1
|
Wu T, Zheng F, Tang HY, Li HZ, Cui XY, Ding S, Liu D, Li CY, Jiang JH, Yang RL. Low-intensity pulsed ultrasound reduces alveolar bone resorption during orthodontic treatment via Lamin A/C-Yes-associated protein axis in stem cells. World J Stem Cells 2024; 16:267-286. [PMID: 38577236 PMCID: PMC10989285 DOI: 10.4252/wjsc.v16.i3.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/30/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years, which also may lead to some complications such as alveolar bone resorption or tooth root resorption. Low-intensity pulsed ultrasound (LIPUS), a noninvasive physical therapy, has been shown to promote bone fracture healing. It is also reported that LIPUS could reduce the duration of orthodontic treatment; however, how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear. AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement (OTM) model and explore the underlying mechanisms. METHODS A rat model of OTM was established, and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections. In vitro, human bone marrow mesenchymal stem cells (hBMSCs) were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction, Western blot, alkaline phosphatase (ALP) staining, and Alizarin red staining. The expression of Yes-associated protein (YAP1), the actin cytoskeleton, and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA (siRNA) application via immunofluorescence. RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs; moreover, the expression of osteogenesis markers, such as type 1 collagen (COL1), runt-related transcription factor 2, ALP, and osteocalcin (OCN), decreased. LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force. Mechanically, the expression of LaminA/C, F-actin, and YAP1 was downregulated after force treatment, which could be rescued by LIPUS. Moreover, the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment. Consistently, LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo. The decreased expression of COL1, OCN, and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS. CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis, which may be a promising strategy to reduce the orthodontic treatment process.
Collapse
Affiliation(s)
- Tong Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Hong-Yi Tang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Hua-Zhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Xin-Yu Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Shuai Ding
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Duo Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Cui-Ying Li
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Jiu-Hui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Rui-Li Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China.
| |
Collapse
|
2
|
da Silva ANG, de Oliveira JRS, Madureira ÁNDM, Lima WA, Lima VLDM. Biochemical and Physiological Events Involved in Responses to the Ultrasound Used in Physiotherapy: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2417-2429. [PMID: 36115728 DOI: 10.1016/j.ultrasmedbio.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Therapeutic ultrasound (TUS) is the ultrasound modality widely used in physical therapy for the treatment of acute and chronic injuries of various biological tissues. Its thermal and mechanical effects modify the permeability of the plasma membrane, the flow of ions and molecules and cell signaling and, in this way, promote the cascade of physiological events that culminate in the repair of injuries. This article is a review of the biochemical and physiological effects of TUS with parameters commonly used by physical therapists. Integrins can translate the mechanical signal of the TUS into a cellular biochemical signal for protein synthesis and modification of the active site of enzymes, so cell function and metabolism are modified. TUS also alters the permeability of the plasma membrane, allowing the influx of ions and molecules that modulate the cellular electrochemical signaling pathways. With biochemical and electrochemical signals tampered with, the cellular response to damage is then modified or enhanced. Greater release of pro-inflammatory factors, cytokines and growth factors, increased blood flow and activation of protein kinases also seem to be involved in the therapeutic response of TUS. Although a vast number of publications describe the mechanisms by which TUS can interact with the biological system, little is known about the metabolic possibilities of TUS because of the lack of standardization in its application.
Collapse
Affiliation(s)
- Ayala Nathaly Gomes da Silva
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - João Ricardhis Saturnino de Oliveira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Álvaro Nóbrega de Melo Madureira
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Wildberg Alencar Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídios e Aplicaçães de Biomoléculas em Doenças Prevalentes e Negligenciadas, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
3
|
Tang L, Zhang J, Zhao X, Li N, Jian W, Sun S, Guo J, Sun L, Ta D. Low-Intensity Pulsed Ultrasound Promotes Exercise-Induced Muscle Hypertrophy. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1411-1420. [PMID: 28461063 DOI: 10.1016/j.ultrasmedbio.2017.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/08/2017] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to investigate whether low-intensity pulsed ultrasound (LIPUS) promotes exercise-induced muscle hypertrophy. Twenty-four adult Sprague-Dawley (SD) rats were randomly assigned to three groups (n = 8 per group): normal control group (NC), treadmill exercise group (TE) and treadmill exercise + LIPUS group (TE + LIPUS). The TE + LIPUS group received a LIPUS treatment (1 MHz, 30 mW/cm2) at the gastrocnemius for 20 min/d after treadmill exercise. The TE group was sham-treated. Eight weeks of treadmill training successfully established the exercise-induced muscle hypertrophy model. Muscle strength, muscle mass and muscle fiber cross-sectional area were significantly increased in the TE + LIPUS group compared with the TE group. Moreover, LIPUS treatment significantly upregulated the expression of Akt, mTOR, p-Akt and p-mTOR and significantly downregulated the expression of MSTN, ActRIIB, FoxO1 and its phosphorylation. The results indicated that LIPUS promotes exercise-induced muscle hypertrophy by facilitating protein synthesis and inhibiting the protein catabolism pathway.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Jing Zhang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Xinjuan Zhao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Nan Li
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Wenqi Jian
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, China; State Key Laboratory of ASIC and System, Fudan University, Shanghai, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, China
| |
Collapse
|
4
|
Kang KL, Kim EC, Park JB, Heo JS, Choi Y. High-Frequency, Low-Intensity Pulsed Ultrasound Enhances Alveolar Bone Healing of Extraction Sockets in Rats: A Pilot Study. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:493-502. [PMID: 26653935 DOI: 10.1016/j.ultrasmedbio.2015.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Most studies of the beneficial effects of low-intensity pulsed ultrasound (LIPUS) on bone healing have used frequencies between 1.0 and 1.5 MHz. However, after consideration of ultrasound wave characteristics and depth of target tissue, higher-frequency LIPUS may have been more effective on superficially positioned alveolar bone. We investigated this hypothesis by applying LIPUS (frequency, 3.0 MHz; intensity, 30 mW/cm(2)) on shaved right cheeks over alveolar bones of tooth extraction sockets in rats for 10 min/d for 2 wk after tooth extraction; the control group (left cheek of the same rats) did not receive LIPUS treatment. Compared with the control group, the LIPUS group manifested more new bone growth inside the sockets on histomorphometric analysis (maximal difference = 2.5-fold on the seventh day after extraction) and higher expressions of osteogenesis-related mRNAs and proteins than the control group did. These findings indicate that 3.0-MHz LIPUS could enhance alveolar bone formation and calcification in rats.
Collapse
Affiliation(s)
- Kyung Lhi Kang
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea; Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Korea.
| | - Eun-Cheol Kim
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Korea; Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth & Periodontal Tissue Regeneration (MRC), Kyung Hee University, Seoul, Korea
| | - Joon Bong Park
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea; Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Jung Sun Heo
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Korea; Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Yumi Choi
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
5
|
Macione J, Long D, Nesbitt S, Wentzell S, Yokota H, Pandit V, Kotha S. Stimulation of osteoblast differentiation with guided ultrasound waves. J Ther Ultrasound 2015; 3:12. [PMID: 26246899 PMCID: PMC4526286 DOI: 10.1186/s40349-015-0034-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
Background Ultrasound induces mechanical vibration and heat, causing differentiation and proliferation in osteoblasts. All known in vitro evaluations of ultrasound are, however, performed with longitudinal ultrasound waves. We addressed a question: Do other forms of ultrasound waves, such as guided waves (longitudinal and guided flexural) transduced at a remote location, enhance differentiation of osteoblast cells? Methods In this study, we employed guided Lamb waves that were induced in a borosilicate glass slide (cortical bone mimic). An average energy of 10–30 mW/cm2 for 20 min per day was applied to MC3T3 osteoblast-like cells, which were placed 30–75 mm distant from the transducer. Results The result revealed that guided waves significantly stimulated the differentiation and mineralization of MC3T3 cells. In particular, guided waves elevated mRNA expression levels of bone formation-related genes such as alkaline phosphatase, osteopontin, osteocalcin, osteoprotegerin, and bone sialoprotein on days 8 and 16. In addition, the amount of mineralization found via Alizarin red staining was increased by 157 % (p = 0.034). The amount of mineralization was found to be independent of distance from the transducer (p = 0.967). Conclusion We demonstrate herein that ultrasound in a form of guided Lamb waves is capable of inducing osteoblast differentiation in vitro, and it may enable the stimulation of osteoblasts in vivo over a distance from the site of ultrasound application.
Collapse
Affiliation(s)
- James Macione
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Daniel Long
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Sterling Nesbitt
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Scott Wentzell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202 USA
| | - Vaibhav Pandit
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Shiva Kotha
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
6
|
Chung SL, Leung KS, Cheung WH. Low-magnitude high-frequency vibration enhances gene expression related to callus formation, mineralization and remodeling during osteoporotic fracture healing in rats. J Orthop Res 2014; 32:1572-9. [PMID: 25131218 DOI: 10.1002/jor.22715] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 07/15/2014] [Indexed: 02/04/2023]
Abstract
Low magnitude high frequency vibration (LMHFV) has been shown to improve anabolic and osteogenic responses in osteoporotic intact bones and during osteoporotic fracture healing; however, the molecular response of LMHFV during osteoporotic fracture healing has not been investigated. It was hypothesized that LMHFV could enhance osteoporotic fracture healing by regulating the expression of genes related to chondrogenesis (Col-2), osteogenesis (Col-1) and remodeling (receptor activator for nuclear factor- κ B ligand (RANKL) and osteoproteger (OPG)). In this study, the effects of LMHFV on both osteoporotic and normal bone fracture healing were assessed by endpoint gene expressions, weekly radiographs, and histomorphometry at weeks 2, 4 and 8 post-treatment. LMHFV enhanced osteoporotic fracture healing by up-regulating the expression of chondrogenesis-, osteogenesis- and remodeling-related genes (Col-2 at week 4 (p=0.008), Col-1 at week 2 and 8 (p<0.001 and p=0.008) and RANKL/OPG at week 8 (p=0.045)). Osteoporotic bone had a higher response to LMHFV than normal bone and showed significantly better results as reflected by increased expression of Col-2 and Col-1 at week 2 (p<0.001 for all), larger callus width at week 2 (p=0.001), callus area at week 1 and 5(p<0.05 for all) and greater relative area of osseous tissue (p=0.002) at week 8. This study helps to understand how LMHFV regulates gene expression of callus formation, mineralization and remodeling during osteoporotic fracture healing.
Collapse
Affiliation(s)
- Shu-Lu Chung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | | | | |
Collapse
|
7
|
Cashion AT, Caballero M, Halevi A, Pappa A, Dennis RG, van Aalst JA. Programmable mechanobioreactor for exploration of the effects of periodic vibratory stimulus on mesenchymal stem cell differentiation. Biores Open Access 2014; 3:19-28. [PMID: 24570842 PMCID: PMC3931438 DOI: 10.1089/biores.2013.0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A programmable bioreactor using a voice-coil actuator was developed to enable research on the effects of periodic vibratory stimulus on human and porcine mesenchymal stem cells (MSCs). We hypothesized that low frequency vibrations would result in a cartilage phenotype and higher frequency vibrations would result in a bone phenotype. The mechanical stimulation protocol is adjusted from a computer external to the incubator via a USB cable. Once programmed, the embedded microprocessor and sensor system on the bioreactor execute the protocol independent of the computer. In each test, a sinusoidal stimulus was applied to a culture plate in 1-min intervals with a 15-min rest following each, for a total of 15 h per day for 10 days. Frequencies of 1 and 100 Hz were applied to cultures of both human and porcine umbilical cord–derived MSCs. Chondrogenesis was determined by Alcian blue staining for glycosaminoglycans and an increased differentiation index (ratio of mRNA for collagen II and collagen I). Osteogenic differentiation was indicated with Alizarin red for calcium staining and increased bone morphogenetic protein 2 mRNA. One-hertz stimulation resulted in a cartilage phenotype for both human and porcine MSCs, while 100-Hz stimulation resulted in a bone phenotype.
Collapse
Affiliation(s)
- Avery T Cashion
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University , Chapel Hill, North Carolina
| | - Montserrat Caballero
- Division of Plastic Surgery, Department of Surgery, University of North Carolina , Chapel Hill, North Carolina
| | - Alexandra Halevi
- Division of Plastic Surgery, Department of Surgery, University of North Carolina , Chapel Hill, North Carolina
| | - Andrew Pappa
- Division of Plastic Surgery, Department of Surgery, University of North Carolina , Chapel Hill, North Carolina
| | - Robert G Dennis
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University , Chapel Hill, North Carolina
| | - John A van Aalst
- Division of Plastic Surgery, Department of Surgery, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
8
|
Al-Daghreer S, Doschak M, Sloan AJ, Major PW, Heo G, Scurtescu C, Tsui YY, El-Bialy T. Short-term effect of low-intensity pulsed ultrasound on an ex-vivo 3-d tooth culture. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1066-1074. [PMID: 23499341 DOI: 10.1016/j.ultrasmedbio.2012.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
Abstract
We investigated the short-term effect of LIPUS on human dentin-pulp complex in vitro. We collected sixty-three premolars from patients who needed the extraction. The premolars were sectioned transversely into 600-μm-thick slices, and then divided into five groups according to LIPUS application time (control, 5, 10, 15 and 20 min). LIPUS transducer produced an incident intensity of 30 mW/cm(2). After 24 h, tissue was harvested for histomorphometrical analysis and RT-PCR (Genes of interest: Collagen I, DMP1, DSPP, TGF β1, RANKL and OPG). Histomorphometric analysis showed no significant difference among the five groups in the odontoblast count and predentin thickness. RT-PCR demonstrated no expression of TGF β1, low amounts of DSPP, a twofold increase in collagen I expression in the 5- and 10-minute LIPUS groups and a threefold increase in DMP1 expression in the 10-minute LIPUS group. LIPUS application was stimulatory to the dentin-pulp complex in vitro and increased the expression of collagen I and DMP1.
Collapse
Affiliation(s)
- Saleh Al-Daghreer
- University of Alberta, Department of Dentistry, Faculty of Medicine & Dentistry, Orthodontic Graduate Program, Edmonton, AB, Canada.
| | | | | | | | | | | | | | | |
Collapse
|