1
|
Mehkri Y, Pierre K, Woodford SJ, Davidson CG, Urhie O, Sriram S, Hernandez J, Hanna C, Lucke-Wold B. Surgical Management of Brain Tumors with Focused Ultrasound. Curr Oncol 2023; 30:4990-5002. [PMID: 37232835 DOI: 10.3390/curroncol30050377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Focused ultrasound is a novel technique for the treatment of aggressive brain tumors that uses both mechanical and thermal mechanisms. This non-invasive technique can allow for both the thermal ablation of inoperable tumors and the delivery of chemotherapy and immunotherapy while minimizing the risk of infection and shortening the time to recovery. With recent advances, focused ultrasound has been increasingly effective for larger tumors without the need for a craniotomy and can be used with minimal surrounding soft tissue damage. Treatment efficacy is dependent on multiple variables, including blood-brain barrier permeability, patient anatomical features, and tumor-specific features. Currently, many clinical trials are currently underway for the treatment of non-neoplastic cranial pathologies and other non-cranial malignancies. In this article, we review the current state of surgical management of brain tumors using focused ultrasound.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Kevin Pierre
- Department of Radiology, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32608, USA
| | - Samuel Joel Woodford
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Caroline Grace Davidson
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Ogaga Urhie
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Sai Sriram
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Chadwin Hanna
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| |
Collapse
|
2
|
Zubair M, Adams MS, Diederich CJ. An endoluminal cylindrical sectored-ring ultrasound phased-array applicator for minimally-invasive therapeutic ultrasound. Med Phys 2023; 50:1-19. [PMID: 36413363 PMCID: PMC9870260 DOI: 10.1002/mp.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The size of catheter-based ultrasound devices for delivering ultrasound energy to deep-seated tumors is constrained by the access pathway which limits their therapeutic capabilities. PURPOSE To devise and investigate a deployable applicator suitable for minimally-invasive delivery of therapeutic ultrasound, consisting of a 2D cylindrical sectored-ring ultrasound phased array, integrated within an expandable paraboloid-shaped balloon-based reflector. The balloon can be collapsed for compact delivery and expanded close to the target position to mimic a larger-diameter concentric-ring sector-vortex array for enhanced dynamic control of focal depth and volume. METHODS Acoustic and biothermal simulations were employed in 3D generalized homogeneous and patient-specific heterogeneous models, for three-phased array transducers with 32, 64, and 128 elements, composed of sectored 4, 8, and 16 tubular ring transducers, respectively. The applicator performance was characterized as a function of array configuration, focal depth, phasing modes, and balloon reflector geometry. A 16-element proof-of-concept phased array applicator assembly, consisting of four tubular transducers each divided into four sectors, was fabricated, and characterized with hydrophone measurements along and across the axis, and ablations in ex vivo tissue. RESULTS Simulation results indicated that transducer arrays (1.5 MHz, 9 mm OD × 20 mm long), balloon sizes (41-50 mm expanded diameter, 20-60 mm focal depth), phasing mode (0-4) and sonication duration (30 s) can produce spatially localized acoustic intensity focal patterns (focal length: 3-22 mm, focal width: 0.7-8.7 mm) and ablative thermal lesions (width: 2.7-16 mm, length: 6-46 mm) in pancreatic tissue across a 10-90 mm focal depth range. Patient-specific studies indicated that 0.1, 0.46, and 1.2 cm3 volume of tumor can be ablated in the body of the pancreas for 120 s sonications using a single axial focus (Mode 0), or four, and eight simultaneous foci in a toroidal pattern (Mode 2 and 4, respectively). Hydrophone measurements demonstrated good agreement with simulation. Experiments in which chicken meat was thermally ablated indicated that volumetric ablation can be produced using single or multiple foci. CONCLUSIONS The results of this study demonstrated the feasibility of a novel compact ultrasound applicator design capable of focusing, deep penetration, electronic steering, and volumetric thermal ablation. The proposed applicator can be used for compact endoluminal or laparoscopic delivery of localized ultrasound energy to deep-seated targets.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Radiation Oncology University of California San Francisco USA
| | - Matthew S. Adams
- Department of Radiation Oncology University of California San Francisco USA
| | - Chris J. Diederich
- Department of Radiation Oncology University of California San Francisco USA
| |
Collapse
|
3
|
Huang W, Ning C, Zhang R, Xu J, Chen B, Li Z, Cui Y, Shao W. Evaluation of the dual-frequency transducer for controlling thermal ablation morphology using frequency shift keying signal. Int J Hyperthermia 2022; 39:1344-1357. [PMID: 36223887 DOI: 10.1080/02656736.2022.2130999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
PURPOSE The catheter-based ultrasound (CBUS) can reach the target tissue directly and achieve rapid treatment. The frequency shift keying (FSK) signal is proposed to regulate and evaluate tumor ablation by a miniaturized dual-frequency transducer. METHODS A dual-frequency transducer prototype (3 × 7 × 0.4 mm) was designed and fabricated for the CBUS applicator (OD: 3.8 mm) based on the fundamental frequency of 5.21 MHz and the third harmonic frequency of 16.88 MHz. Then, the acoustic fields and temperature field distributions using the FSK signals (with 0, 25, 50, 75, and 100% third harmonic frequency duty ratios) were simulated by finite element analysis. Finally, tissue ablation and temperature monitoring were performed in phantom and ex vivo tissue, respectively. RESULTS At the same input electrical power (20 W), the output acoustic power of the fundamental frequency of the transducer was 10.03 W (electroacoustic efficiencies: 50.1%), and that of the third harmonic frequency was 6.19 W (30.6%). As the third harmonic frequency duty ratios increased, the shape of thermal lesions varied from strip to droplet in simulated and phantom experimental results. The same trend was observed in ex vivo tests. CONCLUSION Dual-frequency transducers excited by the FSK signal can control the morphology of lesions. SIGNIFICANCE The acoustic power deposition of CBUS was optimized to achieve precise ablation.
Collapse
Affiliation(s)
- Wenchang Huang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Chuanlong Ning
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu, China
| | - Rui Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jie Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Beiyi Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhangjian Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yaoyao Cui
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Weiwei Shao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Ditac G, Bessière F, Lafon C. Therapeutic ultrasound applications in cardiovascular diseases: a review. Ing Rech Biomed 2022. [DOI: 10.1016/j.irbm.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Cao E, Greillier P, Loyet R, Chavrier F, Robert J, Bessière F, Dillenseger JL, Lafon C. Development of a Numerical Model of High-Intensity Focused Ultrasound Treatment in Mobile and Elastic Organs: Application to a Beating Heart. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1215-1228. [PMID: 35430101 DOI: 10.1016/j.ultrasmedbio.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
High-intensity focused ultrasound (HIFU) is a promising method used to treat cardiac arrhythmias, as it can induce lesions at a distance throughout myocardium thickness. Numerical modeling is commonly used for ultrasound probe development and optimization of HIFU treatment strategies. This study was aimed at describing a numerical method to simulate HIFU thermal ablation in elastic and mobile heart models. The ultrasound pressure field is computed on a 3-D orthonormal grid using the Rayleigh integral method, and the attenuation is calculated step by step between cells. The temperature distribution is obtained by resolution of the bioheat transfer equation on a 3-D non-orthogonally structured curvilinear grid using the finite-volume method. The simulation method is applied on two regions of the heart (atrioventricular node and ventricular apex) to compare the thermal effects of HIFU ablation depending on deformation, motion type and amplitude. The atrioventricular node requires longer sonication than the ventricular apex to reach the same lesion volume. Motion considerably influences treatment duration, lesion shape and distribution in cardiac HIFU treatment. These results emphasize the importance of considering local motion and deformation in numerical studies to define efficient and accurate treatment strategies.
Collapse
Affiliation(s)
- Elodie Cao
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, LYON, France..
| | - Paul Greillier
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, LYON, France
| | - Raphaël Loyet
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, LYON, France
| | - Françoise Chavrier
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, LYON, France
| | - Jade Robert
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, LYON, France
| | - Francis Bessière
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, LYON, France.; Hospices Civils de Lyon, Hôpital Cardiovasculaire Louis Pradel, Lyon, France
| | | | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, LYON, France
| |
Collapse
|
6
|
González-Suárez A, Pérez JJ, Irastorza RM, D'Avila A, Berjano E. Computer modeling of radiofrequency cardiac ablation: 30 years of bioengineering research. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106546. [PMID: 34844766 DOI: 10.1016/j.cmpb.2021.106546] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
This review begins with a rationale of the importance of theoretical, mathematical and computational models for radiofrequency (RF) catheter ablation (RFCA). We then describe the historical context in which each model was developed, its contribution to the knowledge of the physics of RFCA and its implications for clinical practice. Next, we review the computer modeling studies intended to improve our knowledge of the biophysics of RFCA and those intended to explore new technologies. We describe the most important technical details of the implementation of mathematical models, including governing equations, tissue properties, boundary conditions, etc. We discuss the utility of lumped element models, which despite their simplicity are widely used by clinical researchers to provide a physical explanation of how RF power is absorbed in different tissues. Computer model verification and validation are also discussed in the context of RFCA. The article ends with a section on the current limitations, i.e. aspects not yet included in state-of-the-art RFCA computer modeling and on future work aimed at covering the current gaps.
Collapse
Affiliation(s)
- Ana González-Suárez
- Electrical and Electronic Engineering, National University of Ireland Galway, Ireland; Translational Medical Device Lab, National University of Ireland Galway, Ireland
| | - Juan J Pérez
- Department of Electronic Engineering, BioMIT, Universitat Politècnica de València, Valencia, Spain
| | - Ramiro M Irastorza
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET), La Plata, Argentina; Instituto de Ingeniería y Agronomía, Universidad Nacional Arturo Jauretche, Florencio Varela, Argentina
| | - Andre D'Avila
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Enrique Berjano
- Department of Electronic Engineering, BioMIT, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
7
|
Stocker GE, Zhang M, Xu Z, Hall TL. Endocavity Histotripsy for Efficient Tissue Ablation-Transducer Design and Characterization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2896-2905. [PMID: 33507869 PMCID: PMC8451243 DOI: 10.1109/tuffc.2021.3055138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A 34-mm aperture transducer was designed and tested for proof of concept to ablate tissues using an endocavity histotripsy device. Several materials and two drivers were modeled and tested to determine an effective piezoelectric-matching layer combination and driver design. The resulting transducer was fabricated using 1.5 MHz porous PZT and PerFORM 3-D printed acoustic lenses and was driven with a multicycle class-D amplifier. The lower frequency, compared to previously developed small form factor histotripsy transducers, was selected to allow for more efficient volume ablation of tissue. The transducer was characterized and tested by measuring pressure field maps in the axial and lateral planes and pressure output as a function of driving voltage. The axial and lateral full-width-half-maximums of the focus were found to be 6.1 and 1.1 mm, respectively. The transducer was estimated to generate 34.5-MPa peak negative focal pressure with a peak-to-peak driving voltage of 1345 V. Performance testing was done by ablating volumes of bovine liver tissues ( n = 3 ). The transducer was found to be capable of ablating tissues at its full working distance of 17 mm.
Collapse
|
8
|
McBride S, Avazzadeh S, Wheatley AM, O’Brien B, Coffey K, Elahi A, O’Halloran M, Quinlan LR. Ablation Modalities for Therapeutic Intervention in Arrhythmia-Related Cardiovascular Disease: Focus on Electroporation. J Clin Med 2021; 10:jcm10122657. [PMID: 34208708 PMCID: PMC8235263 DOI: 10.3390/jcm10122657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Targeted cellular ablation is being increasingly used in the treatment of arrhythmias and structural heart disease. Catheter-based ablation for atrial fibrillation (AF) is considered a safe and effective approach for patients who are medication refractory. Electroporation (EPo) employs electrical energy to disrupt cell membranes which has a minimally thermal effect. The nanopores that arise from EPo can be temporary or permanent. Reversible electroporation is transitory in nature and cell viability is maintained, whereas irreversible electroporation causes permanent pore formation, leading to loss of cellular homeostasis and cell death. Several studies report that EPo displays a degree of specificity in terms of the lethal threshold required to induce cell death in different tissues. However, significantly more research is required to scope the profile of EPo thresholds for specific cell types within complex tissues. Irreversible electroporation (IRE) as an ablative approach appears to overcome the significant negative effects associated with thermal based techniques, particularly collateral damage to surrounding structures. With further fine-tuning of parameters and longer and larger clinical trials, EPo may lead the way of adapting a safer and efficient ablation modality for the treatment of persistent AF.
Collapse
Affiliation(s)
- Shauna McBride
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
| | - Antony M. Wheatley
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
| | - Barry O’Brien
- AtriAN Medical Limited, Unit 204, NUIG Business Innovation Centre, Upper Newcastle, H91 R6W6 Galway, Ireland; (B.O.); (K.C.)
| | - Ken Coffey
- AtriAN Medical Limited, Unit 204, NUIG Business Innovation Centre, Upper Newcastle, H91 R6W6 Galway, Ireland; (B.O.); (K.C.)
| | - Adnan Elahi
- Translational Medical Device Lab (TMDL), Lamb Translational Research Facility, University College Hospital Galway, H91 V4AY Galway, Ireland; (A.E.); (M.O.)
- Electrical & Electronic Engineering, School of Engineering, National University of Ireland Galway, H91 HX31 Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab (TMDL), Lamb Translational Research Facility, University College Hospital Galway, H91 V4AY Galway, Ireland; (A.E.); (M.O.)
| | - Leo R. Quinlan
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H92 W2TY Galway, Ireland
- Correspondence:
| |
Collapse
|
9
|
Danahey J, Seip R, Lee B, Nassiri N, Dardik A, Guzman R, Nassiri N. Imaging of vascular malformations with a high-intensity focused ultrasound probe for treatment planning. J Vasc Surg Venous Lymphat Disord 2021; 9:1467-1472.e2. [PMID: 33838310 DOI: 10.1016/j.jvsv.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/19/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We aimed to investigate whether a current commercially available high-intensity focused ultrasound (HIFU) probe can adequately image targeted vascular malformations (VMs) in anticipation of HIFU treatment planning and delivery. METHODS We enrolled 10 consecutive patients who were scheduled to undergo treatment of symptomatic peripheral VMs confirmed by routine preoperative contrast-enhanced magnetic resonance imaging and soft tissue duplex ultrasound. The lesions were situated no more than 6 cm from the skin. After induction of general anesthesia and before surgical intervention, we prepared and positioned the Sonablate HIFU probe (SonaCare Medical, LLC, Charlotte, NC) to obtain multiple B-mode images of the targeted VM in the transverse and longitudinal dimensions. We then rated the quality of the images and the feasibility of the imaging process itself using a previously devised questionnaire aimed at evaluating the adequacy of the images for potential HIFU treatment planning and delivery. The patients subsequently underwent surgical intervention and clinical follow-up for their VM per the standard protocol. RESULTS The study included 10 participants aged 21 to 67 years (mean ± standard deviation, 36.5 ± 16.5 years). Six patients (60%) identified as female. The VMs imaged consisted of eight venous (80%), one lymphatic (10%), and one combined lymphovenous (10%) malformation. The lesions were in the extremities only (50%), trunk only (20%), trunk and extremities (20%), or neck and extremities (10%). Pain related to the VM was present in all 10 patients (100%). In all 10 patients, the boundary and location of the VM could be visualized via the HIFU probe despite the diminished B-mode imaging resolution. The absence of Doppler functionality in the HIFU probe did not prevent the identification of the VMs in any patient up to a depth of 6 cm. The results from the postimaging survey showed that difficulty in preparing the study device for imaging was 1.1 ± 0.3 and difficulty in use was 1.1 ± 0.1, with a score of 1 equal to easy and 5 to difficult. The stability of the acoustic coupling to the patient was 1.3 ± 0.2, with a score of 1 representing very stable. CONCLUSIONS We were able to ultrasonically identify and outline all targeted peripheral VMs using a commercially available HIFU probe in anticipation of treatment planning and delivery. Baseline magnetic resonance imaging and soft tissue duplex ultrasound remain essential tools for guiding probe placement and HIFU imaging.
Collapse
Affiliation(s)
- James Danahey
- Division of Vascular and Endovascular Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Ralf Seip
- SonaCare Medical, LLC, Charlotte, NC
| | - Brian Lee
- SonaCare Medical, LLC, Charlotte, NC
| | - Nima Nassiri
- Institute of Urology, University of Southern California, Los Angeles, Calif
| | - Alan Dardik
- Division of Vascular and Endovascular Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Raul Guzman
- Division of Vascular and Endovascular Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Naiem Nassiri
- Division of Vascular and Endovascular Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Conn; Vascular Malformations Program, Yale New Haven Hospital, New Haven, Conn.
| |
Collapse
|
10
|
Dahman B, Dillenseger JL. Deformable US/CT Image Registration with a Convolutional Neural Network for Cardiac Arrhythmia Therapy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2011-2014. [PMID: 33018398 DOI: 10.1109/embc44109.2020.9175386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Image registration represents one of the fundamental techniques in medical imaging and image-guided interventions. In this paper, we present a Convolutional Neural Network (CNN) framework for deformable transesophageal US/CT image registration, for the cardiac arrhythmias, and guidance therapy purposes. The framework consists of a CNN, a spatial transformer, and a resampler. The CNN expects concatenated pairs of moving and fixed images as its input, and estimates as output the parameters for the spatial transformer, which generates the displacement vector field that allows the resampler to wrap the moving image into the fixed image. In our method, we train the model to maximize standard image matching objective functions that are based on the image intensities. The network can be applied to perform non-rigid registration of a pair of CT/US images directly in one pass, avoiding so the time consuming computation of the classical iterative method.
Collapse
|
11
|
Bessière F, Zorgani A, Robert J, Daunizeau L, Cao E, Vaillant F, Abell E, Quesson B, Catheline S, Chevalier P, Lafon C. High Frame Rate Ultrasound for Electromechanical Wave Imaging to Differentiate Endocardial From Epicardial Myocardial Activation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:405-414. [PMID: 31767455 DOI: 10.1016/j.ultrasmedbio.2019.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/04/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Differentiation between epicardial and endocardial ventricular activation remains a challenge despite the latest technologies available. The aim of the present study was to develop a new tool method, based on electromechanical wave imaging (EWI), to improve arrhythmogenic substrate activation analysis. Experiments were conducted on left ventricles (LVs) of four isolated working mode swine hearts. The protocol aimed at demonstrating that different patterns of mechanical activation could be observed whether the ventricle was in sinus rhythm, paced from the epicardium or from the endocardium. A total of 72 EWI acquisitions were recorded on the anterior, lateral and posterior segments of the LV. A total of 54 loop records were blindly assigned to two readers. EWI sequences interpretations were correct in 89% of cases. The overall agreement rate between the two readers was 83%. When in a paced ventricle, the origin of the wave front was focal and originated from the endocardium or the epicardium. In sinus rhythm, wave front was global and activated within the entire endocardium toward the epicardium at a speed of 1.7 ± 0.28 m·s-1. Wave front speeds were respectively measured when the endocardium or the epicardium were paced at a speed of 1.1 ± 0.35 m·s-1 versus 1.3 ± 0.34 m·s-1 (p = NS). EWI activation mapping allows activation localization within the LV wall and calculation of the wave front propagation speed through the muscle. In the future, this technology could help localize activation within the LV thickness during complex ablation procedures.
Collapse
Affiliation(s)
- Francis Bessière
- Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon, Lyon, France; LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France.
| | - Ali Zorgani
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Jade Robert
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Loïc Daunizeau
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Elodie Cao
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Fanny Vaillant
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France
| | - Emma Abell
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France
| | - Bruno Quesson
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France
| | - Stéphane Catheline
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Philippe Chevalier
- Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| |
Collapse
|
12
|
Andreozzi A, Iasiello M, Tucci C. An overview of mathematical models and modulated-heating protocols for thermal ablation. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/bs.aiht.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Adams MS, Diederich CJ. Deployable cylindrical phased-array applicator mimicking a concentric-ring configuration for minimally-invasive delivery of therapeutic ultrasound. Phys Med Biol 2019; 64:125001. [PMID: 31108478 DOI: 10.1088/1361-6560/ab2318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel design for a deployable catheter-based ultrasound applicator for endoluminal and laparoscopic intervention is introduced. By combining a 1D cylindrical ring phased array with an expandable paraboloid or conical-shaped balloon-based reflector, the applicator can be controllably collapsed for compact delivery and deployed to mimic a forward-firing larger diameter concentric ring array with tight focusing and electronic steering capabilities in depth. Comprehensive acoustic and biothermal parametric studies were employed to characterize the capabilities of the applicator design as a function of transducer dimensions, phased array configuration, and balloon reflector geometry. Modeling results indicate that practical balloon sizes (43-57 mm expanded diameter), transducer array configurations (e.g. 1.5 MHz, 10 mm OD × 20 mm length, 8 or 16 array elements), and sonication durations (30 s) are capable of producing spatially-localized acoustic intensity focal patterns and ablative thermal lesions (width: 2.8-4.8 mm; length: 5.3-40.1 mm) in generalized soft tissue across a 5-100 mm depth range. Larger focal intensity gain magnitudes and narrower focal dimensions are attainable using paraboloid-shaped balloon reflectors with natural geometric focal depths of 25-55 mm, whereas conical-shaped reflectors (angled 45-55°) produce broader foci and extend electronic steering range in depth. A proof-of-concept phased array applicator assembly was fabricated and characterized using hydrophone and radiation force balance measurements and demonstrated good agreement with simulation. The results of this study suggest that combining small diameter cylindrical phased arrays with expandable balloon reflectors can enhance minimally invasive ultrasound-based intervention by augmenting achievable focal gains and penetration depths with dynamic adjustment of treatment depth.
Collapse
|
14
|
Greillier P, Ankou B, Bour P, Zorgani A, Abell E, Lacoste R, Bessière F, Pernot M, Catheline S, Quesson B, Chevalier P, Lafon C. Myocardial Thermal Ablation with a Transesophageal High-Intensity Focused Ultrasound Probe: Experiments on Beating Heart Models. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2625-2636. [PMID: 30205993 DOI: 10.1016/j.ultrasmedbio.2018.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Described here is a study of transesophageal thermal ablation of isolated and perfused beating hearts and non-human primates. An endoscope integrating a transesophageal echocardiography probe and a high-intensity focused ultrasound transducer was built and tested on five Langendorff-isolated hearts and three 30-kg baboons. B-Mode ultrasound, passive elastography and magnetic resonance imaging were performed to monitor thermal lesions. In isolated hearts, continuous and gated sonication parameters were evaluated with acoustic intensities of 9-12 W/cm2. Sonication parameters of gated exposures with 12 W/cm2 acoustic intensity for 5 min consistently produced visible lesions in the ventricles of isolated hearts. In animals, left atria and ventricles were exposed to repeated continuous sonications (4-15 times for 16 s) at an acoustic intensity at the surface of the transducer of 9 W/cm2. Clinical states of the baboons during and after the treatment were good. One suspected lesion in the left ventricle could be evidenced by elastography, but was not confirmed by magnetic resonance imaging. The transesophageal procedure therefore has the potential to create thermal lesions in beating hearts and its safety in clinical practice seems promising. However, further technical exploration of the energy deposition in the target would be necessary before the next pre-clinical experiments.
Collapse
Affiliation(s)
| | - Bénédicte Ankou
- Hospices Civils de Lyon, Hôpital Cardiovasculaire Louis Pradel, Lyon, France
| | | | - Ali Zorgani
- Universite Lyon, INSERM, UMR1032, LabTAU, Lyon, France
| | | | | | - Francis Bessière
- Universite Lyon, INSERM, UMR1032, LabTAU, Lyon, France; Hospices Civils de Lyon, Hôpital Cardiovasculaire Louis Pradel, Lyon, France
| | - Mathieu Pernot
- Institut Langevin, Ondes et Images, ESPCI ParisTech, CNRS UMR 7587, Paris, France
| | | | | | - Philippe Chevalier
- Hospices Civils de Lyon, Hôpital Cardiovasculaire Louis Pradel, Lyon, France
| | - Cyril Lafon
- Universite Lyon, INSERM, UMR1032, LabTAU, Lyon, France
| |
Collapse
|
15
|
Bawiec C, N'Djin W, Bouchoux G, Sénégond N, Guillen N, Chapelon JY. Preliminary Investigation of a 64-element Capacitive Micromachined Ultrasound Transducer (CMUT) Annular Array Designed for High Intensity Focused Ultrasound (HIFU). Ing Rech Biomed 2018. [DOI: 10.1016/j.irbm.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Mathematical Models of Cell Response Following Heating. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30315551 DOI: 10.1007/978-3-319-96445-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The cells of the cardiovascular system can experience temperature excesses of a few degrees during a diseased state or of tens of degrees during a thermal therapy treatment. These raised temperatures may be acute or of long duration. The multiple cell lines that compose each tissue then react, in approximate order of increasing thermal insult, by expressing heat shock proteins, undergoing apoptosis, or suffering necrosis. Mathematical models of the response of cells could aid in planning and designing thermal therapies. The multi-factor nature of the cell response makes it challenging to develop such models. The models most used clinically are mathematically simple and based on the response of representative tissues. The model that might provide the most fundamental understanding of the biochemical response of cells requires many parameters, some of which are difficult to measure. None of the semi-empirical models that provide improved prediction of cell fate have been widely accepted to plan therapies. There remain great opportunities for developing mathematical models cell response.
Collapse
|
17
|
Greillier P, Bawiec C, Bessière F, Lafon C. Therapeutic Ultrasound for the Heart: State of the Art. Ing Rech Biomed 2018. [DOI: 10.1016/j.irbm.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Sandoval Z, Castro M, Alirezaie J, Bessière F, Lafon C, Dillenseger JL. Transesophageal 2D ultrasound to 3D computed tomography registration for the guidance of a cardiac arrhythmia therapy. ACTA ACUST UNITED AC 2018; 63:155007. [DOI: 10.1088/1361-6560/aad29a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Fast Volumetric Ultrasound B-Mode and Doppler Imaging with a New High-Channels Density Platform for Advanced 4D Cardiac Imaging/Therapy. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020200] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Jang KW, Tu TW, Nagle ME, Lewis BK, Burks SR, Frank JA. Molecular and histological effects of MR-guided pulsed focused ultrasound to the rat heart. J Transl Med 2017; 15:252. [PMID: 29237455 PMCID: PMC5729396 DOI: 10.1186/s12967-017-1361-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Image-guided high intensity focused ultrasound has been used as an extracorporeal cardiac pacing tool and to enhance homing of stem cells to targeted tissues. However, molecular changes in the myocardium after sonication have not been widely investigated. Magnetic-resonance (MR)-guided pulsed focused ultrasound (pFUS) was targeted to the rat myocardium over a range of pressures and the microenvironmental and histological effects were evaluated over time. METHODS Eight-to-ten-week-old Sprague-Dawley rats received T2-weighted MR images to target pFUS to the left ventricular and septum without cardiac or respiratory gating. Rats were sonicated through the thoracic wall at peak negative pressures (PNP) from 1 to 8 MPa at a center frequency of 1 MHz, 10 ms pulse duration and 1 Hz pulse repetition frequency for 100 pulses per focal target. Following pFUS, myocardium was harvested over 24 h and subjected to imaging, proteomic, and histological measurements. RESULTS pFUS to the myocardium increased expression of cytokines, chemokines, and trophic factors characterized by an initial increase in tumor necrosis factor (TNF)-α followed by increases in pro- and anti-inflammatory factors that returned to baseline by 24 h. Immediately after pFUS, there was a transient (< 1 h) increase in N-terminal pro b-type natriuretic peptide (NT-proBNP) without elevation of other cardiac injury markers. A relationship between PNP and expression of TNF-α and NT-proBNP was observed with significant changes (p < 0.05 ANOVA) ≥ 4 MPa compared to untreated controls. Contrast-enhanced ex vivo T1-weighted MRI revealed vascular leakage in sonicated myocardium that was accompanied by the presence of albumin upon immunohistochemistry. Histology revealed infiltration of neutrophils and macrophages without morphological myofibril changes in sonicated tissue accompanied by pulmonary hemorrhage at PNP > 4 MPa. CONCLUSIONS MR-guided pFUS to myocardium induced transient proteomic and histological changes. The temporal proteomic changes in the myocardium indicate a short-lived sterile inflammatory response consistent with ischemia or contusion. Further study of myocardial function and strain is needed to determine if pFUS could be developed as an experimental model of cardiac injury and chest trauma.
Collapse
Affiliation(s)
- Kee W Jang
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA.
| | - Tsang-Wei Tu
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Matthew E Nagle
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Bobbi K Lewis
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Dr., Bethesda, MD, 20892, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Bai Y, Hu L, Yu D, Peng S, Zhang M, Liu X, Gu Y. A simple method of placing a coronary sinus catheter through the femoral vein in miniature swine. Exp Ther Med 2017; 13:1604-1607. [PMID: 28413516 DOI: 10.3892/etm.2017.4158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the feasibility of placing a coronary sinus (CS) catheter through the femoral veins of miniature swine. A total of 16 male domestic pigs (3-4 months old, 25±2 kg) were used. Firstly, the anatomic structure of the CS ostium of swine heart was observed at different angles under X-ray. The guide wire and Cobara catheter were subsequently advanced into the right atrium through the femoral vein. Subsequently, the guide wire was retracted behind the fix curve of the Cobara catheter and the catheter bent spontaneously in the absence of supporting guide wire following retraction. The catheter was then gently rotated clockwise to direct the catheter tip to the left allowing the catheter to easily be placed in the CS ostium. This method was associated with a short procedure time: The time on separation of the blood vessels was 15.5±5.8 min and the time of radiation exposure was 112±20 sec. The success rate of placing the catheter to CS ostium was 100%. Only one pig experienced a hematoma after the sheath was pulled out. All swine recovered without serious complications, such as perforation of coronary vein and pericardial tamponade. Therefore, this method of placing CS catheter is simple, safe and reliable, which may offer help for related research.
Collapse
Affiliation(s)
- Yupeng Bai
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Liqun Hu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Delong Yu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Sheng Peng
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Mingjing Zhang
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Xiaogang Liu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Ye Gu
- Department of Cardiology, Puai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| |
Collapse
|