1
|
Adikary S, Urban MW, Guddati MN. Twin Peak Method for Estimating Tissue Viscoelasticity using Shear Wave Elastography. ARXIV 2024:arXiv:2411.11572v1. [PMID: 39606734 PMCID: PMC11601804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Tissue viscoelasticity is becoming an increasingly useful biomarker beyond elasticity and can theoretically be estimated using shear wave elastography (SWE), by inverting the propagation and attenuation characteristics of shear waves. Estimating viscosity is often more difficult than elasticity because attenuation, the main effect of viscosity, leads to poor signal-to-noise ratio of the shear wave motion. In the present work, we provide an alternative to existing methods of viscoelasticity estimation that is robust against noise. The method minimizes the difference between simulated and measured versions of two sets of peaks (twin peaks) in the frequency-wavenumber domain, obtained first by traversing through each frequency and then by traversing through each wavenumber. The slopes and deviation of the twin peaks are sensitive to elasticity and viscosity respectively, leading to the effectiveness of the proposed inversion algorithm for characterizing mechanical properties. This expected effectiveness is confirmed through in silico verification, followed by ex vivo validation and in vivo application, indicating that the proposed approach can be effectively used in accurately estimating viscoelasticity, thus potentially contributing to the development of enhanced biomarkers.
Collapse
|
2
|
Wood BG, Kijanka P, Liu HC, Urban MW. Evaluation of Robustness of Local Phase Velocity Imaging in Homogenous Tissue-Mimicking Phantoms. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3514-3528. [PMID: 34456084 PMCID: PMC8578323 DOI: 10.1016/j.ultrasmedbio.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/21/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Shear wave elastography (SWE) is a method of evaluating mechanical properties of soft tissues. Most current implementations of SWE report the group velocity for shear wave velocity, which assumes an elastic, isotropic, homogenous and incompressible tissue. Local phase velocity imaging (LPVI) is a novel method of phase velocity reconstruction that allows for accurate evaluation of shear wave velocity at specified frequencies. This method's robustness was evaluated in 11 elastic and 8 viscoelastic phantoms using linear and curvilinear arrays. We acquired data with acoustic radiation force push beams with different focal depths and F-numbers and reconstructed phase velocity images over a wide range of frequencies. Regardless of phantom, push beam focal depth and reconstruction frequency, an F-number around 3.0 was found to produce the largest usable area in the phase velocity reconstructions. For elastic phantoms scanned with a linear array, the optimal focal depth, frequency range and maximum region of interest (ROI) were 20-30 mm, 100-400 Hz and 2.70 cm2, respectively. For viscoelastic phantoms scanned with a linear array, the optimal focal depth, frequency and maximum ROI were 20-30 mm, 100-300 Hz and 1.54 cm2, respectively. For the curvilinear array in the same phantoms, optimal focal depth, frequency range and maximum ROIs were 45-60 mm, 100-400 and 100-300 Hz and 1.54 cm2, respectively. In further work, LPVI reconstructions from inclusion phantoms will be evaluated to simulate non-homogeneous tissues. Additionally, LPVI will be evaluated in larger-volume phantoms to account for wave reflection from the containers when using the curvilinear array.
Collapse
Affiliation(s)
- Benjamin G Wood
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Science and Technology, Krakow, Poland
| | - Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
3
|
Zhang B, Pinton GF, Nightingale KR. On the Relationship between Spatial Coherence and In Situ Pressure for Abdominal Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2310-2320. [PMID: 33985826 PMCID: PMC8494065 DOI: 10.1016/j.ultrasmedbio.2021.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/25/2023]
Abstract
Tissue harmonic signal quality has been shown to improve with elevated acoustic pressure. The peak rarefaction pressure (PRP) for a given transmit, however, is limited by the Food and Drug Administration guidelines for mechanical index. We have previously demonstrated that the mechanical index overestimates in situ PRP for tightly focused beams in vivo, due primarily to phase aberration. In this study, we evaluate two spatial coherence-based image quality metrics-short-lag spatial coherence and harmonic short-lag spatial coherence-as proxy estimates for phase aberration and assess their correlation with in situ PRP in simulations and experiments when imaging through abdominal body walls. We demonstrate strong correlation between both spatial coherence-based metrics and in situ PRP (R2 = 0.77 for harmonic short-lag spatial coherence, R2 = 0.67 for short-lag spatial coherence), an observation that could be leveraged in the future for patient-specific selection of acoustic output.
Collapse
Affiliation(s)
- Bofeng Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
4
|
Kijanka P, Urban MW. Local Phase Velocity Based Imaging of Viscoelastic Phantoms and Tissues. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:389-405. [PMID: 31976887 PMCID: PMC7590236 DOI: 10.1109/tuffc.2020.2968147] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Assessment of soft tissue elasticity and viscosity is of interest in several clinical applications. In this study, we present the feasibility of the local phase velocity based imaging (LPVI) method to create images of phase velocity and viscoelastic parameters in viscoelastic tissue-mimicking materials and soft tissues. In viscoelastic materials, it is necessary to utilize wave-mode isolation using a narrow bandpass filter combined with a directional filter in order to robustly reconstruct phase velocity images with LPVI in viscoelastic media over a wide range of frequencies. A pair of sequential focused acoustic radiation force push beams, focused once on the left-hand side and once on the right-hand side of the probe, was used to produce broadband propagating shear waves. The local shear wave phase velocity is then recovered in the frequency domain for multiple frequencies, for both acquired data sets. Then, a 2-D shear wave velocity map is reconstructed by combining maps from two separate acquisitions. By testing the method on simulated data sets and performing in vitro phantom and in vivo liver tissue experiments, we show the ability of the proposed technique to generate shear wave phase velocity maps at various frequencies in viscoelastic materials. Moreover, a nonlinear least-squares problem is solved in order to locally estimate elasticity and viscosity parameters. The LPVI method with added directional and wavenumber filters can produce phase velocity images, which can be used to characterize the viscoelastic materials.
Collapse
|
5
|
Gesnik M, Bhatt M, Roy Cardinal MH, Destrempes F, Allard L, Nguyen BN, Alquier T, Giroux JF, Tang A, Cloutier G. In vivo Ultrafast Quantitative Ultrasound and Shear Wave Elastography Imaging on Farm-Raised Duck Livers during Force Feeding. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1715-1726. [PMID: 32381381 DOI: 10.1016/j.ultrasmedbio.2020.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Shear wave elastography (speed and dispersion), local attenuation coefficient slope and homodyned-K parametric imaging were used for liver steatosis grading. These ultrasound biomarkers rely on physical interactions between shear and compression waves with tissues at both macroscopic and microscopic scales. These techniques were applied in a context not yet studied with ultrasound imaging, that is, monitoring steatosis of force-fed duck livers from pre-force-fed to foie gras stages. Each estimated feature presented a statistically significant trend along the feeding process (p values <10-3). However, whereas a monotonic increase in the shear wave speed was observed along the process, most quantitative ultrasound features exhibited an absolute maximum value halfway through the process. As the liver fat fraction in foie gras is much higher than that seen clinically, we hypothesized that a change in the ultrasound scattering regime is encountered for high-fat fractions, and consequently, care has to be taken when applying ultrasound biomarkers to grading of severe states of steatosis.
Collapse
Affiliation(s)
- Marc Gesnik
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Manish Bhatt
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Louise Allard
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Bich N Nguyen
- Service of Pathology, University of Montreal Hospital (CHUM), Montréal, QC, Canada
| | - Thierry Alquier
- CRCHUM and Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Medicine, University of Montreal, Montréal, QC, Canada
| | - Jean-François Giroux
- Department of Biological Sciences, University of Quebec in Montreal, Montréal, QC, Canada
| | - An Tang
- Service of Radiology, University of Montreal Hospital (CHUM), Montréal, QC, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, QC, Canada; Laboratory of Medical Image Analysis, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Han S, Zhang Y, Wu K, He B, Zhang K, Liang H. Adaptive Ultrasound Tissue Harmonic Imaging Based on an Improved Ensemble Empirical Mode Decomposition Algorithm. ULTRASONIC IMAGING 2020; 42:57-73. [PMID: 31994455 DOI: 10.1177/0161734619900147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complete and accurate separation of harmonic components from the ultrasonic radio frequency (RF) echo signals is essential to improve the quality of harmonic imaging. There are limitations in the existing two commonly used separation methods, that is, the subjectivity for the high-pass filtering (S_HPF) method and motion artifacts for the pulse inversion (S_PI) method. A novel separation method called S_CEEMDAN, based on the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, is proposed to adaptively separate the second harmonic components for ultrasound tissue harmonic imaging. First, the ensemble size of the CEEMDAN algorithm is calculated adaptively according to the standard deviation of the added white noise. A set of intrinsic mode functions (IMFs) is then obtained by the CEEMDAN algorithm from the ultrasonic RF echo signals. According to the IMF spectra, the IMFs that contain both fundamental and harmonic components are further decomposed. The separation process is performed until all the obtained IMFs have been divided into either fundamental or harmonic categories. Finally, the fundamental and harmonic RF echo signals are obtained from the accumulations of signals from these two categories, respectively. In simulation experiments based on CREANUIS, the S_CEEMDAN-based results are similar to the S_HPF-based results, but better than the S_PI-based results. For the dynamic carotid artery measurements, the contrasts, contrast-to-noise ratios (CNRs), and tissue-to-clutter ratios (TCRs) of the harmonic images based on the S_CEEMDAN are averagely increased by 31.43% and 50.82%, 18.96% and 10.83%, as well as 34.23% and 44.18%, respectively, compared with those based on the S_HPF and S_PI methods. In conclusion, the S_CEEMDAN method provides improved harmonic images owing to its good adaptivity and lower motion artifacts, and is thus a potential alternative to the current methods for ultrasonic harmonic imaging.
Collapse
Affiliation(s)
- Suya Han
- University Key Lab of Electronic Information Processing of High-Altitude Medicine, Yunnan University, Kunming, China
| | - Yufeng Zhang
- University Key Lab of Electronic Information Processing of High-Altitude Medicine, Yunnan University, Kunming, China
| | - Keyan Wu
- University Key Lab of Electronic Information Processing of High-Altitude Medicine, Yunnan University, Kunming, China
| | - Bingbing He
- University Key Lab of Electronic Information Processing of High-Altitude Medicine, Yunnan University, Kunming, China
| | - Kexin Zhang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong Liang
- University Key Lab of Electronic Information Processing of High-Altitude Medicine, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Ahmed R, Doyley MM. Distributing Synthetic Focusing Over Multiple Push-Detect Events Enhances Shear Wave Elasticity Imaging Performance. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1170-1184. [PMID: 30990427 PMCID: PMC6701192 DOI: 10.1109/tuffc.2019.2911036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plane wave (PW) imaging is a commonly used method for tracking waves during shear wave elasticity imaging (SWEI), but its unfocused transmission beam reduces tracking accuracy and precision. Coherent compounding minimizes this problem, but SWEI's stringent frame rate requirement and the coarse pitch of most clinical transducers limit its effectiveness. Synthetic aperture imaging (SAI) is an alternate ultrasound imaging approach with a much tighter focus than PW imaging, but its lower transmission power has deterred researchers from using SAI in SWEI. Hadamard-encoded multielement SAI can overcome this limitation. However, only a limited number of subapertures (3-5) can be transmitted in a single push-detect event. We have developed methods to distribute more subapertures or more compounding angles over multiple push-detect events. In this paper, we report the results of experiments conducted on phantoms to assess SWEI's performance when using Hadamard-encoded distributed-multielement synthetic aperture (HDMSA) imaging or distributed plane wave compounding (DPWC) to track shear waves. Tracking shear waves with HDMSA improved the elastographic signal-to-noise ratio (SNRe) by 61.6%-89.5% depending on the phantom employed. Similarly, DPWC tracking improved SNRe by 56.2%-93.3% for the same group of phantoms. Compared to focused ultrasound tracking (at the focus), SNRe improved by 28.6% and 32.5% when tracking shear waves with HDMSA and DPWC, respectively. Long acquisitions could introduce decoding errors that decrease the performance when performing HDMSA tracking within the clinical setting. Nevertheless, the results of studies performed on the bicep muscle of three healthy volunteers demonstrate that for stationary organs, tracking shear waves with HDMSA yielded repeatable elastograms that offer better elastographic performance than those produced with current tracking methods.
Collapse
|
8
|
Deng Y, Palmeri ML, Rouze NC, Haystead CM, Nightingale KR. Evaluating the Benefit of Elevated Acoustic Output in Harmonic Motion Estimation in Ultrasonic Shear Wave Elasticity Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:303-310. [PMID: 29169880 PMCID: PMC5743577 DOI: 10.1016/j.ultrasmedbio.2017.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 05/03/2023]
Abstract
Harmonic imaging techniques have been applied in ultrasonic elasticity imaging to obtain higher-quality tissue motion tracking data. However, harmonic tracking can be signal-to-noise ratio and penetration depth limited during clinical imaging, resulting in decreased yield of successful shear wave speed measurements. A logical approach is to increase the source pressure, but the in situ pressures used in diagnostic ultrasound have been subject to a de facto upper limit based on the Food and Drug Administration guideline for the mechanical index (MI <1.9). A recent American Institute of Ultrasound in Medicine report concluded that an in situ MI up to 4.0 could be warranted without concern for increased risk of cavitation in non-fetal tissues without gas bodies if there were a concurrent clinical benefit. This work evaluates the impact of using an elevated MI in harmonic motion tracking for hepatic shear wave elasticity imaging. The studies indicate that high-MI harmonic tracking increased shear wave speed estimation yield by 27% at a focal depth of 5 cm, with larger yield increase in more difficult-to-image patients. High-MI tracking improved harmonic tracking data quality by increasing the signal-to-noise ratio and decreasing jitter in the tissue motion data. We conclude that there is clinical benefit to use of elevated acoustic output in shear wave tracking, particularly in difficult-to-image patients.
Collapse
Affiliation(s)
- Yufeng Deng
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| | - Mark L Palmeri
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Ned C Rouze
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Clare M Haystead
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
9
|
Amador Carrascal C, Chen S, Urban MW, Greenleaf JF. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:3-13. [PMID: 29283342 PMCID: PMC5749644 DOI: 10.1109/tuffc.2017.2768184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue viscoelasticity reliably. Moreover, the results showed the strong frequency dependence of viscoelastic parameters in tissue mimicking phantoms and healthy liver.
Collapse
|
10
|
Nenadic IZ, Qiang B, Urban MW, Zhao H, Sanchez W, Greenleaf JF, Chen S. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients. Phys Med Biol 2016; 62:484-500. [PMID: 28000623 DOI: 10.1088/1361-6560/aa4f6f] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.
Collapse
Affiliation(s)
- Ivan Z Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | | | | | | | |
Collapse
|