as the fast and slow waves predicted by Biot's theory.
Collapse
Affiliation(s)
- Michal Pakula
- Faculty of Mechatronics, Kazimierz Wielki University in Bydgoszcz, Poland.
| |
Collapse
|
2
|
Ultrasonic Assessment of Cancellous Bone Based on the Two-Wave Phenomenon. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:119-143. [DOI: 10.1007/978-3-030-91979-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Wear KA. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:454-482. [PMID: 31634127 PMCID: PMC7050438 DOI: 10.1109/tuffc.2019.2947755] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultrasound is now a clinically accepted modality in the management of osteoporosis. The most common commercial clinical devices assess fracture risk from measurements of attenuation and sound speed in cancellous bone. This review discusses fundamental mechanisms underlying the interaction between ultrasound and cancellous bone. Because of its two-phase structure (mineralized trabecular network embedded in soft tissue-marrow), its anisotropy, and its inhomogeneity, cancellous bone is more difficult to characterize than most soft tissues. Experimental data for the dependencies of attenuation, sound speed, dispersion, and scattering on ultrasound frequency, bone mineral density, composition, microstructure, and mechanical properties are presented. The relative roles of absorption, scattering, and phase cancellation in determining attenuation measurements in vitro and in vivo are delineated. Common speed of sound metrics, which entail measurements of transit times of pulse leading edges (to avoid multipath interference), are greatly influenced by attenuation, dispersion, and system properties, including center frequency and bandwidth. However, a theoretical model has been shown to be effective for correction for these confounding factors in vitro and in vivo. Theoretical and phantom models are presented to elucidate why cancellous bone exhibits negative dispersion, unlike soft tissue, which exhibits positive dispersion. Signal processing methods are presented for separating "fast" and "slow" waves (predicted by poroelasticity theory and supported in cancellous bone) even when the two waves overlap in time and frequency domains. Models to explain dependencies of scattering on frequency and mean trabecular thickness are presented and compared with measurements. Anisotropy, the effect of the fluid filler medium (marrow in vivo or water in vitro), phantoms, computational modeling of ultrasound propagation, acoustic microscopy, and nonlinear properties in cancellous bone are also discussed.
Collapse
|
4
|
Rohrbach D, Mamou J. Autoregressive Signal Processing Applied to High-Frequency Acoustic Microscopy of Soft Tissues. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2054-2072. [PMID: 30222559 DOI: 10.1109/tuffc.2018.2869876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantitative acoustic microscopy (QAM) at frequencies exceeding 100 MHz has become an established imaging tool to depict acoustical and mechanical properties of soft biological tissues at microscopic resolutions. In this study, we investigate a novel autoregressive (AR) model to improve signal processing and parameter estimation and to test its applicability to QAM. The performance of the AR model for estimating acoustical parameters of soft tissues (i.e., acoustic impedance, speed of sound, and attenuation) was compared to the performance of the Hozumi model using simulated ultrasonic QAM signals and using experimentally measured signals from thin (i.e., 12 and ) sections of human lymph-node and pig-cornea tissue specimens. Results showed that the AR and Hozumi methods performed equally well (i.e., produced an estimation error of 0) in signals with low, linear attenuation in the tissue and high impedance contrast between the tissue and the coupling medium. However, the AR model outperformed the Hozumi model in estimation accuracy and stability (i.e., parameter error variation and number of outliers) in cases of 1) thin tissue-sample thickness and high tissue-sample speed of sound, 2) small impedance contrast between the tissue sample and the coupling medium, 3) high attenuation in the tissue sample, and 4) nonlinear attenuation in the tissue sample. Furthermore, the AR model allows estimating the exponent of nonlinear attenuation. The results of this study suggest that the AR model approach can improve current QAM by providing more reliable, quantitative, tissue-property estimates and also provides additional values of parameters related to nonlinear attenuation.
Collapse
|
5
|
Wille ML, Langton CM. Solid volume fraction estimation of bone:marrow replica models using ultrasound transit time spectroscopy. ULTRASONICS 2016; 65:329-337. [PMID: 26455950 DOI: 10.1016/j.ultras.2015.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/31/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R(2)=99.9% and R(2)=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.
Collapse
Affiliation(s)
- Marie-Luise Wille
- Biomedical Engineering & Medical Physics Discipline, Science & Engineering Faculty and Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Christian M Langton
- Biomedical Engineering & Medical Physics Discipline, Science & Engineering Faculty and Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Groopman AM, Katz JI, Holland MR, Fujita F, Matsukawa M, Mizuno K, Wear KA, Miller JG. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:594-604. [PMID: 26328678 PMCID: PMC4529434 DOI: 10.1121/1.4923366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 05/28/2023]
Abstract
Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable.
Collapse
Affiliation(s)
- Amber M Groopman
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Jonathan I Katz
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Mark R Holland
- Department of Radiology and Imaging Sciences, Indiana University-Purdue University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Fuminori Fujita
- Laboratory of Ultrasonic Electronics, Research Center for Wave Electronics, Doshisha University, Kyotanabe, 610-0321 Kyoto, Japan
| | - Mami Matsukawa
- Laboratory of Ultrasonic Electronics, Research Center for Wave Electronics, Doshisha University, Kyotanabe, 610-0321 Kyoto, Japan
| | - Katsunori Mizuno
- Underwater Technology Research Center, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Keith A Wear
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - James G Miller
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
7
|
Hosokawa A. Numerical Analysis of Ultrasound Backscattered Waves in Cancellous Bone Using a Finite-Difference Time-Domain Method: Isolation of the Backscattered Waves From Various Ranges of Bone Depths. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1201-1210. [PMID: 26263571 DOI: 10.1109/tuffc.2014.006946] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using a finite-difference time-domain method, ultrasound backscattered waves inside cancellous bone were numerically analyzed to investigate the backscatter mechanism. Two bone models with different thicknesses were modeled with artificial absorbing layers positioned at the back surfaces of the model, and an ultrasound pulse wave was transmitted toward the front surface. By calculating the difference between the simulated waveforms obtained using the two bone models, the backscattered waves from a limited range of depths in cancellous bone could be isolated. The results showed that the fast and slow longitudinal waves, which have previously been observed only in the ultrasound waveform transmitted through the bone, could be distinguished in the backscattered waveform from a deeper bone depth when transmitting the ultrasound wave parallel to the main orientation of the trabecular network. The amplitudes of the fast and slow backscattered waves were more closely correlated with the bone porosity [R2 = 0.84 and 0.66 (p < 0.001), respectively] than the amplitude of the whole (nonisolated) backscattered waves [R2 = 0.48 (p < 0.001)]. In conclusion, the nonisolated backscattered waves could be regarded as the superposition of the fast and slow waves reflected from various bone depths, returning at different times.
Collapse
|
8
|
Wear KA. Nonlinear attenuation and dispersion in human calcaneus in vitro: statistical validation and relationships to microarchitecture. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:1126-1133. [PMID: 25786928 PMCID: PMC9204557 DOI: 10.1121/1.4908310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Through-transmission measurements were performed on 30 human calcaneus samples in vitro. Nonlinear attenuation and dispersion measurements were investigated by estimating 95% confidence intervals of coefficients of polynomial expansions of log magnitude and phase of transmission coefficients. Bone mineral density (BMD) was measured with dual x-ray absorptiometry. Microarchitecture was measured with microcomputed tomography. Statistically significant nonlinear attenuation and nonzero dispersion were confirmed for a clinical bandwidth of 300-750 kHz in 40%-43% of bone samples. The mean linear coefficient for attenuation was 10.3 dB/cm MHz [95% confidence interval (CI): 9.0-11.6 dB/cm MHz]. The mean quadratic coefficient for attenuation was 1.6 dB/cm MHz(2) (95% CI: 0.4-2.8 dB/cm MHz(2)). Nonlinear attenuation provided little information regarding BMD or microarchitecture. The quadratic coefficient for phase (which is related to dispersion) showed moderate correlations with BMD (r = -0.65; 95% CI: -0.82 to -0.36), bone surface-to-volume ratio (r = 0.47; 95% CI: 0.12-0.72) and trabecular thickness (r = -0.40; 95% CI: -0.67 to -0.03). Dispersion was proportional to bone volume fraction raised to an exponent of 2.1 ± 0.2, which is similar to the value for parallel nylon-wire phantoms (2.4 ± 0.2) and supports a multiple-scattering model for dispersion.
Collapse
Affiliation(s)
- Keith A Wear
- United States Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland 20993
| |
Collapse
|
9
|
Cardoso L, Schaffler MB. Changes of elastic constants and anisotropy patterns in trabecular bone during disuse-induced bone loss assessed by poroelastic ultrasound. J Biomech Eng 2014; 137:1944581. [PMID: 25412022 DOI: 10.1115/1.4029179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/20/2014] [Indexed: 11/08/2022]
Abstract
Currently, the approach most widely used to examine bone loss is the measurement of bone mineral density (BMD) using dual X-ray absorptiometry (DXA). However, bone loss due to immobilization creates changes in bone microarchitecture, which in turn are related to changes in bone mechanical function and competence to resist fracture.Unfortunately, the relationship between microarchitecture and mechanical function within the framework of immobilization and antiresorptive therapy has not being fully investigated. The goal of the present study was to investigate the structure–function relationship in trabecular bone in the real-world situations of a rapidly evolving osteoporosis(disuse), both with and without antiresorptive treatment. We evaluated the structure–function relationship in trabecular bone after bone loss (disuse-induced osteoporosis)and bisphosphonate treatment (antiresorptive therapy using risedronate) in canine trabecular bone using lCT and ultrasound wave propagation. Microstructure values determined from lCT images were used into the anisotropic poroelastic model of wave propagation in order to compute the apparent elastic constants (EC) and elastic anisotropy pattern of bone. Immobilization resulted in a significant reduction in trabecular thickness (Tb.Th) and bone volume fraction (BV/TV), while risedronate treatment combined with immobilization exhibited a lesser reduction in Tb.Th and BV/TV, suggesting that risedronate treatment decelerates bone loss, but it was unable to fully stop it. Risedronate treatment also increased the tissue mineral density (TMD), which when combined with the decrease in Tb.Th and BV/TV may explain the lack of significant differences invBMD in both immobilization and risedronate treated groups. Interestingly, changes inapparent EC were much stronger in the superior–inferior (SI) direction than in the medial–lateral (ML) and anterior–posterior (AP) anatomical directions, producing changes in elastic anisotropy patterns. When data were pooled together, vBMD was able to explain 58% of ultrasound measurements variability, a poroelastic wave propagation analytical model (i.e., BMD modulated by fabric directionality) was able to predict 81%of experimental wave velocity variability, and also explained 91% of apparent EC and changes in elastic anisotropy patterns. Overall, measurements of vBMD were unable to distinguish changes in apparent EC due to immobilization or risedronate treatment.However, anisotropic poroelastic ultrasound (PEUS) wave propagation was able to distinguish functional changes in apparent EC and elastic anisotropy patterns due to immobilization and antiresorptive therapy, providing an enhanced discrimination of anisotropic bone loss and the structure–function relationship in immobilized and risedronate-treated bone, beyond vBMD.
Collapse
|
10
|
Wear K, Nagatani Y, Mizuno K, Matsukawa M. Fast and slow wave detection in bovine cancellous bone in vitro using bandlimited deconvolution and Prony's method. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:2015-24. [PMID: 25324100 PMCID: PMC8240127 DOI: 10.1121/1.4895668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fast and slow waves were detected in a bovine cancellous bone sample for thicknesses ranging from 7 to 12 mm using bandlimited deconvolution and the modified least-squares Prony's method with curve fitting (MLSP + CF). Bandlimited deconvolution consistently isolated two waves with linear-with-frequency attenuation coefficients as evidenced by high correlation coefficients between attenuation coefficient and frequency: 0.997 ± 0.002 (fast wave) and 0.986 ± 0.013 (slow wave) (mean ± standard deviation). Average root-mean-squared (RMS) differences between the two algorithms for phase velocities were 5 m/s (fast wave, 350 kHz) and 13 m/s (slow wave, 750 kHz). Average RMS differences for signal loss were 1.6 dB (fast wave, 350 kHz) and 0.4 dB (slow wave, 750 kHz). Phase velocities for thickness = 10 mm were 1726 m/s (fast wave, 350 kHz) and 1455 m/s (slow wave, 750 kHz). Results show support for the model of two waves with linear-with frequency attenuation, successful isolation of fast and slow waves, good agreement between bandlimited deconvolution and MLSP + CF as well as with a Bayesian algorithm, and potential variations of fast and/or slow wave properties with bone sample thickness.
Collapse
Affiliation(s)
- Keith Wear
- U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Yoshiki Nagatani
- Department of Electronics, Kobe City College of Technology 8-3, Gakuen Higashi-cho, Nishiku, Kobe, 651-2194 Japan
| | - Katsunori Mizuno
- Underwater Technology Collaborative Research Center, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo, 153-8505, Japan
| | - Mami Matsukawa
- Laboratory of Ultrasonic Electronics, Faculty of Science and Engineering, Doshisha University 1-3, Tatara Miyakodani, Kyotanabe, 610-0321, Kyoto, Japan
| |
Collapse
|
11
|
Wear KA. Time-domain separation of interfering waves in cancellous bone using bandlimited deconvolution: simulation and phantom study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:2102-12. [PMID: 25235007 PMCID: PMC8317067 DOI: 10.1121/1.4868473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In through-transmission interrogation of cancellous bone, two longitudinal pulses ("fast" and "slow" waves) may be generated. Fast and slow wave properties convey information about material and micro-architectural characteristics of bone. However, these properties can be difficult to assess when fast and slow wave pulses overlap in time and frequency domains. In this paper, two methods are applied to decompose signals into fast and slow waves: bandlimited deconvolution and modified least-squares Prony's method with curve-fitting (MLSP + CF). The methods were tested in plastic and Zerdine(®) samples that provided fast and slow wave velocities commensurate with velocities for cancellous bone. Phase velocity estimates were accurate to within 6 m/s (0.4%) (slow wave with both methods and fast wave with MLSP + CF) and 26 m/s (1.2%) (fast wave with bandlimited deconvolution). Midband signal loss estimates were accurate to within 0.2 dB (1.7%) (fast wave with both methods), and 1.0 dB (3.7%) (slow wave with both methods). Similar accuracies were found for simulations based on fast and slow wave parameter values published for cancellous bone. These methods provide sufficient accuracy and precision for many applications in cancellous bone such that experimental error is likely to be a greater limiting factor than estimation error.
Collapse
Affiliation(s)
- Keith A Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Bldg. 62, Room 3108, 10903 New Hampshire Boulevard, Silver Spring, Maryland 20993
| |
Collapse
|
12
|
Langton CM, Wille ML, Flegg MB. A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models. Proc Inst Mech Eng H 2014; 228:321-9. [DOI: 10.1177/0954411914523582] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland–Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.
Collapse
Affiliation(s)
- Christian M Langton
- Biomedical Engineering & Medical Physics Discipline, Science & Engineering Faculty and Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marie-Luise Wille
- Biomedical Engineering & Medical Physics Discipline, Science & Engineering Faculty and Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark B Flegg
- Oxford Centre for Collaborative Applied Mathematics, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Dencks S, Schmitz G. Estimation of multipath transmission parameters for quantitative ultrasound measurements of bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1884-95. [PMID: 24658719 DOI: 10.1109/tuffc.2013.2773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
When applying quantitative ultrasound (QUS) measurements to bone for predicting osteoporotic fracture risk, the multipath transmission of sound waves frequently occurs. In the last 10 years, the interest in separating multipath QUS signals for their analysis awoke, and led to the introduction of several approaches. Here, we compare the performances of the two fastest algorithms proposed for QUS measurements of bone: the modified least-squares Prony method (MLSP), and the space alternating generalized expectation maximization algorithm (SAGE) applied in the frequency domain. In both approaches, the parameters of the transfer functions of the sound propagation paths are estimated. To provide an objective measure, we also analytically derive the Cramér-Rao lower bound of variances for any estimator and arbitrary transmit signals. In comparison with results of Monte Carlo simulations, this measure is used to evaluate both approaches regarding their accuracy and precision. Additionally, with simulations using typical QUS measurement settings, we illustrate the limitations of separating two superimposed waves for varying parameters with focus on their temporal separation. It is shown that for good SNRs around 100 dB, MLSP yields better results when two waves are very close. Additionally, the parameters of the smaller wave are more reliably estimated. If the SNR decreases, the parameter estimation with MLSP becomes biased and inefficient. Then, the robustness to noise of the SAGE clearly prevails. Because a clear influence of the interrelation between the wavelength of the ultrasound signals and their temporal separation is observable on the results, these findings can be transferred to QUS measurements at other sites. The choice of the suitable algorithm thus depends on the measurement conditions.
Collapse
|
14
|
Wear KA. Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:2490-501. [PMID: 23556613 PMCID: PMC8243208 DOI: 10.1121/1.4792935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The presence of two longitudinal waves in poroelastic media is predicted by Biot's theory and has been confirmed experimentally in through-transmission measurements in cancellous bone. Estimation of attenuation coefficients and velocities of the two waves is challenging when the two waves overlap in time. The modified least squares Prony's (MLSP) method in conjuction with curve-fitting (MLSP + CF) is tested using simulations based on published values for fast and slow wave attenuation coefficients and velocities in cancellous bone from several studies in bovine femur, human femur, and human calcaneus. The search algorithm is accelerated by exploiting correlations among search parameters. The performance of the algorithm is evaluated as a function of signal-to-noise ratio (SNR). For a typical experimental SNR (40 dB), the root-mean-square errors (RMSEs) for one example (human femur) with fast and slow waves separated by approximately half of a pulse duration were 1 m/s (slow wave velocity), 4 m/s (fast wave velocity), 0.4 dB/cm MHz (slow wave attenuation slope), and 1.7 dB/cm MHz (fast wave attenuation slope). The MLSP + CF method is fast (requiring less than 2 s at SNR = 40 dB on a consumer-grade notebook computer) and is flexible with respect to the functional form of the parametric model for the transmission coefficient. The MLSP + CF method provides sufficient accuracy and precision for many applications such that experimental error is a greater limiting factor than estimation error.
Collapse
Affiliation(s)
- Keith A Wear
- U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Building 62, Room 3108, Silver Spring, Maryland 20993-0002, USA.
| |
Collapse
|
15
|
Lashkari B, Manbachi A, Mandelis A, Cobbold RSC. Slow and fast ultrasonic wave detection improvement in human trabecular bones using Golay code modulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:EL222-8. [PMID: 22979836 DOI: 10.1121/1.4742729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The identification of fast and slow waves propagating through trabecular bone is a challenging task due to temporal wave overlap combined with the high attenuation of the fast wave in the presence of noise. However, it can provide valuable information about bone integrity and become a means for monitoring osteoporosis. The objective of this work is to apply different coded excitation methods for this purpose. The results for single-sine cycle pulse, Golay code, and chirp excitations are compared. It is shown that Golay code is superior to the other techniques due to its signal enhancement while exhibiting excellent resolution without the ambiguity of sidelobes.
Collapse
Affiliation(s)
- Bahman Lashkari
- Center for Advanced Diffusion-Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
16
|
Cardoso L, Cowin SC. Role of structural anisotropy of biological tissues in poroelastic wave propagation. MECHANICS OF MATERIALS : AN INTERNATIONAL JOURNAL 2012; 44:174-188. [PMID: 22162897 PMCID: PMC3233242 DOI: 10.1016/j.mechmat.2011.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ultrasound waves have a broad range of clinical applications as a non-destructive testing approach in imaging and in the diagnoses of medical conditions. Generally, biological tissues are modeled as an homogenized equivalent medium with an apparent density through which a single wave propagates. Only the first wave arriving at the ultrasound probe is used for the measurement of the speed of sound. However, the existence of a second wave in tissues such as cancellous bone has been reported and its existence is an unequivocal signature of Biot type poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as density, a fabric-dependent anisotropic poroelastic ultrasound (PEU) propagation theory was recently developed. Key to this development was the inclusion of the fabric tensor - a quantitative stereological measure of the degree of structural anisotropy of bone - into the linear poroelasticity theory. In the present study, this framework is extended to the propagation of waves in several soft and hard tissues. It was found that collagen fibers in soft tissues and the mineralized matrix in hard tissues are responsible for the anisotropy of the solid tissue constituent through the fabric tensor in the model.
Collapse
Affiliation(s)
- Luis Cardoso
- The Department of Biomedical Engineering, The City University of New York, New York, NY 10031
| | | |
Collapse
|
17
|
Nelson AM, Hoffman JJ, Anderson CC, Holland MR, Nagatani Y, Mizuno K, Matsukawa M, Miller JG. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:2233-40. [PMID: 21973378 PMCID: PMC3206914 DOI: 10.1121/1.3625241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone.
Collapse
Affiliation(s)
- Amber M Nelson
- Department of Physics, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Serra-Hsu F, Cheng J, Lynch T, Qin YX. Evaluation of a pulsed phase-locked loop system for noninvasive tracking of bone deformation under loading with finite element and strain analysis. Physiol Meas 2011; 32:1301-13. [PMID: 21765205 PMCID: PMC4961073 DOI: 10.1088/0967-3334/32/8/019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ultrasound has been widely used to nondestructively evaluate various materials, including biological tissues. Quantitative ultrasound has been used to assess bone quality and fracture risk. A pulsed phase-locked loop (PPLL) method has been proven for very sensitive tracking of ultrasound time-of-flight (TOF) changes. The objective of this work was to determine if the PPLL TOF tracking is sensitive to bone deformation changes during loading. The ability to noninvasively detect bone deformations has many implications, including assessment of bone strength and more accurate osteoporosis diagnostics and fracture risk prediction using a measure of bone mechanical quality. Fresh sheep femur cortical bone shell samples were instrumented with three 3-element rosette strain gauges and then tested under mechanical compression with eight loading levels using an MTS machine. Samples were divided into two groups based on internal marrow cavity content: with original marrow, or replaced with water. During compressive loading ultrasound waves were measured through acoustic transmission across the mid-diaphysis of bone. Finite element analysis (FEA) was used to describe ultrasound propagation path length changes under loading based on µCT-determined bone geometry. The results indicated that PPLL output correlates well to measured axial strain, with R(2) values of 0.70 ± 0.27 and 0.62 ± 0.29 for the marrow and water groups, respectively. The PPLL output correlates better with the ultrasound path length changes extracted from FEA. For the two validated FEA tests, correlation was improved to R(2) = 0.993 and R(2) = 0.879 through cortical path, from 0.815 and 0.794 via marrow path, respectively. This study shows that PPLL readings are sensitive to displacement changes during external bone loading, which may have potential to noninvasively assess bone strain and tissue mechanical properties.
Collapse
Affiliation(s)
- Frederick Serra-Hsu
- Orthopaedic Bioengineering Research Lab, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-5281, USA
| | - Jiqi Cheng
- Orthopaedic Bioengineering Research Lab, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-5281, USA
| | - Ted Lynch
- Luna Innovations, 1 Riverside Circle, Suite 400, Roanoke, VA 24016-4962, USA
| | - Yi-Xian Qin
- Orthopaedic Bioengineering Research Lab, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
19
|
Hosokawa A. Numerical investigation of ultrasound refraction caused by oblique orientation of trabecular network in cancellous bone. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:1389-96. [PMID: 21768023 DOI: 10.1109/tuffc.2011.1958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ultrasound propagation through cancellous bone can be greatly affected by the trabecular structure. In the present study, the ultrasound propagation for the oblique orientation of the trabecular network was numerically investigated using 3-D finite-difference time-domain (FDTD) simulations. The models of cancellous bone were reconstructed from X-ray microcomputed tomographic (μCT) images of a bovine bone. Cancellous bone models with various orientations of the trabecular network were realized by cutting the μCT images rotated from 0 to 90°. Ultrasound waveforms propagating through these cancellous bone models were simulated while changing the receiving position. The refraction of the ultrasound wave for the oblique angle of the main orientation was investigated on the basis of the variation in the arrival time and peak amplitude. As the propagation direction approached the direction parallel to the main orientation, the arrival time of the first peak became less and the peak amplitude became smaller. This means that the wave of the first peak, which corresponded to a fast wave, propagated in the direction perpendicular to the main orientation. In addition, a strong correlation between the first-peak amplitude and the arrival time was observed in the porosity range of 0.68 to 0.85, in which the slope of the amplitude with respect to time increased linearly with porosity.
Collapse
Affiliation(s)
- Atsushi Hosokawa
- Department of Electrical and Computer Engineering, Akashi National College of Technology, Akashi, Hyogo, Japan.
| |
Collapse
|
20
|
Cardoso L, Cowin SC. Fabric dependence of quasi-waves in anisotropic porous media. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:3302-16. [PMID: 21568431 PMCID: PMC3115277 DOI: 10.1121/1.3557032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 05/20/2023]
Abstract
Assessment of bone loss and osteoporosis by ultrasound systems is based on the speed of sound and broadband ultrasound attenuation of a single wave. However, the existence of a second wave in cancellous bone has been reported and its existence is an unequivocal signature of poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as bone mineral density (BMD), a fabric-dependent anisotropic poroelastic wave propagation theory was recently developed for pure wave modes propagating along a plane of symmetry in an anisotropic medium. Key to this development was the inclusion of the fabric tensor--a quantitative stereological measure of the degree of structural anisotropy of bone--into the linear poroelasticity theory. In the present study, this framework is extended to the propagation of mixed wave modes along an arbitrary direction in anisotropic porous media called quasi-waves. It was found that differences between phase and group velocities are due to the anisotropy of the bone microarchitecture, and that the experimental wave velocities are more accurately predicted by the poroelastic model when the fabric tensor variable is taken into account. This poroelastic wave propagation theory represents an alternative for bone quality assessment beyond BMD.
Collapse
Affiliation(s)
- Luis Cardoso
- The Department of Biomedical Engineering, The City University of New York, New York, New York 10031, USA.
| | | |
Collapse
|
21
|
Buchanan JL, Gilbert RP, Ou MJY. Wavelet decomposition of transmitted ultrasound wave through a 1-D muscle-bone system. J Biomech 2010; 44:352-8. [PMID: 21092969 DOI: 10.1016/j.jbiomech.2010.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 11/29/2022]
Abstract
In the attempt for using ultrasound as a diagnostic device for osteoporosis, several authors have described the result of the in vitro experiment in which ultrasound is passed through a cancellous bone specimen placed in a water tank. However, in the in vivo setting, a patient's cancellous bone is surrounded by cortical and muscle layers. This paper considers in the one-dimensional case (1) what effect the cortical bone segments surrounding the cancellous segment would have on the received signal and (2) what the received signal would be when a source and receiver are placed on opposite sides of a structure consisting of a cancellous segment surrounded by cortical and muscle layers. Mathematically this is accomplished by representing the received signal as a sum of wavelets which go through different reflection-transmission histories at the muscle-cortical bone and cortical-cancellous bone interfaces. The muscle and cortical bone are modeled as elastic materials and the cancellous bone as a poroelastic material described by the Biot-Johnson-Koplik-Dashen model. The approach presented here permits the assessment of which possible paths of transmission and reflection through the cortical-cancellous or muscle-cortical-cancellous complex will result in significant contributions to the received waveform. This piece of information can be useful for solving the inverse problem of non-destructive assessment of material properties of bone. Our methodology can be generalized to three-dimensional parallelly layered structure by first applying Fourier transform in the directions perpendicular to the transverse direction.
Collapse
Affiliation(s)
- James L Buchanan
- Mathematics Department, United States Naval Academy, Annapolis, MD 21402, USA
| | | | | |
Collapse
|
22
|
Anderson CC, Bauer AQ, Holland MR, Pakula M, Laugier P, Bretthorst GL, Miller JG. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:2940-8. [PMID: 21110589 PMCID: PMC3003723 DOI: 10.1121/1.3493441] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/23/2010] [Accepted: 08/31/2010] [Indexed: 05/05/2023]
Abstract
Quantitative ultrasonic characterization of cancellous bone can be complicated by artifacts introduced by analyzing acquired data consisting of two propagating waves (a fast wave and a slow wave) as if only one wave were present. Recovering the ultrasonic properties of overlapping fast and slow waves could therefore lead to enhancement of bone quality assessment. The current study uses Bayesian probability theory to estimate phase velocity and normalized broadband ultrasonic attenuation (nBUA) parameters in a model of fast and slow wave propagation. Calculations are carried out using Markov chain Monte Carlo with simulated annealing to approximate the marginal posterior probability densities for parameters in the model. The technique is applied to simulated data, to data acquired on two phantoms capable of generating two waves in acquired signals, and to data acquired on a human femur condyle specimen. The models are in good agreement with both the simulated and experimental data, and the values of the estimated ultrasonic parameters fall within expected ranges.
Collapse
Affiliation(s)
- Christian C Anderson
- Department of Physics, Washington University in St Louis, St Louis, Missouri 63130, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Wear KA. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:2191-203. [PMID: 20968389 PMCID: PMC9130964 DOI: 10.1121/1.3478779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.
Collapse
Affiliation(s)
- Keith A Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Room 3108, Building 62, 10903 New Hampshire Boulevard, Silver Spring, Maryland 20993, USA.
| |
Collapse
|
24
|
Wear KA. Decomposition of Two-Component Pulses in Bone: Phantom Experiment and Simulation. PROCEEDINGS. IEEE ULTRASONICS SYMPOSIUM 2010; NA:723. [PMID: 35733507 PMCID: PMC9210505 DOI: 10.1109/ultsym.2010.5935641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Prony's method is used to separate signals that overlap in time domain. For additional information, the reader is referred to the references at the end of this paper.
Collapse
Affiliation(s)
- Keith A Wear
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|