1
|
Zhou Y. Focused Ultrasound Neuromodulation to Peripheral Nerve System. Eur J Neurosci 2025; 61:e70062. [PMID: 40170299 DOI: 10.1111/ejn.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 04/03/2025]
Abstract
Noninvasive focused ultrasound (FUS) has been applied in the treatment of various targets. Neuromodulation using FUS is emerging as a promising therapeutic modality for the central nerve system (CNS) with the advantages of deep penetration and precise targeting in the brain. This technique can also be applied to the peripheral nerve system (PNS). The principle of FUS and the mechanisms of neromodulation on PNS are summarized. Current experimental observations on the PNS targets are introduced to show their therapeutic effects. Discussion on the limitations and perspectives of this technology illustrates the pros and cons for future development. FUS provides a noninvasive, safe, and effective modality for neurotherapeutics. Although the relevant research on PNS is much less than that on CNS, the limited studies have already shown the satisfactory performance of FUS in comparison to the FDA-approved implanted device, especially the vagus nerve stimulation (VNS). Wide applications in clinics and fast development in technology are expected in the near future.
Collapse
Affiliation(s)
- Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, Wuhan, Hubei, China
| |
Collapse
|
2
|
Goyal M, Goyal R, Sanguinetti JL. Ultrasound stimulation of the vagus nerve as a treatment modality for anxiety. Front Psychiatry 2024; 15:1376140. [PMID: 39415887 PMCID: PMC11480057 DOI: 10.3389/fpsyt.2024.1376140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
Anxiety is an increasingly prevalent mental disorder, causing widespread hardship and interfering with society's economic progression. Standard treatments include various talk therapies with poor prognoses or drug interventions with complex side effects, both introducing unnecessary burdens to patients. To remedy this, non-invasive ultrasound stimulation to the vagus nerve is a novel, low-cost treatment that is showing promise. Although vagus nerve stimulation is already approved for epilepsy and other conditions, it requires regular maintenance. In contrast, studies using non-invasive ultrasound stimulation have shown preliminary positive results in affecting vagal activity with minimal drawbacks. This review covers a variety of studies investigating the effects of ultrasound stimulation on the vagus nerve. With rising levels of anxiety with each generation, there is a pressing need for more innovative and diverse treatments with fewer costs and more benefits.
Collapse
Affiliation(s)
- Michell Goyal
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Ravi Goyal
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, United States
| | | |
Collapse
|
3
|
How COVID-19 Hijacks the Cytoskeleton: Therapeutic Implications. Life (Basel) 2022; 12:life12060814. [PMID: 35743845 PMCID: PMC9225596 DOI: 10.3390/life12060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
The SARS-CoV-2 virus invades and replicates within host cells by “hijacking” biomolecular machinery, gaining control of the microtubule cytoskeleton. After attaching to membrane receptors and entering cells, the SARS-CoV-2 virus co-opts the dynamic intra-cellular cytoskeletal network of microtubules, actin, and the microtubule-organizing center, enabling three factors that lead to clinical pathology: (1) viral load due to intra-cellular trafficking, (2) cell-to-cell spread by filopodia, and (3) immune dysfunction, ranging from hyper-inflammatory cytokine storm to ineffective or absent response. These factors all depend directly on microtubules and the microtubule-organizing center, as do cell functions such as mitosis and immune cell movement. Here we consider how the SARS-CoV-2 virus may “hijack” cytoskeletal functions by docking inside the microtubule-organizing center’s centriole “barrels”, enabling certain interactions between the virus’s positively charged spike (“S”) proteins and negatively charged C-termini of the microtubules that the centriole comprises, somewhat like fingers on a keyboard. This points to the potential benefit of therapies aimed not directly at the virus but at the microtubules and microtubule-organizing center of the host cell on which the virus depends. These therapies could range from anti-microtubule drugs to low-intensity ultrasound (megahertz mechanical vibrations) externally applied to the vagus nerve at the neck and/or to the spleen (since both are involved in mediating inflammatory response). Given that ultrasound imaging machines suitable for vagal/splenic ultrasound are available for clinical trials in every hospital, we recommend an alternative therapeutic approach for COVID-19 based on addressing and normalizing the host cell microtubules and microtubule-organizing centers co-opted by the SARS-CoV-2 virus.
Collapse
|
4
|
Tynan A, Brines M, Chavan SS. Control of inflammation using non-invasive neuromodulation: past, present and promise. Int Immunol 2022; 34:119-128. [PMID: 34558623 PMCID: PMC8783606 DOI: 10.1093/intimm/dxab073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
The nervous system has been increasingly recognized as a novel and accessible target in the regulation of inflammation. The use of implantable and invasive devices targeting neural circuits has yielded successful results in clinical settings but does have some risk or adverse effects. Recent advances in technology and understanding of mechanistic pathways have opened new avenues of non-invasive neuromodulation. Through this review we discuss the novel research and outcomes of major modalities of non-invasive neuromodulation in the context of inflammation including transcutaneous electrical, magnetic and ultrasound neuromodulation. In addition to highlighting the scientific observations and breakthroughs, we discuss the underlying mechanisms and pathways for neural regulation of inflammation.
Collapse
Affiliation(s)
- Aisling Tynan
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
| | - Michael Brines
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra University, Hempstead, NY, USA
| |
Collapse
|
5
|
Powell K, White TG, Nash C, Rebeiz T, Woo HH, Narayan RK, Li C. The Potential Role of Neuromodulation in Subarachnoid Hemorrhage. Neuromodulation 2022; 25:1215-1226. [PMID: 35088724 DOI: 10.1016/j.neurom.2021.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Aneurysmal subarachnoid hemorrhage (SAH) continues to be a difficult cerebrovascular disease with limited pharmacologic treatment options. Cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) are leading causes of morbidity and mortality after SAH. Despite the advances in the understanding of its pathophysiology and tremendous efforts to date, nimodipine is currently the sole Food and Drug Administration-approved treatment for patients with SAH, with benefits that are marginal at best. The neuromodulation therapies are promising, especially those that target CV and DCI to improve functional outcomes. The aim of this review is therefore to summarize the available evidence for each type of neuromodulation for CV and DCI, with a special focus on its pathophysiological mechanisms, in addition to their clinical utility and drawbacks, which we hope will lead to future translational therapy options after SAH. MATERIALS AND METHODS We conducted a comprehensive review of preclinical and clinical studies demonstrating the use of neuromodulation for SAH. The literature search was performed using PubMed, Embase, and ClinicalTrials.gov. A total of 21 articles published from 1992 to 2021 and eight clinical trials were chosen. RESULTS The studies reviewed provide a compelling demonstration that neuromodulation is a potentially useful strategy to target multiple mechanisms of DCI and thus to potentially improve functional outcomes from SAH. There are several types of neuromodulation that have been tested to treat CV and DCI, including the trigeminal/vagus/facial nerve stimulation, sphenopalatine ganglion and spinal cord stimulation, transcranial direct electrical stimulation, transcutaneous electrical neurostimulation, and electroacupuncture. Most of them are in the preclinical or early phases of clinical application; however, they show promising results. CONCLUSIONS DCI has a complex pathogenesis, making the unique anatomical distribution and pleiotropic capabilities of various types of neuromodulation a promising field of study. We may be at the cusp of a breakthrough in the use of these techniques for the treatment of this stubbornly difficult disease.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tania Rebeiz
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Henry H Woo
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
6
|
Meng Y, Pople CB, Lea-Banks H, Hynynen K, Lipsman N, Hamani C. Focused ultrasound neuromodulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:221-240. [PMID: 34446247 DOI: 10.1016/bs.irn.2021.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Focused ultrasound (FUS) is an emerging modality for performing incisionless neurosurgical procedures including thermoablation and blood-brain barrier (BBB) modulation. Emerging evidence suggests that low intensity FUS can also be used for neuromodulation with several benefits, including high spatial precision and the possibility of targeting deep brain regions. Here we review the existing data regarding the biological mechanisms of FUS neuromodulation, the characteristics of neuronal activity altered by FUS, emerging indications for FUS neuromodulation, as well as the strengths and limitations of this approach.
Collapse
Affiliation(s)
- Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Christopher B Pople
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Harriet Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
7
|
Charles EJ, Tian Y, Zhang A, Wu D, Mehaffey JH, Gigliotti JC, Klibanov AL, Kron IL, Yang Z. Pulsed ultrasound attenuates the hyperglycemic exacerbation of myocardial ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2021; 161:e297-e306. [PMID: 31839230 PMCID: PMC7195241 DOI: 10.1016/j.jtcvs.2019.10.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Acute hyperglycemia during myocardial infarction worsens outcomes in part by inflammatory mechanisms. Pulsed ultrasound has anti-inflammatory potential in bone healing and neuromodulation. We hypothesized that pulsed ultrasound would attenuate the hyperglycemic exacerbation of myocardial ischemia-reperfusion injury via the cholinergic anti-inflammatory pathway. METHODS Acute hyperglycemia was induced in wild-type C57BL6 or acetylcholine-receptor knockout (α7nAChR-/-) mice by intraperitoneal injection of glucose. Pulsed ultrasound (frequency 7 MHz, bursting mechanical index 1.2, duration 1 second, repeated every 6 seconds for 2 minutes, 20-second total exposure) was performed at the spleen or neck after glucose injection. Separate mice underwent vagotomy before treatment. The left coronary artery was occluded for 20 minutes, followed by 60 minutes of reperfusion. The primary end point was infarct size in explanted hearts. RESULTS Splenic pulsed ultrasound significantly decreased infarct size in wild-type C57BL6 mice exposed to acute hyperglycemia and myocardial ischemia-reperfusion injury (5.2% ± 4.4% vs 16.9% ± 12.5% of risk region, P = .013). Knockout of α7nAChR abrogated the beneficial effect of splenic pulsed ultrasound (22.2% ± 12.1%, P = .79 vs control). Neck pulsed ultrasound attenuated the hyperglycemic exacerbation of myocardial infarct size (3.5% ± 4.8%, P = .004 vs control); however, the cardioprotective effect disappeared in mice that underwent vagotomy. Plasma acetylcholine, β2 adrenergic receptor, and phosphorylated Akt levels were increased after splenic pulsed ultrasound treatment. CONCLUSIONS Pulsed ultrasound treatment of the spleen or neck attenuated the hyperglycemic exacerbation of myocardial ischemia-reperfusion injury leading to a 3-fold decrease in infarct size. Pulsed ultrasound may provide cardioprotection via the cholinergic anti-inflammatory pathway and could be a promising new nonpharmacologic, noninvasive therapy to reduce infarct size during acute myocardial infarction and improve patient outcomes.
Collapse
Affiliation(s)
- Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Yikui Tian
- Department of Surgery, University of Virginia, Charlottesville, Va; Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Aimee Zhang
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Di Wu
- Department of Surgery, University of Virginia, Charlottesville, Va
| | | | - Joseph C Gigliotti
- Department of Integrative Physiology and Pharmacology, Liberty University, Lynchburg, Va
| | | | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, Va; Department of Surgery, University of Arizona, Tucson, Ariz
| | - Zequan Yang
- Department of Surgery, University of Virginia, Charlottesville, Va.
| |
Collapse
|
8
|
Chen M, Wang S, Li X, Yu L, Yang H, Liu Q, Tang J, Zhou S. Non-invasive Autonomic Neuromodulation Is Opening New Landscapes for Cardiovascular Diseases. Front Physiol 2021; 11:550578. [PMID: 33384606 PMCID: PMC7769808 DOI: 10.3389/fphys.2020.550578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023] Open
Abstract
Autonomic imbalance plays a crucial role in the genesis and maintenance of cardiac disorders. Approaches to maintain sympatho-vagal balance in heart diseases have gained great interest in recent years. Emerging therapies However, certain types of emerging therapies including direct electrical stimulation and nerve denervation require invasive implantation of a generator and a bipolar electrode subcutaneously or result in autonomic nervous system (ANS) damage, inevitably increasing the risk of complications. More recently, non-invasive neuromodulation approaches have received great interest in ANS modulation. Non-invasive approaches have opened new fields in the treatment of cardiovascular diseases. Herein, we will review the protective roles of non-invasive neuromodulation techniques in heart diseases, including transcutaneous auricular vagus nerve stimulation, electromagnetic field stimulation, ultrasound stimulation, autonomic modulation in optogenetics, and light-emitting diode and transcutaneous cervical vagus nerve stimulation (gammaCore).
Collapse
Affiliation(s)
- Mingxian Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xuping Li
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hui Yang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianjun Tang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Shahriari D, Rosenfeld D, Anikeeva P. Emerging Frontier of Peripheral Nerve and Organ Interfaces. Neuron 2020; 108:270-285. [PMID: 33120023 DOI: 10.1016/j.neuron.2020.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023]
Abstract
The development of new tools to interface with the nervous system, empowered by advances in electronics and materials science, has transformed neuroscience and is informing therapies for neurological and mental conditions. Although the vast majority of neural engineering research has focused on advancing tools to study the brain, understanding the peripheral nervous system and other organs can similarly benefit from these technologies. To realize this vision, the neural interface technologies need to address the biophysical, mechanical, and chemical challenges posed by the peripheral nerves and organs. In this Perspective, we discuss design considerations and recent technological advances to modulate electrical signaling outside the central nervous system. The innovations in bioelectronics borne out of interdisciplinary collaborations between biologists and physical scientists may not only advance fundamental study of peripheral (neuro)physiology but also empower clinical interventions for conditions including neurological, gastrointestinal, and immune dysfunction.
Collapse
Affiliation(s)
- Dena Shahriari
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
GHz Ultrasonic Chip-Scale Device Induces Ion Channel Stimulation in Human Neural Cells. Sci Rep 2020; 10:3075. [PMID: 32080204 PMCID: PMC7033194 DOI: 10.1038/s41598-020-58133-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/10/2020] [Indexed: 01/07/2023] Open
Abstract
Emergent trends in the device development for neural prosthetics have focused on establishing stimulus localization, improving longevity through immune compatibility, reducing energy re-quirements, and embedding active control in the devices. Ultrasound stimulation can single-handedly address several of these challenges. Ultrasonic stimulus of neurons has been studied extensively from 100 kHz to 10 MHz, with high penetration but less localization. In this paper, a chip-scale device consisting of piezoelectric Aluminum Nitride ultrasonic transducers was engineered to deliver gigahertz (GHz) ultrasonic stimulus to the human neural cells. These devices provide a path towards complementary metal oxide semiconductor (CMOS) integration towards fully controllable neural devices. At GHz frequencies, ultrasonic wavelengths in water are a few microns and have an absorption depth of 10-20 µm. This confinement of energy can be used to control stimulation volume within a single neuron. This paper is the first proof-of-concept study to demonstrate that GHz ultrasound can stimulate neurons in vitro. By utilizing optical calcium imaging, which records calcium ion flux indicating occurrence of an action potential, this paper demonstrates that an application of a nontoxic dosage of GHz ultrasonic waves [Formula: see text] caused an average normalized fluorescence intensity recordings >1.40 for the calcium transients. Electrical effects due to chip-scale ultrasound delivery was discounted as the sole mechanism in stimulation, with effects tested at α = 0.01 statistical significance amongst all intensities and con-trol groups. Ionic transients recorded optically were confirmed to be mediated by ion channels and experimental data suggests an insignificant thermal contributions to stimulation, with a predicted increase of 0.03 oC for [Formula: see text] This paper paves the experimental framework to further explore chip-scale axon and neuron specific neural stimulation, with future applications in neural prosthetics, chip scale neural engineering, and extensions to different tissue and cell types.
Collapse
|
11
|
Tanaka S, Okusa MD. Crosstalk between the nervous system and the kidney. Kidney Int 2019; 97:466-476. [PMID: 32001065 DOI: 10.1016/j.kint.2019.10.032] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
Under physiological states, the nervous system and the kidneys communicate with each other to maintain normal body homeostasis. However, pathological states disrupt this interaction as seen in hypertension, and kidney damage can cause impaired renorenal reflex and sodium handling. In acute kidney injury (AKI) and chronic kidney disease (CKD), damaged kidneys can have a detrimental effect on the central nervous system. CKD is an independent risk factor for cerebrovascular disease and cognitive impairment, and many factors, including retention of uremic toxins and phosphate, have been proposed as CKD-specific factors responsible for structural and functional cerebral changes in patients with CKD. However, more studies are needed to determine the precise pathogenesis. Epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. However, recent animal studies have shown that the renal nerve contributes to kidney inflammation and fibrosis, whereas activation of the cholinergic anti-inflammatory pathway, which involves the vagus nerve, the splenic nerve, and immune cells in the spleen, has a significant renoprotective effect. Therefore, elucidating mechanisms of communication between the nervous system and the kidney enables us not only to develop new strategies to ameliorate neurological conditions associated with kidney disease but also to design safe and effective clinical interventions for kidney disease, using the neural and neuroimmune control of kidney injury and disease.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
12
|
Tanaka S, Hammond B, Rosin DL, Okusa MD. Neuroimmunomodulation of tissue injury and disease: an expanding view of the inflammatory reflex pathway. Bioelectron Med 2019; 5:13. [PMID: 32232102 PMCID: PMC7098254 DOI: 10.1186/s42234-019-0029-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroimmunomodulation through peripheral nerve activation is an important therapeutic approach to various disorders. Central to this approach is the inflammatory reflex pathway in which the cholinergic anti-inflammatory pathway represents the efferent limb. Recent studies provide a framework for understanding this control pathway, however our understanding remains incomplete. Genetically modified mice, using optogenetics and pharmacogenomics, have been invaluable resources that will allow investigators to disentangle neural pathways that provide a unifying mechanism by which vagal nerve stimulation (and other means of stimulating the pathway) leads to an anti-inflammatory and tissue protective effect. In this review we describe disease models that contribute to our understanding of how vagal nerve stimulation attenuates inflammation and organ injury: acute kidney injury, rheumatoid arthritis, and inflammatory gastrointestinal disease. The gut microbiota contributes to health and disease and the potential role of the vagus nerve in affecting the relationship between gut microbiota and the immune system and modifying diseases remains an intriguing opportunity to attenuate local and systemic inflammation that undergird disease processes.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| | | | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia USA
| | - Mark D. Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia USA
| |
Collapse
|
13
|
Brognara F, Castania JA, Dias DPM, Kanashiro A, Salgado HC. Time Course of Hemodynamic Responses to Different Doses of Lipopolysaccharide in Unanesthetized Male Rats. Front Physiol 2019; 10:771. [PMID: 31293442 PMCID: PMC6603340 DOI: 10.3389/fphys.2019.00771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Lipopolysaccharide (LPS) administration is a well-known method to induce systemic inflammation widely used for investigating new therapeutic strategies for sepsis treatment, which is characterized by clinical manifestations such as tachycardia and hypotension. However, there are different doses of LPS used in several studies, and the hemodynamic responses were not always well characterized. Thus, the present study aimed to evaluate the arterial pressure, heart rate, heart rate variability, and baroreflex function from rats, over time, to different doses of LPS. Femoral artery and vein catheters were inserted into anesthetized Wistar-Hannover male rats for arterial pressure recording and LPS administration, respectively. On the next day, the arterial pressure was recorded before and after (90, 180, and 360 min) LPS injection (0.06, 20, 30, and 40 mg/kg). All doses of LPS tested increased the heart rate and decreased baroreflex sensitivity over time. In addition, while LPS administration of 20, 30, and 40 mg/kg increased the mean arterial pressure over time, 0.06 mg/kg decreased the mean arterial pressure at 360 min, as compared to baseline values. Furthermore, high doses of LPS decreased the power of the HF band of the cardiac interval spectrum over time, and the higher dose increased the power of the LF band. Our data indicate that high doses of LPS promote hypertensive response over time, while a low dose decreases arterial pressure. Moreover, the changes in heart rate variability and baroreflex function elicited by LPS may be not associated with arterial pressure response produced by the endotoxemia.
Collapse
Affiliation(s)
- Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Characterization of plasma cytokine response to intraperitoneally administered LPS & subdiaphragmatic branch vagus nerve stimulation in rat model. PLoS One 2019; 14:e0214317. [PMID: 30921373 PMCID: PMC6438475 DOI: 10.1371/journal.pone.0214317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been on the forefront of inflammatory disorder research and has yielded many promising results. Questions remain, however, about the biological mechanisms of such treatments and the inconsistencies in the methods used in research efforts. Here, we aimed to clarify the inflammatory response to intraperitoneal (IP) injections of lipopolysaccharide (LPS) in rats, while analyzing corresponding effects of electrical stimulation to subdiaphragmatic branches (anterior gastric, accessory celiac, and hepatic) of the left vagus nerve. We accomplished an in-depth characterization of the time-varying cytokine cascade response in the serum of 58 rats to an acute IP LPS challenge over a 330-minute period by utilizing curve-fitting and starting point-alignment methods. We then explored the post-LPS neuromodulation effects of electrically stimulating individually cuffed subdiaphragmatic branches. Through our analysis, we found there to be a consistent order of IP LPS cytokine response (IL-10, TNF-α, GM-CSF, IL-17F, IL-6, IL-22, INF-γ). Apart from IL-10, the IP cytokine cascade was more variable in starting time and occurred later than in previously recorded intravenous (IV) challenges. We also found distinct regulatory effects on multiple cytokine levels by each of the three subdiaphragmatic stimulation subsets. While the time-variability of IP LPS use in rats complicates its utility, we have shown it to be a practical, arguably more physiologically relevant method than IV in rats when our methods are used. More importantly, we have shown that selective subdiaphragmatic neurostimulation can be utilized to selectively induce specific effects on inflammation in the body.
Collapse
|