1
|
Seppecher L, Bretin E, Millien P, Petrusca L, Brusseau E. Reconstructing the Spatial Distribution of the Relative Shear Modulus in Quasi-static Ultrasound Elastography: Plane Stress Analysis. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:710-722. [PMID: 36639283 DOI: 10.1016/j.ultrasmedbio.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Quasi-static ultrasound elastography (QSUE) is an imaging technique that mainly provides axial strain maps of tissues when the latter are subjected to compression. In this article, a method for reconstructing the relative shear modulus distribution within a linear elastic and isotropic medium, in QSUE, is introduced. More specifically, the plane stress inverse problem is considered. The proposed method is based on the variational formulation of the equilibrium equations and on the choice of adapted discretization spaces, and only requires displacement fields in the analyzed media to be determined. Results from plane stress and 3-D numerical simulations, as well as from phantom experiments, showed that the method is able to reconstruct the different regions within a medium, with shear modulus contrasts that unambiguously reveal whether inclusions are stiffer or softer than the surrounding material. More specifically, for the plane stress simulations, inclusion-to-background modulus ratios were found to be very accurately estimated, with an error lower than 3%. For the 3-D simulations, for which the plane stress conditions are no longer satisfied, these ratios were, as expected, less accurate, with an error that remained lower than 10% for two of the three cases analyzed but was around 34% for the last case. Concerning the phantom experiments, a comparison with a shear wave elastography technique from a clinical ultrasound scanner was also made. Overall, the inclusion-to-background shear modulus ratios obtained with our approach were found to be closer to those given by the phantom manufacturer than the ratios provided by the clinical system.
Collapse
Affiliation(s)
- Laurent Seppecher
- Institut Camille Jordan, Ecole Centrale de Lyon & UCBL, Lyon, France
| | - Elie Bretin
- Institut Camille Jordan, INSA de Lyon & UCBL, Lyon, France
| | - Pierre Millien
- Institut Langevin, CNRS UMR 7587, ESPCI Paris, PSL Research University, Paris, France
| | - Lorena Petrusca
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM Saint-Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| | - Elisabeth Brusseau
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM Saint-Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France.
| |
Collapse
|
2
|
Zhao C, Xiao M, Ma L, Ye X, Deng J, Cui L, Guo F, Wu M, Luo B, Chen Q, Chen W, Guo J, Li Q, Zhang Q, Li J, Jiang Y, Zhu Q. Enhancing Performance of Breast Ultrasound in Opportunistic Screening Women by a Deep Learning-Based System: A Multicenter Prospective Study. Front Oncol 2022; 12:804632. [PMID: 35223484 PMCID: PMC8867611 DOI: 10.3389/fonc.2022.804632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To validate the feasibility of S-Detect, an ultrasound computer-aided diagnosis (CAD) system using deep learning, in enhancing the diagnostic performance of breast ultrasound (US) for patients with opportunistic screening-detected breast lesions. METHODS Nine medical centers throughout China participated in this prospective study. Asymptomatic patients with US-detected breast masses were enrolled and received conventional US, S-Detect, and strain elastography subsequently. The final pathological results are referred to as the gold standard for classifying breast mass. The diagnostic performances of the three methods and the combination of S-Detect and elastography were evaluated and compared, including sensitivity, specificity, and area under the receiver operating characteristics (AUC) curve. We also compared the diagnostic performances of S-Detect among different study sites. RESULTS A total of 757 patients were enrolled, including 460 benign and 297 malignant cases. S-Detect exhibited significantly higher AUC and specificity than conventional US (AUC, S-Detect 0.83 [0.80-0.85] vs. US 0.74 [0.70-0.77], p < 0.0001; specificity, S-Detect 74.35% [70.10%-78.28%] vs. US 54.13% [51.42%-60.29%], p < 0.0001), with no decrease in sensitivity. In comparison to that of S-Detect alone, the AUC value significantly was enhanced after combining elastography and S-Detect (0.87 [0.84-0.90]), without compromising specificity (73.93% [68.60%-78.78%]). Significant differences in the S-Detect's performance were also observed across different study sites (AUC of S-Detect in Groups 1-4: 0.89 [0.84-0.93], 0.84 [0.77-0.89], 0.85 [0.76-0.92], 0.75 [0.69-0.80]; p [1 vs. 4] < 0.0001, p [2 vs. 4] = 0.0165, p [3 vs. 4] = 0.0157). CONCLUSIONS Compared with the conventional US, S-Detect presented higher overall accuracy and specificity. After S-Detect and strain elastography were combined, the performance could be further enhanced. The performances of S-Detect also varied among different centers.
Collapse
Affiliation(s)
- Chenyang Zhao
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengsu Xiao
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Ma
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinhua Ye
- Department of Ultrasound, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Deng
- Department of Ultrasound, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Fajin Guo
- Department of Ultrasound, Beijing Hospital, Beijing, China
| | - Min Wu
- Department of Ultrasound, Nanjing Drum Tower Hospital, Nanjing, China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Qin Chen
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wu Chen
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun Guo
- Department of Ultrasound, Aero Space Central Hospital, Beijing, China
| | - Qian Li
- Department of Ultrasound, Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Qing Zhang
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchu Li
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Jiang
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingli Zhu
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
A Quasi-Static Quantitative Ultrasound Elastography Algorithm Using Optical Flow. SENSORS 2021; 21:s21093010. [PMID: 33923001 PMCID: PMC8123352 DOI: 10.3390/s21093010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022]
Abstract
Ultrasound elastography is a constantly developing imaging technique which is capable of displaying the elastic properties of tissue. The measured characteristics could help to refine physiological tissue models, but also indicate pathological changes. Therefore, elastography data give valuable insights into tissue properties. This paper presents an algorithm that measures the spatially resolved Young’s modulus of inhomogeneous gelatin phantoms using a CINE sequence of a quasi-static compression and a load cell measuring the compressing force. An optical flow algorithm evaluates the resulting images, the stresses and strains are computed, and, conclusively, the Young’s modulus and the Poisson’s ratio are calculated. The whole algorithm and its results are evaluated by a performance descriptor, which determines the subsequent calculation and gives the user a trustability index of the modulus estimation. The algorithm shows a good match between the mechanically measured modulus and the elastography result—more precisely, the relative error of the Young’s modulus estimation with a maximum error 35%. Therefore, this study presents a new algorithm that is capable of measuring the elastic properties of gelatin specimens in a quantitative way using only the image data. Further, the computation is monitored and evaluated by a performance descriptor, which measures the trustability of the results.
Collapse
|
4
|
Galaz B, Donoso E, Trejo M. Importance of the Ultrasound Probe Angle on the Rotation Fill-in Signature in Ultrasound Axial-Shear Strain Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:345-354. [PMID: 33162253 DOI: 10.1016/j.ultrasmedbio.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The rotation fill-in is a signature of tumor benignity in rotation elastograms and has been used for breast tumor classification. It is a consequence of the bonding condition at the tumor-tissue interface. In vivo studies have revealed the presence of fluctuations when inclined uniaxial external compression is applied. However, the physical meaning of these fluctuations is not yet fully understood. In this article we present an experimental and numerical study of the rotation fill-in signature as a function of the probe's tilt angle. This angle introduces asymmetries in the stress field, modifying the bonding condition. We numerically consider this asymmetry by using a model of friction with a simple angular dependence, which allows us to capture the experimental trends. We argue that the formulation of a tumor model with a bonding condition dependence may have potential implications in correct tumor classification.
Collapse
Affiliation(s)
- Belfor Galaz
- Departamento de Fisica, Universidad de Santiago de Chile, Santiago, Chile.
| | - Esteban Donoso
- Departamento de Fisica, Universidad de Santiago de Chile, Santiago, Chile
| | - Miguel Trejo
- Instituto de Fisica de Buenos Aires (IFIBA-CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
5
|
Selladurai S, Thittai AK. Actuator-assisted Subpitch Translation-capable Transducer for Elastography: Preliminary Performance Assessment. ULTRASONIC IMAGING 2020; 42:15-26. [PMID: 31937212 DOI: 10.1177/0161734619898806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In conventional linear array (CLA)-based elastography tissue compression in one direction (e.g., axial) leads to an expansion in all other directions (lateral, elevation). Therefore, the estimation of the lateral displacements and strains may provide additional information on the tissue mechanical properties. However, these are not exploited fully due to the inherent limitation in lateral sampling. Recently, a method named actuator-assisted beam translation (ABT) was demonstrated to address this issue, wherein the focused beam was translated at subpitch locations using an external bench-top setup. However, because such bench-top setup may be impractical for routine clinical use, an ultrasound transducer was customized to have an internal actuator. The performance of the customized transducer was studied through experiments on phantoms for rotation elastography application, which requires precise lateral displacement estimation. Furthermore, the results obtained from ABT was compared against the currently practiced spatial displacement compounding (SDC) method, which is known to yield better quality lateral displacement estimates than conventional approaches. The results show that the ABT method yields a full-width half-maximum (FWHM) value, taken from the lateral profile across a point scatterer, which is 65% and 24% smaller than that obtained using CLA and SDC methods, respectively. Furthermore, the contrast-to-noise ratio (CNR) estimated from rotation elastogram obtained using ABT method is better by 300% and 35% compared with that obtained by using CLA and SDC methods, respectively. Furthermore, the results demonstrate an additional advantage of having larger field of view (FoV) for the ABT method compared with spatial compounding approach.
Collapse
Affiliation(s)
- Sathiyamoorthy Selladurai
- Biomedical Ultrasound Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Arun K Thittai
- Biomedical Ultrasound Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
6
|
Lokesh B, Thittai AK. Diverging beam with synthetic aperture technique for rotation elastography: preliminary experimental results. Phys Med Biol 2018; 63:20LT01. [PMID: 30222126 DOI: 10.1088/1361-6560/aae1c6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotation Elastogram (RE) is a 2D spatial distribution map of the estimated local rigid-body rotation undergone by a target when subjected to an external compression, which is one of the recent variants in elastographic imaging. A recent study has shown that inclusion-contrast in RE is independent of inclusion-background modulus contrast and thus may be helpful in distinguishing between barely-stiff benign and malignant lesions. However, estimation of quality RE requires not only precise axial displacement estimates but also lateral displacement estimates. The widely used conventional focused beamforming technique using linear array (CFB-LA) provides better lateral resolution only over the depth of focus, which still results in poorer quality lateral displacement estimates compared to the axial displacement estimates. As an alternative to overcome this depth-dependent lateral resolution and obtain an improved lateral resolution, synthetic aperture-based approaches have been proposed in literature. Recently, we developed a synthetic aperture-based method, diverging beam with synthetic aperture technique (DB-SAT) that was aimed to not only reduce the ultrasound system complexity, but also provide improved lateral resolution throughout the depth of imaging and at higher frame-rate than that is possible in CFB-LA. In this paper, we report the preliminary experimental findings on the use of DB-SAT on RE and compare the resultant image quality against that obtained using often-employed CFB-LA and the synthetic transmit aperture (STA) technique. The investigation was done on tissue-mimicking phantoms and using contrast-to-noise ratio (CNR) as the metric for performance evaluation. The estimated CNR values from the REs obtained using CFB-LA, STA, and DB-SAT were 2.69 ± 0.81, 1.35 ± 0.22, and 14.71 ± 9.83, respectively, for inclusion present at 55 mm depth. The obtained results clearly demonstrated that the quality of RE can be improved significantly, especially at larger depth, using DB-SAT compared to that obtained using CFB-LA and STA technique.
Collapse
Affiliation(s)
- B Lokesh
- Biomedical Ultrasound Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
7
|
Hendriks GAGM, Chen C, Hansen HHG, de Korte CL. 3-D Single Breath-Hold Shear Strain Estimation for Improved Breast Lesion Detection and Classification in Automated Volumetric Ultrasound Scanners. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1590-1599. [PMID: 29994473 DOI: 10.1109/tuffc.2018.2849687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Automated breast volume scanner (ABVS) is an ultrasound imaging modality used in breast cancer screening. It has high sensitivity but limited specificity as it is hard to discriminate between benign and malignant lesions by echogenic properties. Specificity might be improved by shear strain imaging as malignant lesions, firmly bonded to its host tissue, show different shear patterns compared to benign lesions, often loosely bonded. Therefore, 3-D quasi-static elastography was implemented in an ABVS-like system. Plane wave instead of conventional focused transmissions were used to reduce scan times within a single breath hold. A 3-D strain tensor was obtained and shear strains were reconstructed in phantoms containing firmly and loosely bonded lesions. Experiments were also simulated in finite-element models (FEMs). Experimental results, confirmed by FEM-results, indicated that loosely bonded lesions showed increased maximal shear strains (~2.5%) and different shear patterns compared to firmly bonded lesions (~0.9%). To conclude, we successfully implemented 3-D elastography in an ABVS-like system to assess lesion bonding by shear strain imaging.
Collapse
|
8
|
Lokesh B, Ten Dam AM, de Korte CL, Thittai AK. Understanding the Contrast Mechanism in Rotation Elastogram: A Parametric Study. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1860-1872. [PMID: 29801975 DOI: 10.1016/j.ultrasmedbio.2018.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Ultrasound elastography has been found to be useful in different clinical applications. For example, in breast imaging, axial strain elastography provides information related to tissue stiffness, which is used to characterize breast lesions as either benign or malignant. In addition, these lesions also differ in their bonding properties. Benign breast lesions are loosely bonded and malignant breast lesions are firmly bonded to the surrounding tissues. Therefore, only benign breast lesions will rotate/slip on the application of deformation. This rotation of lesions can be visualized with rotation elastography, which utilizes axial and lateral shear strain components. The contrast obtained in rotation elastography depends on various mechanical as well as ultrasound elastography parameters. However, there is no reported work that provides an understanding of the influence of these parameters on the visualized rotation contrast. In this work, the authors studied the rotation contrast by varying the mechanical parameters such as the inclusion b/a ratio, relative inclusion-background Young's modulus, amount of applied deformation and orientation of the inclusion. First, the authors performed finite-element analysis to understand the fundamental rotation contrast of the inclusion. Next, rotation elastograms obtained from ultrasound simulations in Field II and experiments on tissue-mimicking phantoms were investigated. Mean contrast was used as a metric to evaluate the quality of rotation elastograms in finite-element analysis, and contrast-to-noise ratio was used in Field II simulations and phantom experiments. The results indicate that rotation contrast was observed only in the case of loosely bonded inclusions. Further, the rotation contrast was found to depend on the inclusion asymmetry and its orientation with respect to the axis of deformation. Interestingly, it was found that a loosely bonded inclusion contrasts with surrounding tissue in rotation elastography, even in the absence of any inclusion-background modulus contrast.
Collapse
Affiliation(s)
- Basavarajappa Lokesh
- Biomedical Ultrasound Laboratory, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Anne M Ten Dam
- Medical Ultrasound Imaging Center (MUSIC 766), Radboud University Medical Center, Nijmegen, The Netherlands; Physics of Fluids Group, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Chris L de Korte
- Medical Ultrasound Imaging Center (MUSIC 766), Radboud University Medical Center, Nijmegen, The Netherlands; Physics of Fluids Group, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Arun K Thittai
- Biomedical Ultrasound Laboratory, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
9
|
Selladurai S, Thittai AK. Strategies to Obtain Subpitch Precision in Lateral Motion Estimation in Ultrasound Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:448-456. [PMID: 29505411 DOI: 10.1109/tuffc.2018.2793195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In elastography, conventional linear array (CLA)-based RF data acquisition provides more accurate displacement measurements in the direction of beam propagation (axial direction) when compared to the perpendicular direction (lateral). Obtaining good quality lateral displacement estimates in ultrasound (US) elastography will lead to several benefits such as obtaining accurate inverse solutions, improving shear strain elastogram quality, getting good quality poroelastograms, and obtaining reliable rotation elastograms. For accomplishing high-precision lateral displacement estimation (LDE), one of the popular methods is by interpolating additional A-lines in between neighboring RF A-lines. We describe a method wherein true RF A-lines (not interpolated) are acquired and augmented at subpitch locations using CLA transducer, instead of interpolating the data, and using this new frame data for further image formation and/or processing to yield better lateral resolution and LDE. We demonstrate the proposed method by translating the US beam of CLA transducer in subpitch range by the following two approaches: 1) actuator-assisted beam translation and 2) electronic translation of subaperture of a CLA by activating odd and even number of consecutive elements sequentially, referred to as electronic beam translation. The performances of the different methods were studied through simulations and experiments on phantoms. The results demonstrate that these methods yield better quality LDE compared to those obtained from interpolation of RF A-lines. These methods may provide affordable ways to obtain subpitch precision LDE using CLA.
Collapse
|
10
|
Kothawala A, Chandramoorthi S, Reddy NRK, Thittai AK. Spatial Compounding Technique to Obtain Rotation Elastogram: A Feasibility Study. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1290-1301. [PMID: 28433440 DOI: 10.1016/j.ultrasmedbio.2017.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
The perception of stiffness and slipperiness of a breast mass on palpation is used by physicians to assess the level of suspicion of a lesion as being malignant or benign. However, most current ultrasound elastography imaging methods provide only stiffness-related information. There is no existing approach that provides information about the local rigid body rotation undergone by only a loosely bonded, asymmetrically oriented lesion subjected to a small quasi-static compression. The inherent poor lateral resolution in ultrasound imaging poses a limitation in estimating the local rigid body rotation. Several techniques have been reported in the literature to improve the lateral resolution in ultrasound imaging, and among them is spatial compounding. In this study, we explore the feasibility of obtaining better-quality rotation elastograms with spatial compounding through simulations using Field II and experiments on tissue-mimicking phantoms. The phantom was subjected to axial compression (∼1%-2%) from the top, and the angular axial and lateral displacement estimates were obtained using a multilevel 2-D displacement tracking algorithm at different insonification angles. A rotation elastogram (RE) was obtained by taking half of the difference between the lateral gradient of the axial displacement estimates and the axial gradient of the lateral displacement estimates. Contrast-to-noise ratio was used to quantify the improvements in quality of RE. Contrast-to-noise ratio values were calculated by varying the maximum steering angle and the incremental angle, and its effects on RE quality were evaluated. Both simulation and experimental results corroborated and indicated a significant improvement in the quality of RE using compounding technique.
Collapse
Affiliation(s)
- AliArshad Kothawala
- Department of Applied Mechanics (Biomedical Engineering Group), Indian Institute of Technology, Madras, Chennai, India
| | - Sowmiya Chandramoorthi
- Department of Applied Mechanics (Biomedical Engineering Group), Indian Institute of Technology, Madras, Chennai, India
| | - N Ravi Kiran Reddy
- Department of Applied Mechanics (Biomedical Engineering Group), Indian Institute of Technology, Madras, Chennai, India
| | - Arun Kumar Thittai
- Department of Applied Mechanics (Biomedical Engineering Group), Indian Institute of Technology, Madras, Chennai, India.
| |
Collapse
|
11
|
B L, Chintada BR, Thittai AK. Rotation Elastogram Estimation Using Synthetic Transmit-aperture Technique: A Feasibility Study. ULTRASONIC IMAGING 2017; 39:189-204. [PMID: 28091280 DOI: 10.1177/0161734616686746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It is well-documented in literature that benign breast lesions, such as fibroadenomas, are loosely bonded to their surrounding tissue and tend to slip under a small quasi-static compression, whereas malignant lesions being firmly bonded to their surrounding tissue do not slip. Recent developments in quasi-static ultrasound elastography have shown that an image of the axial-shear strain distribution can provide information about the bonding condition at the lesion-surrounding tissue boundary. Further studies analyzing the axial-shear strain elastograms revealed that nonzero axial-shear strain values appear inside the lesion, referred to as fill-in, only when a lesion is loosely bonded and asymmetrically oriented to the axis of compression. It was argued that the fill-in observed in axial-shear strain elastogram is a surrogate of the actual rigid-body rotation undergone by such a benign lesion due to slip boundary condition. However, it may be useful and perhaps easy to interpret, if the actual rigid-body rotation of the lesion can itself be visualized directly. To estimate this rotation tensor and its spatial distribution map (called a Rotation Elastogram [RE]), it would be necessary to improve the quality of lateral displacement estimates. Recently, it has been shown in the context of Non-Invasive Vascular Elastography (NIVE) that the Synthetic Transmit Aperture (STA) technique can be adapted for elastography to improve the lateral displacement estimates. Therefore, the focus of this work was to investigate the feasibility of employing the STA technique to improve the lateral displacement estimation and assess the resulting improvement in the RE quality. This investigation was done using both simulation and experimental studies. The image quality metric of contrast-to-noise ratio (CNR) was used to evaluate the quality of rotation elastograms. The results demonstrate that the contrast appeared in RE only in the case of loosely bonded inclusion, and the quality of RE improved considerably by employing the STA technique.
Collapse
Affiliation(s)
- Lokesh B
- 1 Indian Institute of Technology Madras, Chennai, India
| | | | | |
Collapse
|
12
|
Chintada BR, Subramani AV, Raghavan B, Thittai AK. A Novel Elastographic Frame Quality Indicator and its use in Automatic Representative-Frame Selection from a Cine Loop. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:258-272. [PMID: 27720521 DOI: 10.1016/j.ultrasmedbio.2016.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/28/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
This study was aimed at developing a method for automatically selecting a few representative frames from several hundred axial-shear strain elastogram frames typically obtained during freehand compression elastography of the breast in vivo. This may also alleviate some inter-observer variations that arise at least partly because of differences in selection of representative frames from a cine loop for evaluation and feature extraction. In addition to the correlation coefficient and frame-average axial strain that have been previously used as quality indicators for axial strain elastograms, we incorporated the angle of compression, which has unique effects on axial-shear strain elastogram interpretation. These identified quality factors were computed for every frame in the elastographic cine loop. The algorithm identifies the section having N contiguous frames (N = 10) that possess the highest cumulative quality scores from the cine loop as the one containing representative frames. Data for total of 40 biopsy-proven malignant or benign breast lesions in vivo were part of this study. The performance of the automated algorithm was evaluated by comparing its selection against that by trained radiologists. The observer- identified frame that consisted of a sonogram, axial strain elastogram and axial-shear strain elastogram was compared with the respective images in the frames of the algorithm-identified section using cross-correlation as a similarity measure. It was observed that there was, on average (∼standard deviation), 82.2% (∼2.2%), 83.4% (∼3.8%) and 78.4% (∼3.6%) correlation between corresponding images of the observer-selected and algorithm-selected frames, respectively. The results indicate that the automatic frame selection method described here may provide an objective way to select a representative frame while saving time for the radiologist. Furthermore, the frame quality metric described and used here can be displayed in real time as feedback to guide elastographic data acquisition and for training purposes.
Collapse
Affiliation(s)
- Bhaskara Rao Chintada
- Biomedical Ultrasound Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Adhitya Vikraman Subramani
- Biomedical Ultrasound Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Bagyam Raghavan
- Department of Radiology, Apollo Cancer Specialty Hospital, Chennai, India
| | - Arun Kumar Thittai
- Biomedical Ultrasound Laboratory, Biomedical Engineering Group, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
13
|
Thittai AK, Xia R. An analysis of the segmentation threshold used in axial-shear strain elastography. ULTRASONICS 2015; 55:58-64. [PMID: 25173068 PMCID: PMC4185333 DOI: 10.1016/j.ultras.2014.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/30/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Axial-shear strain elastography was introduced recently to image the tumor-host tissue boundary bonding characteristics. The image depicting the axial-shear strain distribution in a tissue under axial compression was termed as an axial-shear strain elastogram (ASSE). It has been demonstrated through simulation, tissue-mimicking phantom experiments, and retrospective analysis of in vivo breast lesion data that metrics quantifying the pattern of axial-shear strain distribution on ASSE can be used as features for identifying the lesion boundary condition as loosely-bonded or firmly-bonded. Consequently, features from ASSE have been shown to have potential in non-invasive breast lesion classification into benign versus malignant. Although there appears to be a broad concurrence in the results reported by different groups, important details pertaining to the appropriate segmentation threshold needed for - (1) displaying the ASSE as a color-overlay on top of corresponding Axial Strain Elastogram (ASE) and/or sonogram for feature visualization and (2) ASSE feature extraction are not yet fully addressed. In this study, we utilize ASSE from tissue mimicking phantom (with loosely-bonded and firmly-bonded inclusions) experiments and freehand - acquired in vivo breast lesion data (7 benign and 9 malignant) to analyze the effect of segmentation threshold on ASSE feature value, specifically, the "fill-in" feature that was introduced recently. We varied the segmentation threshold from 20% to 70% (of the maximum ASSE value) for each frame of the acquisition cine-loop of every data and computed the number of ASSE pixels within the lesion that was greater than or equal to this threshold value. If at least 40% of the pixels within the lesion area crossed this segmentation threshold, the ASSE frame was considered to demonstrate a "fill-in" that would indicate a loosely-bonded lesion boundary condition (suggestive of a benign lesion). Otherwise, the ASSE frame was considered not to demonstrate a "fill-in" indicating a firmly-bonded lesion boundary condition (suggestive of a malignant lesion). The results demonstrate that in the case of in vivo breast lesion data the appropriate range for the segmentation threshold value seems to be 40-60%. It was noted that for a segmentation threshold within this range (for example, at 50%) all of the analyzed breast lesion cases can be correctly classified into benign and malignant, based on the percentage number of frames within the acquisition cine-loop that demonstrate a "fill-in".
Collapse
Affiliation(s)
- Arun K Thittai
- The University of Texas Medical School, Department of Diagnostic and Interventional Imaging, Ultrasonics Laboratory, Houston, TX, USA.
| | - Rongmin Xia
- The University of Texas Medical School, Department of Diagnostic and Interventional Imaging, Ultrasonics Laboratory, Houston, TX, USA
| |
Collapse
|
14
|
Xia R, Thittai AK. Method to estimate the deviation from ideal uniaxial compression during freehand elastography. ULTRASONIC IMAGING 2015; 37:70-82. [PMID: 24916397 DOI: 10.1177/0161734614537044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Quasi-static ultrasound elastography was introduced in the early 1990s to provide a way to visualize the mechanical properties of target tissue. Most commonly, only the axial strain is imaged and referred to as an Axial Strain Elastogram (ASE) or elastogram for simplicity. It has been shown that one can image the axial-shear strain distributions as well in addition to ASE. The image of the axial-shear strain is referred to as an axial-shear strain elastogram (ASSE). It has also been shown that the presence or absence of non-zero axial-shear strain values inside the inclusion (referred to as fill-in) along with contrasting margin at its boundary may serve as a potential feature from ASSE that can aid in non-invasive breast lesion classification. However, during freehand elastography, deviations from uniaxial compression often occur typically appearing in several of the frames of a cine-loop obtained during compression. It was shown recently that accounting for such deviations would be important for reliable interpretation of the "fill-in" observed in ASSE. In this article, we describe a method to estimate the angle of iso-displacement contour at a given depth and use this as a measure to quantify the deviation from the desired uniaxial compression during freehand elastography. We validate the estimated angle obtained from the axial-displacement map against the designed values in simulation and tissue-mimicking phantom experiments. The potential of the angle estimate to detect unreliable ASSE frames among the freehand-acquired data cine-loop is demonstrated using example cases of in vivo breast lesion data. Based on the results, we conclude that the angle of the iso-displacement contour from the axial-displacement map can be used as a metric to qualify an ASSE frame as reliable to interpret or not. Importantly, this metric can be obtained in real time and thus can provide operator feedback to guide and improve in vivo freehand elastography data acquisition quality.
Collapse
Affiliation(s)
- Rongmin Xia
- Ultrasonics Laboratory, Department of Diagnostic and Interventional Imaging, The University of Texas Medical School, Houston, TX, USA
| | - Arun K Thittai
- Ultrasonics Laboratory, Department of Diagnostic and Interventional Imaging, The University of Texas Medical School, Houston, TX, USA
| |
Collapse
|