1
|
Yazdan M, Naghib SM. Smart Ultrasound-responsive Polymers for Drug Delivery: An Overview on Advanced Stimuli-sensitive Materials and Techniques. Curr Drug Deliv 2025; 22:283-309. [PMID: 38288800 DOI: 10.2174/0115672018283792240115053302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 04/11/2025]
Abstract
In recent years, a notable advancement has occurred in the domain of drug delivery systems via the integration of intelligent polymers that respond to ultrasound. The implementation of this groundbreaking methodology has significantly revolutionised the controlled and precise delivery of therapeutic interventions. An in-depth investigation is conducted into the most recent developments in ultrasonic stimulus-responsive materials and techniques for the purpose of accomplishing precise medication administration. The investigation begins with an exhaustive synopsis of the foundational principles underlying drug delivery systems that react to ultrasonic stimuli, focusing specifically on the complex interplay between polymers and ultrasound waves. Significant attention is devoted to the development of polymers that demonstrate tailored responsiveness to ultrasound, thereby exemplifying their versatility in generating controlled drug release patterns. Numerous classifications of intelligent polymers are examined in the discussion, including those that react to variations in temperature, pH, and enzymes. When coupled with ultrasonic stimuli, these polymers offer a sophisticated framework for the precise manipulation of drug release in terms of both temporal and spatial dimensions. The present study aims to examine the synergistic effects of responsive polymers and ultrasound in overcoming biological barriers such as the blood-brain barrier and the gastrointestinal tract. By doing so, it seeks to shed light on the potential applications of these materials in intricate clinical scenarios. The issues and future prospects of intelligent ultrasound-responsive polymers in the context of drug delivery are critically analysed in this article. The objective of this study is to offer valuable perspectives on the challenges that must be overcome to enable the effective implementation of these technologies. The primary objective of this comprehensive review is to furnish researchers, clinicians, and pharmaceutical scientists with a wealth of information that will serve as a guide for forthcoming developments in the development and enhancement of intelligent drug delivery systems that employ ultrasound-responsive polymers to attain superior therapeutic outcomes.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| |
Collapse
|
2
|
Jirvankar P, Agrawal S, Chambhare N, Agrawal R. Harnessing Biopolymer Gels for Theranostic Applications: Imaging Agent Integration and Real-Time Monitoring of Drug Delivery. Gels 2024; 10:535. [PMID: 39195064 DOI: 10.3390/gels10080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Biopolymer gels have gained tremendous potential for therapeutic applications due to their biocompatibility, biodegradability, and ability to adsorb and bind biological fluids, making them attractive for drug delivery and therapy. In this study, the versatility of biopolymer gels is explored in theranostic backgrounds, with a focus on integrating imaging features and facilitating real-time monitoring of drug delivery. Different methods of delivery are explored for incorporating imaging agents into biopolymer gels, including encapsulation, surface functionalization, nanoparticle encapsulation, and layer-by-layer assembly techniques. These methods exhibit the integration of agents and real-time monitoring drug delivery. We summarize the synthesis methods, general properties, and functional mechanisms of biopolymer gels, demonstrating their broad applications as multimodal systems for imaging-based therapeutics. These techniques not only enable multiple imaging but also provide signal enhancement and facilitate imaging targets, increasing the diagnostic accuracy and therapeutic efficacy. In addition, current techniques for incorporating imaging agents into biopolymer gels are discussed, as well as their role in precise drug delivery and monitoring.
Collapse
Affiliation(s)
- Pranita Jirvankar
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha 442001, Maharashtra, India
| | - Surendra Agrawal
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha 442001, Maharashtra, India
| | - Nikhita Chambhare
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha 442001, Maharashtra, India
| | - Rishabh Agrawal
- Bajiraoji Karanjekar College of Pharmacy, Sakoli 441802, Maharashtra, India
| |
Collapse
|
3
|
Bonde S, Chandarana C, Prajapati P, Vashi V. A comprehensive review on recent progress in chitosan composite gels for biomedical uses. Int J Biol Macromol 2024; 272:132723. [PMID: 38825262 DOI: 10.1016/j.ijbiomac.2024.132723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Chitosan (CS) composite gels have emerged as promising materials with diverse applications in biomedicine. This review provides a concise overview of recent advancements and key aspects in the development of CS composite gels. The unique properties of CS, such as biocompatibility, biodegradability, and antimicrobial activity, make it an attractive candidate for gel-based composites. Incorporating various additives, such as nanoparticles, polymers, and bioactive compounds, enhances the mechanical, thermal, and biological and other functional properties of CS gels. This review discusses the fabrication methods employed for CS composite gels, including blending and crosslinking, highlighting their influence on the final properties of the gels. Furthermore, the uses of CS composite gels in tissue engineering, wound healing, drug delivery, and 3D printing highlight their potential to overcome a number of the present issues with drug delivery. The biocompatibility, antimicrobial properties, electroactive, thermosensitive and pH responsive behavior and controlled release capabilities of these gels make them particularly suitable for biomedical applications. In conclusion, CS composite gels represent a versatile class of materials with significant potential for a wide range of applications. Further research and development efforts are necessary to optimize their properties and expand their utility in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Smita Bonde
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India.
| | - Chandani Chandarana
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Parixit Prajapati
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Vidhi Vashi
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| |
Collapse
|
4
|
Chen D, Liu X, Lu X, Tian J. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Front Pharmacol 2023; 14:1111991. [PMID: 36874010 PMCID: PMC9978018 DOI: 10.3389/fphar.2023.1111991] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Nanoparticle drug delivery systems have proved anti-tumor effects; however, they are not widely used in tumor therapy due to insufficient ability to target specific sites, multidrug resistance to anti-tumor drugs, and the high toxicity of the drugs. With the development of RNAi technology, nucleic acids have been delivered to target sites to replace or correct defective genes or knock down specific genes. Also, synergistic therapeutic effects can be achieved for combined drug delivery, which is more effective for overcoming multidrug resistance of cancer cells. These combination therapies achieve better therapeutic effects than delivering nucleic acids or chemotherapeutic drugs alone, so the scope of combined drug delivery has also been expanded to three aspects: drug-drug, drug-gene, and gene-gene. This review summarizes the recent advances of nanocarriers to co-delivery agents, including i) the characterization and preparation of nanocarriers, such as lipid-based nanocarriers, polymer nanocarriers, and inorganic delivery carriers; ii) the advantages and disadvantages of synergistic delivery approaches; iii) the effectual delivery cases that are applied in the synergistic delivery systems; and iv) future perspectives in the design of nanoparticle drug delivery systems to co-deliver therapeutic agents.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xuecun Liu
- Shandong Boan Biotechnology Co., Ltd., Yantai, China
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
5
|
Zhou H, Liu H, Zhang Y, Xin Y, Huang C, Li M, Zhao X, Ding P, Liu Z. "PFH/AGM-CBA/HSV-TK/LIPOSOME-Affibody": Novel Targeted Nano Ultrasound Contrast Agents for Ultrasound Imaging and Inhibited the Growth of ErbB2-Overexpressing Gastric Cancer Cells. Drug Des Devel Ther 2022; 16:1515-1530. [PMID: 35611358 PMCID: PMC9124479 DOI: 10.2147/dddt.s351623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Objective Gastric cancer is one of the most lethal malignancies in the world. However, the current research on the diagnosis and treatment of nano-ultrasound contrast agents in the field of tumor is mostly focused on breast cancer, ovarian cancer, prostate cancer, liver cancer, etc. Due to the interference of gas in the stomach, there is no report on the treatment of gastric cancer. Herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) therapy system is the most mature tumor suicide gene in cancer treatment. At the same time, in order to improve its safety and efficiency, we designed a gastric tumor targeted ultrasound-triggered phase-transition nano ultrasound contrast agent PFH/AGM-CBA/HSV-TK/Liposome (PAHL)-Affibody complex. Methods In our study, guanidinylated SS-PAAs polymer poly(agmatine/N, N′-cystamine-bis-acrylamide) (AGM-CBA) was used as a nuclear localization vector of suicide gene to form a polyplex, perfluorohexane (PFH) was used as ultrasound contrast agent, liposomes were used to encapsulate perfluorohexane droplets and the polyplexes of AGM-CBA/HSV-TK, and affibody molecules were conjugated to the prepared PAHL in order to obtain a specific targeting affinity to human epidermal growth factor receptor type 2 (ErbB2) at gastric cancer cells. With the aid of ultrasound targeted microbubble destruction technology and the nuclear localization effect of AGM-CBA vector, the transfection efficiency of the suicide gene in gastric cancer cells was significantly increased, leading to significant apoptosis of gastric cancer cells. Results It was shown that PAHL-Affibody complex was nearly spherical with an average diameter of 560 ± 28.9 nm, having higher and specific affinity to ErbB2 (+) gastric cells. In vitro experiments further confirmed that PAHL could target gastric cancer cells expressing ErbB2. In a contrast-enhanced ultrasound scanning study, the prepared ultrasound-triggered phase-change nano-ultrasound contrast agent, PAHL, showed improved ultrasound enhancement effects. With the application of the low-frequency ultrasound, the gene transfection efficiency of PAHL was significantly improved, thereby inducing significant apoptosis in gastric cancer cells. Conclusion This study constructs PFH/AGM-CBA/HSV-TK/Liposome-Affibody nano ultrasound contrast agent, which provides new ideas for the treatment strategy of ErbB2-positive gastric cancer and provides some preliminary experimental basis for its inhibitory effect.
Collapse
Affiliation(s)
- Houren Zhou
- Ultrasound Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yue Zhang
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ying Xin
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Chi Huang
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Mingzhong Li
- School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Xiaoyun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Zhijun Liu
- Ultrasound Department, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
6
|
Wang Y, Cong H, Wang S, Yu B, Shen Y. Development and application of ultrasound contrast agents in biomedicine. J Mater Chem B 2021; 9:7633-7661. [PMID: 34586124 DOI: 10.1039/d1tb00850a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the rapid development of molecular imaging, ultrasound (US) medicine has evolved from traditional imaging diagnosis to integrated diagnosis and treatment at the molecular level. Ultrasound contrast agents (UCAs) play a crucial role in the integration of US diagnosis and treatment. As the micro-bubbles (MBs) in UCAs can enhance the cavitation effect and promote the biological effect of US, UCAs have also been studied in the fields of US thrombolysis, mediated gene transfer, drug delivery, and high intensity focused US. The application range of UCAs is expanding, and the value of their applications is improving. This paper reviews the development and application of UCAs in biomedicine in recent years, and the existing problems and prospects are pointed out.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Sun Y, Ran H, Liu F. Polymer-Based Materials and Their Applications in Image-Guided Cancer Therapy. Curr Med Chem 2021; 29:1352-1368. [PMID: 34137360 DOI: 10.2174/0929867328666210616160717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Advances in nanotechnology have enabled the combination of disease diagnosis and therapy into a single nano package that has tremendous potential for the development of new theranostic strategies. The variety of polymer-based materials has grown exponentially over the past several decades. Such materials have great potential as carriers in disease detection imaging and image monitoring and in systems for the precise delivery of drugs to specific target sites. OBJECTIVE In the present article, we review recent key developments in the synthesis of polymer-based materials for various medical applications and their clinical trials. CONCLUSION There is a growing range of multi-faceted, polymer-based materials with various functions. These functions include carriers for image contrast agents, drug delivery systems, and real-time image-guided systems for noninvasive or minimally invasive therapeutic procedures for cancer therapy.
Collapse
Affiliation(s)
- Yang Sun
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Haitao Ran
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Fan Liu
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| |
Collapse
|
8
|
Naude J, Méndez F, Yepes C, Navarrete M, Cienfuegos-Pelaes RF, Moumtadi F. Frequency response curves for a Mooney-Rivlin hyperelastic microbubble oscillating as a contrast agent in an acoustic pressure field. ULTRASONICS 2020; 107:106161. [PMID: 32402859 DOI: 10.1016/j.ultras.2020.106161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
In this work, we have developed numerical simulations and weakly nonlinear analysis based on the multiple-scales perturbation technique for a coated microbubble that performs radial pulsations subject to an acoustic pressure disturbance in the far-field and whose encapsulated hyperelastic material obeys the Mooney-Rivlin equation. Departing from an elastic coating as a hyperelastic shell of finite thickness, we assume eventually that the shell is of very small thickness in comparison with the microbubble radius. Under this condition, we then perform weakly nonlinear analysis, to identify resonance conditions for small pressure disturbances of the acoustic field. In parallel and also for the limit of small thickness, we have carried out numerical simulations of the radial motion of the microbubble, identifying the onset of limit cycles via the construction of Poincare maps. Under both schemes, we have recognized the importance of two dimensionless hyperelastic parameters that dictate the main behavior of the oscillations: α∗ and β∗. Decreasing the values of these parameters, the resonance conditions are drastically amplified, which is an expected result because of the weak rigidity of the hyperelastic solid, prevails. In this manner, we suggest that moderate values for these previous parameters can be widely advisable when, in medical diagnostic applications, we are applying microbubbles as contrast agents. Therefore, we recommend widely the use of shell softens, because in this case the amplitude of radial pulsation is always amplified.
Collapse
Affiliation(s)
- J Naude
- Departamento de Termofluidos, Facultad de Ingeniería, UNAM, 04510 CDMX, Mexico
| | - F Méndez
- Departamento de Termofluidos, Facultad de Ingeniería, UNAM, 04510 CDMX, Mexico.
| | - C Yepes
- Departamento de Termofluidos, Facultad de Ingeniería, UNAM, 04510 CDMX, Mexico
| | - M Navarrete
- Polo Universitario de Tecnología Avanzada, UNAM, 66629 Apodaca N. L., Mexico
| | | | - F Moumtadi
- Departamento de Ingeniería Electrónica, Facultad de Ingeniería, UNAM, 04510 CDMX, Mexico
| |
Collapse
|
9
|
Liang Y, Yang H, Li Q, Zhao P, Li H, Zhang Y, Cai W, Ma X, Duan Y. Novel biomimetic dual-mode nanodroplets as ultrasound contrast agents with potential ability of precise detection and photothermal ablation of tumors. Cancer Chemother Pharmacol 2020; 86:405-418. [PMID: 32797251 DOI: 10.1007/s00280-020-04124-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/04/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE Molecule-targeted ultrasound imaging has attracted extensive attention for precise diagnosis and targeted therapy of tumors. The aim of this research is to prepare novel biomimetic dual-mode nanoscale ultrasound contrast agents (UCAs), which can not only evade the immune clearance of reticuloendothelial system, but also have the potential ability of precise detection and photothermal ablation of tumors. METHODS In this study, for the first time, the novel biomimetic UCAs were prepared by encapsulating liquid perfluorohexanes with red blood cell membranes carrying IR-780 iodide and named IR780-RBCM@NDs. The characteristics of that were verified through the particle size analyzer, scanning electron microscopy, transmission electron microscopy and laser scanning confocal microscopy. The stability of IR780-RBCM@NDs at 37 °C was explored. The abilities of immune escape, dual-mode imaging and photothermal effect for IR780-RBCM@NDs were verified via in vitro experiments. RESULTS The novel prepared nanodroplets have good characteristics such as mean diameter, zeta potential, and relatively stability. Importantly, the integrin-associated protein expressed on the surface of RBCMs was detected on IR780-RBCM@NDs. Then, compared with control groups, IR780-RBCM@NDs performed excellent immune escape function away from macrophages in vitro. Furthermore, the IR-780 iodide was observed on the new nanodroplets and that was able to perform the dual-mode imaging with near-infrared fluorescence imaging and contrast-enhanced ultrasound imaging after the phase change. Finally, the effective photothermal ablation ability of IR780-RBCM@NDs was verified in tumor cells. CONCLUSION The newly prepared biomimetic IR780-RBCM@NDs provided novel ideas for evading immune clearance, performing precise diagnosis and photothermal ablation of tumor cells.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Hengli Yang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Xi'an Medical College, Xi'an, China.
| | - Qiaoying Li
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Ping Zhao
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Han Li
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yuxin Zhang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Wenbin Cai
- Special Diagnosis Department, General Hospital of Tibet Military Command, Lhasa, China
| | - Xiaoju Ma
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yunyou Duan
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
10
|
Shi S, Vissapragada R, Abi Jaoude J, Huang C, Mittal A, Liu E, Zhong J, Kumar V. Evolving role of biomaterials in diagnostic and therapeutic radiation oncology. Bioact Mater 2020; 5:233-240. [PMID: 32123777 PMCID: PMC7036731 DOI: 10.1016/j.bioactmat.2020.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/11/2023] Open
Abstract
Radiation therapy to treat cancer has evolved significantly since the discovery of x-rays. Yet, radiation therapy still has room for improvement in reducing side effects and improving control of cancer. Safer and more effective delivery of radiation has led us to novel techniques and use of biomaterials. Biomaterials in combination with radiation and chemotherapy have started to appear in pre-clinical explorations and clinical applications, with many more on the horizon. Biomaterials have revolutionized the field of diagnostic imaging, and now are being cultivated into the field of theranostics, combination therapy, and tissue protection. This review summarizes recent development of biomaterials in radiation therapy in several application areas.
Collapse
Affiliation(s)
- Siyu Shi
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ravi Vissapragada
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | | | - Caroline Huang
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Anmol Mittal
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07102, USA
| | - Elisa Liu
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jim Zhong
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30332, USA
| | - Vivek Kumar
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, 07102, USA
| |
Collapse
|