1
|
Lopez-Marin A, Daeichin V, Hunt A, Springeling G, Beurskens R, van der Steen AFW, van Soest G. Acoustic Stack for Combined Intravascular Ultrasound and Photoacoustic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:77-86. [PMID: 39312431 DOI: 10.1109/tuffc.2024.3465837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Multimodal intravascular ultrasound and photoacoustic (IVUS/PA) imaging is a promising diagnostic tool for cardiovascular diseases like atherosclerosis. IVUS/PA catheters typically require two independent transducers due to different frequency requirements, potentially increasing the catheter size. To facilitate multimodal imaging within conventional catheter dimensions, we designed, fabricated, and characterized a dual-transducer acoustic stack where a low-frequency (LF) PA receiver sits as a matching layer for the high-frequency (HF) US transducer. While the HF transducer operates around 50 MHz, the LF receiver targets frequencies below 15 MHz to capture most of the PA energy from atherosclerotic plaque lipids. Simulation results reveal that this configuration could increase the sensitivity of the HF transducer by 3.54 dB while maintaining bandwidth. Phantom experiments with fabricated stacks showed improved performance for the US transducer, validating the enhanced sensitivity and bandwidth. Following improvements in stack fabrication, the proposed acoustic stack is a viable design that can significantly enhance diagnostic accuracy for atherosclerosis, providing high-resolution, multifrequency imaging within a compact catheter form factor.
Collapse
|
2
|
Biswas D, Roy S, Vasudevan S. Biomedical Application of Photoacoustics: A Plethora of Opportunities. MICROMACHINES 2022; 13:1900. [PMID: 36363921 PMCID: PMC9692656 DOI: 10.3390/mi13111900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The photoacoustic (PA) technique is a non-invasive, non-ionizing hybrid technique that exploits laser irradiation for sample excitation and acquires an ultrasound signal generated due to thermoelastic expansion of the sample. Being a hybrid technique, PA possesses the inherent advantages of conventional optical (high resolution) and ultrasonic (high depth of penetration in biological tissue) techniques and eliminates some of the major limitations of these conventional techniques. Hence, PA has been employed for different biomedical applications. In this review, we first discuss the basic physics of PA. Then, we discuss different aspects of PA techniques, which includes PA imaging and also PA frequency spectral analysis. The theory of PA signal generation, detection and analysis is also detailed in this work. Later, we also discuss the major biomedical application area of PA technique.
Collapse
Affiliation(s)
- Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Srivathsan Vasudevan
- Discipline of Electrical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol 453552, MP, India
| |
Collapse
|
3
|
Gonzalez EA, Lediju Bell MA. Dual-wavelength photoacoustic atlas method to estimate fractional methylene blue and hemoglobin contents. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220093GR. [PMID: 36050818 PMCID: PMC9433893 DOI: 10.1117/1.jbo.27.9.096002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Methylene blue (MB) is an exogenous contrast agent that has the potential to assist with visualization and penetration challenges in photoacoustic imaging. However, monitoring the local concentration between MB and endogenous chromophores is critical for avoiding unnecessary MB accumulations that could lead to adverse effects such as hemolysis when exposed to increased dose and photodamage when exposed to high laser energies. AIM We developed a modified version of a previously proposed acoustic-based atlas method to estimate concentration levels from a mixture of two photoacoustic-sensitive materials after two laser wavelength emissions. APPROACH Photoacoustic data were acquired from mixtures of 100-μM MB and either human or porcine blood (Hb) injected in a plastisol phantom, using laser wavelengths of 710 and 870 nm. An algorithm to perform linear regression of the acoustic frequency response from an atlas composed of pure concentrations was designed to assess the concentration levels from photoacoustic samples obtained from 11 known MB/Hb volume mixtures. The mean absolute error (MAE), coefficient of determination (i.e., R2), and Spearman's correlation coefficient (i.e., ρ) between the estimated results and ground-truth labels were calculated to assess the algorithm performance, linearity, and monotonicity, respectively. RESULTS The overall MAE, R2, and ρ were 12.68%, 0.80, and 0.89, respectively, for the human Hb dataset and 9.92%, 0.86, and 0.93, respectively, for the porcine Hb dataset. In addition, a similarly linear relationship was observed between the acoustic frequency response at 2.3 MHz and 870-nm laser wavelength and the ground-truth concentrations, with R2 and | ρ | values of 0.76 and 0.88, respectively. CONCLUSIONS Contrast agent concentration monitoring is feasible with the proposed approach. The potential for minimal data acquisition times with only two wavelength emissions is advantageous toward real-time implementation in the operating room.
Collapse
Affiliation(s)
- Eduardo A. Gonzalez
- Johns Hopkins University, School of Medicine, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Muyinatu A. Lediju Bell
- Johns Hopkins University, School of Medicine, Department of Biomedical Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Whiting School of Engineering, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States
- Johns Hopkins University, Whiting School of Engineering, Department of Computer Science, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Naumovska M, Merdasa A, Hammar B, Albinsson J, Dahlstrand U, Cinthio M, Sheikh R, Malmsjö M. Mapping the architecture of the temporal artery with photoacoustic imaging for diagnosing giant cell arteritis. PHOTOACOUSTICS 2022; 27:100384. [PMID: 36068803 PMCID: PMC9441260 DOI: 10.1016/j.pacs.2022.100384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/02/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Photoacoustic (PA) imaging is rapidly emerging as a promising clinical diagnostic tool. One of the main applications of PA imaging is to image vascular networks in humans. This relies on the signal obtained from oxygenated and deoxygenated hemoglobin, which limits imaging of the vessel wall itself. Giant cell arteritis (GCA) is a treatable, but potentially sight- and life-threatening disease, in which the artery wall is infiltrated by leukocytes. Early intervention can prevent complications making prompt diagnosis of importance. Temporal artery biopsy is the gold standard for diagnosing GCA. We present an approach to imaging the temporal artery using multispectral PA imaging. Employing minimally supervised spectral analysis, we produce histology-like images where the artery wall is clearly discernible from the lumen and further differentiate between PA spectra from biopsies diagnosed as GCA- and GCA+ in 77 patients.
Collapse
Affiliation(s)
- Magdalena Naumovska
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Aboma Merdasa
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Björn Hammar
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - John Albinsson
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Ulf Dahlstrand
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Rafi Sheikh
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
5
|
Sowers T, VanderLaan D, Karpiouk A, Onohara D, Schmarkey S, Rousselle S, Padala M, Emelianov S. In vivo safety study using radiation at wavelengths and dosages relevant to intravascular imaging. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210251R. [PMID: 35102728 PMCID: PMC8802906 DOI: 10.1117/1.jbo.27.1.016003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/05/2022] [Indexed: 05/04/2023]
Abstract
SIGNIFICANCE Intravascular photoacoustic (IVPA) imaging can identify native lipid in atherosclerotic plaques in vivo. However, the large number of laser pulses required to produce 3D images is a safety concern that has not been fully addressed. AIM We aim to evaluate if irradiation at wavelengths and dosages relevant to IVPA imaging causes target vessel damage. APPROACH We irradiate the carotid artery of swine at one of several energy dosages using radiation at 1064 or 1720 nm and use histological evaluation by a pathologist to identify dose-dependent damage. RESULTS Media necrosis was the only dose-dependent form of injury. Damage was present at a cumulative fluence of 50 J / cm2 when using 1720 nm light. Damage was more equivocally identified at 700 J / cm2 using 1064 nm. CONCLUSIONS In prior work, IVPA imaging of native lipid in swine has been successfully conducted below the damage thresholds identified. This indicates that it will be possible to use IVPA imaging in a clinical setting without damaging vessel tissue. Future work should determine if irradiation causes an increase in blood thrombogenicity and confirm whether damaged tissue will heal over longer time points.
Collapse
Affiliation(s)
- Timothy Sowers
- Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, United States
| | - Don VanderLaan
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
| | - Andrei Karpiouk
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
| | - Daisuke Onohara
- Emory University Hospital Midtown, Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Atlanta, Georgia, United States
| | - Susan Schmarkey
- Emory University Hospital Midtown, Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Atlanta, Georgia, United States
| | | | - Muralidhar Padala
- Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States
- Emory University Hospital Midtown, Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center, Atlanta, Georgia, United States
- Georgia Institute of Technology and Emory University School of Medicine, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Division of Cardiothoracic Surgery, Department of Surgery, Atlanta, Georgia, United States
| | - Stanislav Emelianov
- Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology and Emory University School of Medicine, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Sheikh R, Hammar B, Naumovska M, Dahlstrand U, Gesslein B, Erlöv T, Cinthio M, Malmsjö M. Photoacoustic imaging for non-invasive examination of the healthy temporal artery - systematic evaluation of visual function in healthy subjects. Acta Ophthalmol 2021; 99:227-231. [PMID: 32841546 DOI: 10.1111/aos.14566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Photoacoustic (PA) imaging has the potential to become a non-invasive diagnostic tool for giant cell arteritis, as shown in pilot experiments on seven patients undergoing surgery. Here, we present a detailed evaluation of the safety regarding visual function and patient tolerability in healthy subjects, and define the spectral signature in the healthy temporal artery. METHODS Photoacoustic scanning of the temporal artery was performed in 12 healthy subjects using 59 wavelengths (from 680 nm to 970 nm). Visual function was tested before and after the examination. The subjects' experience of the examination was rated on a 0-100 VAS scale. Two- and three-dimensional PA images were generated from the spectra obtained from the artery. RESULTS Photoacoustic imaging did not affect the best corrected visual acuity, colour vision (tested with Sahlgren's Saturation Test or the Ishihara colour vision test) or the visual field. The level of discomfort was low, and only little heat and light sensation were reported. The spectral signature of the artery wall could be clearly differentiated from those of the subcutaneous tissue and skin. Spectral unmixing provided visualization of the chromophore distribution and overall architecture of the artery. CONCLUSIONS Photoacoustic imaging of the temporal artery is well tolerated and can be performed without any risk to visual function, including the function of the retina and the optic nerve. The spectral signature of the temporal artery is specific, which is promising for future method development.
Collapse
Affiliation(s)
- Rafi Sheikh
- Department of Clinical Sciences Lund, Ophthalmology Lund UniversitySkane University Hospital Lund Sweden
| | - Björn Hammar
- Department of Clinical Sciences Lund, Ophthalmology Lund UniversitySkane University Hospital Lund Sweden
| | - Magdalena Naumovska
- Department of Clinical Sciences Lund, Ophthalmology Lund UniversitySkane University Hospital Lund Sweden
| | - Ulf Dahlstrand
- Department of Clinical Sciences Lund, Ophthalmology Lund UniversitySkane University Hospital Lund Sweden
| | - Bodil Gesslein
- Department of Clinical Sciences Lund, Ophthalmology Lund UniversitySkane University Hospital Lund Sweden
| | - Tobias Erlöv
- Faculty of Engineering LTH Department of Biomedical Engineering Lund University Lund Sweden
| | - Magnus Cinthio
- Faculty of Engineering LTH Department of Biomedical Engineering Lund University Lund Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology Lund UniversitySkane University Hospital Lund Sweden
| |
Collapse
|
7
|
Collins GC, Jing B, Lindsey BD. High contrast power Doppler imaging in side-viewing intravascular ultrasound imaging via angular compounding. ULTRASONICS 2020; 108:106200. [PMID: 32521337 PMCID: PMC7502537 DOI: 10.1016/j.ultras.2020.106200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 05/11/2023]
Abstract
The ability to assess likelihood of plaque rupture can determine the course of treatment in coronary artery disease. One indicator of plaque vulnerability is the development of blood vessels within the plaque, or intraplaque neovascularization. In order to visualize these vessels with increased sensitivity in the cardiac catheterization lab, a new approach for imaging blood flow in small vessels using side-viewing intravascular ultrasound (IVUS) is proposed. This approach based on compounding adjacent angular acquisitions was evaluated in tissue mimicking phantoms and ex vivo vessels. In phantom studies, the Doppler CNR increased from 3.3 ± 1.0 to 13 ± 2.6 (conventional clutter filtering) and from 1.9 ± 0.15 to 7.5 ± 1.1 (SVD filtering) as a result of applying angular compounding. When imaging flow at a rate of 5.6 mm/s in 200 µm tubes adjacent to the lumen of ex vivo porcine arteries, the Doppler CNR increased from 5.3 ± 0.95 to 7.2 ± 1.3 (conventional filtering) and from 23 ± 3.3 to 32 ± 6.7 (SVD filtering). Applying these strategies could allow increased sensitivity to slow flow in side-viewing intravascular ultrasound imaging.
Collapse
Affiliation(s)
- Graham C Collins
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, United States.
| | - Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, United States
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, United States
| |
Collapse
|
8
|
Cao Y, Alloosh M, Sturek M, Cheng JX. Highly sensitive lipid detection and localization in atherosclerotic plaque with a dual-frequency intravascular photoacoustic/ultrasound catheter. TRANSLATIONAL BIOPHOTONICS 2020; 2:e202000004. [PMID: 37745902 PMCID: PMC10516318 DOI: 10.1002/tbio.202000004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/07/2020] [Indexed: 09/26/2023] Open
Abstract
Intravascular photoacoustic/ultrasound (IVPA/US) is an emerging hybrid imaging modality that provides specific lipid detection and localization, while maintaining co-registered artery morphology, for diagnosis of vulnerable plaque in cardiovascular disease. However, current IVPA/US approaches based on a single-element transducer exhibit compromised performance for lipid detection due to the relatively low contrast of lipid absorption and conflicting detection bands for photoacoustic and ultrasound signals. Here, we present a dual-frequency IVPA/US catheter for highly sensitive detection and precision localization of lipids. The low frequency transducer provides enhanced photoacoustic sensitivity, while the high frequency transducer maintains state-of-the-art spatial resolution for ultrasound imaging. The boosted capability of IVPA/US imaging enables a multi-scale analysis of lipid distribution in swine with coronary atherosclerosis. The dual-frequency IVPA/US catheter has a diameter of 1 mm and flexibility to easily adapt to current catheterization procedures and is a significant step toward clinical diagnosis of vulnerable plaque.
Collapse
Affiliation(s)
- Yingchun Cao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Mouhamad Alloosh
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Sturek
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
9
|
Iskander-Rizk S, van der Steen AFW, van Soest G. Photoacoustic imaging for guidance of interventions in cardiovascular medicine. Phys Med Biol 2019; 64:16TR01. [PMID: 31048573 DOI: 10.1088/1361-6560/ab1ede] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Imaging guidance is paramount to procedural success in minimally invasive interventions. Catheter-based therapies are the standard of care in the treatment of many cardiac disorders, including coronary artery disease, structural heart disease and electrophysiological conditions. Many of these diseases are caused by, or effect, a change in vasculature or cardiac tissue composition, which can potentially be detected by photoacoustic imaging. This review summarizes the state of the art in photoacoustic imaging approaches that have been proposed for intervention guidance in cardiovascular care. All of these techniques are currently in the preclinical phase. We will conclude with an outlook towards clinical applications.
Collapse
Affiliation(s)
- Sophinese Iskander-Rizk
- Department of Cardiology, Biomedical Engineering, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | | | | |
Collapse
|
10
|
Sowers T, VanderLaan D, Karpiouk A, Donnelly EM, Smith E, Emelianov S. Laser threshold and cell damage mechanism for intravascular photoacoustic imaging. Lasers Surg Med 2019; 51:466-474. [PMID: 30302770 DOI: 10.1002/lsm.23026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Intravascular photoacoustic (IVPA) imaging is being developed to image atherosclerotic plaques, a leading cause of morbidity and mortality in the United States. However, the safety of this imaging modality, which requires repeated irradiation with short laser pulses, has not yet been investigated. This study has two objectives. First, determine in vitro the limit of cumulative fluence that can be applied to cells before death at IVPA relevant wavelengths. Second, evaluate if high single pulse fluences are a potential cause of cell death during IVPA imaging. MATERIALS AND METHODS Experiments were conducted using endothelial cells, macrophages, and smooth muscle cells. The cumulative fluence experiments were conducted at 1064 and 1197 nm, using a high pulse repetition frequency laser. Cells were irradiated with a wide range of cumulative fluences and evaluated for cell death. The thresholds for death were compared to the maximum expected clinical cumulative fluence. To evaluate the effect of single pulse fluences, cells were irradiated at 1064, 1210, and 1720 nm. Light was delivered at a range of pulse energies to emulate the fluences that cells would be exposed to during clinical IVPA imaging. RESULTS At 1064 nm, all three cell types remained viable at cumulative fluences above the maximum expected clinical cumulative fluence, which is calculated based on common IVPA imaging protocols. At 1197 nm, cells were viable near or just below the maximum expected clinical cumulative fluence, with some cell type to cell type variation. All three cell types remained viable after irradiation with high single pulse fluences at all three wavelengths. CONCLUSION The cumulative fluence experiments indicate that safety considerations are likely to put constraints on the amount of irradiation that can be used in IVPA imaging protocols. However, this study also indicates that it will be possible to use IVPA imaging safely, since cumulative fluences could be reduced by as much as two orders of magnitude below the maximum expected clinical cumulative fluence by varying the imaging protocol, albeit at the expense of image quality. The single pulse fluence experiments indicate that cell death from single pulse fluence is not likely during IVPA imaging. Thus, future studies should focus on heat accumulation as the likely mechanism of tissue damage. Lasers Surg. Med. 51:466-474, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy Sowers
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Don VanderLaan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrei Karpiouk
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Eleanor M Donnelly
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia
| | - Ethan Smith
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Stanislav Emelianov
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
11
|
Sheikh R, Cinthio M, Dahlstrand U, Erlov T, Naumovska M, Hammar B, Zackrisson S, Jansson T, Reistad N, Malmsjo M. Clinical Translation of a Novel Photoacoustic Imaging System for Examining the Temporal Artery. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:472-480. [PMID: 30872212 DOI: 10.1109/tuffc.2018.2868674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The objective was to provide a clinical setup for photoacoustic imaging (PAI) of the temporal artery in humans and to describe the challenges encountered and methods of overcoming them. The temporal artery was examined in seven patients with suspect giant-cell arteritis (GCA), both in vivo and ex vivo, and the results were compared to that of histology. To adapt PAI to the human studies, the transducer was fixed to an adjustable arm to reduce motion artifacts, and a stepping motor was developed to enable 3-D scanning. Risks associated with the use of lasers, ultrasound, and electrical equipment were evaluated by measuring energy levels, and safety precautions were undertaken to prevent injury to the patients and staff. The PAI spectra obtained clearly delineated the artery wall, both in vivo and ex vivo, although the latter was of high quality due to the lack of artifacts. The results could be compared to that of histology. The involved energy levels were found to be below the limits given in regulatory standards. Eye protectors prevented irradiation of the patient's eyes, and visual function after the procedure was found not to be affected. The patients reported no discomfort during the investigations. PAI provides images of the temporal artery wall that may be used for the future diagnosis of GCA in humans. The technique could be further refined by addressing the specific problems of motion artifacts and interference from blood and other chromophores. This study paves the way for other clinical applications of PAI.
Collapse
|
12
|
Zheng S, Lan Z. Reconstruction of optical absorption coefficient distribution in intravascular photoacoustic imaging. Comput Biol Med 2018; 97:37-49. [DOI: 10.1016/j.compbiomed.2018.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 01/18/2023]
|
13
|
Zhang X, Qian X, Tao C, Liu X. In Vivo Imaging of Microvasculature during Anesthesia with High-Resolution Photoacoustic Microscopy. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1110-1118. [PMID: 29499917 DOI: 10.1016/j.ultrasmedbio.2018.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 05/22/2023]
Abstract
Anesthesia monitoring is extremely important in improving the quality of anesthesia and ensuring the safety of patients in operation. Photoacoustic microscopy (PAM) is proposed to in vivo image the skin microvasculature of 10 nude mice undergoing general anesthesia by using the isoflurane gas with a concentration of 3%. Benefiting from strong optical absorption of hemoglobin, PAM has good contrast and high resolution in mapping of microvasculature. A series of high quality images can clearly reveal the subtle changes of capillaries in morphology over time. Two indices, vessel intensity and vessel density, are extracted from these images to measure the microvasculature quantitatively. The imaging results show that the vessel intensity and density are increased over time. After 65 min, the vessel intensity increased 42.7 ± 8.6% and the density increased 28.6 ± 12.2%. These indices extracted from photoacoustic images accurately reflect the greater blood perfusion undergoing general anesthesia. Additionally, abnormal reductions of vessel intensity and density are also observed as overtime anesthesia. This preclinical study suggests that PAM holds potential to monitor anesthesia by imaging the skin microvasculature.
Collapse
Affiliation(s)
- Xiang Zhang
- MOE Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiaoqin Qian
- Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chao Tao
- MOE Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Xiaojun Liu
- MOE Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Optical Ultrasound Generation and Detection for Intravascular Imaging: A Review. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:3182483. [PMID: 29854358 PMCID: PMC5952521 DOI: 10.1155/2018/3182483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 12/30/2022]
Abstract
Combined ultrasound and photoacoustic imaging has attracted significant interests for intravascular imaging such as atheromatous plaque detection, with ultrasound imaging providing spatial location and morphology and photoacoustic imaging highlighting molecular composition of the plaque. Conventional ultrasound imaging systems utilize piezoelectric ultrasound transducers, which suffer from limited frequency bandwidths and reduced sensitivity with miniature transducer elements. Recent advances on optical methods for both ultrasound generation and detection have shown great promise, as they provide efficient and ultrabroadband ultrasound generation and sensitive and ultrabroadband ultrasound detection. As such, all-optical ultrasound imaging has a great potential to become a next generation ultrasound imaging method. In this paper, we review recent developments on optical ultrasound transmitters, detectors, and all-optical ultrasound imaging systems, with a particular focus on fiber-based probes for intravascular imaging. We further discuss our thoughts on future directions on developing combined all-optical photoacoustic and ultrasound imaging systems for intravascular imaging.
Collapse
|
15
|
Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography. Sci Rep 2018; 8:2400. [PMID: 29402963 PMCID: PMC5799328 DOI: 10.1038/s41598-018-20881-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/25/2018] [Indexed: 01/25/2023] Open
Abstract
Intravascular photoacoustic tomography is an emerging technology for mapping lipid deposition within an arterial wall for the investigation of the vulnerability of atherosclerotic plaques to rupture. By converting localized laser absorption in lipid-rich biological tissue into ultrasonic waves through thermoelastic expansion, intravascular photoacoustic tomography is uniquely capable of imaging the entire arterial wall with chemical selectivity and depth resolution. However, technical challenges, including an imaging catheter with sufficient sensitivity and depth and a functional sheath material without significant signal attenuation and artifact generation for both photoacoustics and ultrasound, have prevented in vivo application of intravascular photoacoustic imaging for clinical translation. Here, we present a highly sensitive quasi-collinear dual-mode photoacoustic/ultrasound catheter with elaborately selected sheath material, and demonstrated the performance of our intravascular photoacoustic tomography system by in vivo imaging of lipid distribution in rabbit aortas under clinically relevant conditions at imaging speeds up to 16 frames per second. Ex vivo evaluation of fresh human coronary arteries further confirmed the performance of our imaging system for accurate lipid localization and quantification of the entire arterial wall, indicating its clinical significance and translational capability.
Collapse
|
16
|
Intravascular imaging for characterization of coronary atherosclerosis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Furdella KJ, Witte RS, Vande Geest JP. Tracking delivery of a drug surrogate in the porcine heart using photoacoustic imaging and spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:41016. [PMID: 28192566 DOI: 10.1117/1.jbo.22.4.041016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
Although the drug-eluting stent (DES) has dramatically reduced the rate of coronary restenosis, it still occurs in up to 20% of patients with a DES. Monitoring drug delivery could be one way to decrease restenosis rates. We demonstrate real-time photoacoustic imaging and spectroscopy (PAIS) using a wavelength-tunable visible laser and clinical ultrasound scanner to track cardiac drug delivery. The photoacoustic signal was initially calibrated using porcine myocardial samples soaked with a known concentration of a drug surrogate (DiI). Next, an in situ coronary artery was perfused with DiI for 20 min and imaged to monitor dye transport in the tissue. Finally, a partially DiI-coated stent was inserted into the porcine brachiocephalic trunk for imaging. The photoacoustic signal was proportional to the DiI concentration between 2.4 and 120 ?? ? g / ml , and the dye was detected over 1.5 mm from the targeted coronary vessel. Photoacoustic imaging was also able to differentiate the DiI-coated portion of the stent from the uncoated region. These results suggest that PAIS can track drug delivery to cardiac tissue and detect drugs loaded onto a stent with sub-mm precision. Future work using PAIS may help improve DES design and reduce the probability of restenosis.
Collapse
Affiliation(s)
- Kenneth J Furdella
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, Pennsylvania, United States
| | - Russell S Witte
- University of Arizona, Department of Medical Imaging, Tucson, Arizona, United States
| | - Jonathan P Vande Geest
- University of Pittsburgh, Department of Bioengineering, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
18
|
Wu M, Springeling G, Lovrak M, Mastik F, Iskander-Rizk S, Wang T, van Beusekom HMM, van der Steen AFW, Van Soest G. Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second. BIOMEDICAL OPTICS EXPRESS 2017; 8:943-953. [PMID: 28270995 PMCID: PMC5330573 DOI: 10.1364/boe.8.000943] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/03/2023]
Abstract
Lipid deposition can be assessed with combined intravascular photoacoustic/ultrasound (IVPA/US) imaging. To date, the clinical translation of IVPA/US imaging has been stalled by a low imaging speed and catheter complexity. In this paper, we demonstrate imaging of lipid targets in swine coronary arteries in vivo, at a clinically useful frame rate of 20 s-1. We confirmed image contrast for atherosclerotic plaque in human samples ex vivo. The system is on a mobile platform and provides real-time data visualization during acquisition. We achieved an IVPA signal-to-noise ratio of 20 dB. These data show that clinical translation of IVPA is possible in principle.
Collapse
Affiliation(s)
- Min Wu
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Geert Springeling
- Department of Experimental Medical Instrumentation, Erasmus University Medical Center PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Matija Lovrak
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Frits Mastik
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Sophinese Iskander-Rizk
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Tianshi Wang
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Heleen M. M. van Beusekom
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - A. F. W. van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Imaging Science and Technology, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Gijs Van Soest
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
19
|
Wu M, Fw van der Steen A, Regar E, van Soest G. Emerging Technology Update Intravascular Photoacoustic Imaging of Vulnerable Atherosclerotic Plaque. Interv Cardiol 2016; 11:120-123. [PMID: 29588718 DOI: 10.15420/icr.2016:13:3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The identification of vulnerable atherosclerotic plaques in the coronary arteries is emerging as an important tool for guiding atherosclerosis diagnosis and interventions. Assessment of plaque vulnerability requires knowledge of both the structure and composition of the plaque. Intravascular photoacoustic (IVPA) imaging is able to show the morphology and composition of atherosclerotic plaque. With imminent improvements in IVPA imaging, it is becoming possible to assess human coronary artery disease in vivo. Although some challenges remain, IVPA imaging is on its way to being a powerful tool for visualising coronary atherosclerotic features that have been specifically associated with plaque vulnerability and clinical syndromes, and thus such imaging might become valuable for clinical risk assessment in the catheterisation laboratory.
Collapse
Affiliation(s)
- Min Wu
- Department of Biomedical Engineering, Thorax Centre, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Antonius Fw van der Steen
- Department of Biomedical Engineering, Thorax Centre, Erasmus Medical Center, Rotterdam, The Netherlands.,Interuniversity Cardiology Institute of The Netherlands, Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Imaging Science and Technology, Delft University of Technology, Delft, The Netherlands.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Evelyn Regar
- Department of interventional cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gijs van Soest
- Department of Biomedical Engineering, Thorax Centre, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|