1
|
Venet M, Malik A, Gold S, Zhang N, Gopaul J, Dauz J, Yazaki K, Ponzoni M, Coles JG, Maynes JT, Sun M, Howell A, Chaturvedi R, Mertens L, Mroczek D, Uike K, Baranger J, Friedberg MK, Villemain O. Impact of Right Ventricular Pressure Overload on Myocardial Stiffness Assessed by Natural Wave Imaging. JACC Cardiovasc Imaging 2025; 18:211-225. [PMID: 39177563 DOI: 10.1016/j.jcmg.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Right ventricular (RV) hemodynamic performance determines the prognosis of patients with RV pressure overload. Using ultrafast ultrasound, natural wave velocity (NWV) induced by cardiac valve closure was proposed as a new surrogate to quantify myocardial stiffness. OBJECTIVES This study aimed to assess RV NWV in rodent models and children with RV pressure overload vs control subjects and to correlate NWV with RV hemodynamic parameters. METHODS Six-week-old rats were randomized to pulmonary artery banding (n = 6), Sugen hypoxia-induced pulmonary arterial hypertension (n = 7), or sham (n = 6) groups. They underwent natural wave imaging, echocardiography, and hemodynamic assessment at baseline and 6 weeks postoperatively. The authors analyzed NWV after tricuspid and after pulmonary valve closure (TVC and PVC, respectively). Conductance catheters were used to generate pressure-volume loops. In parallel, the authors prospectively recruited 14 children (7 RV pressure overload; 7 age-matched control subjects) and compared RV NWV with echocardiographic and invasive hemodynamic parameters. RESULTS NWV significantly increased in RV pressure overload rat models (4.99 ± 0.27 m/s after TVC and 5.03 ± 0.32 m/s after PVC in pulmonary artery banding at 6 weeks; 4.89 ± 0.26 m/s after TVC and 4.84 ± 0.30 m/s after PVC in Sugen hypoxia at 6 weeks) compared with control subjects (2.83 ± 0.15 m/s after TVC and 2.72 ± 0.34 m/s after PVC). NWV after TVC correlated with both systolic and diastolic parameters including RV dP/dtmax (r = 0.75; P < 0.005) and RV Ees (r = 0.81; P < 0.005). NWV after PVC correlated with both diastolic and systolic parameters and notably with RV end-diastolic pressure (r = 0.65; P < 0.01). In children, NWV after both right valves closure in RV pressure overload were higher than in healthy volunteers (P < 0.01). NWV after PVC correlated with RV E/E' (r = 0.81; P = 0.008) and with RV chamber stiffness (r = 0.97; P = 0.03). CONCLUSIONS Both RV early-systolic and early-diastolic myocardial stiffness show significant increase in response to pressure overload. Based on physiology and our observations, early-systolic myocardial stiffness may reflect contractility, whereas early-diastolic myocardial stiffness might be indicative of diastolic function.
Collapse
Affiliation(s)
- Maelys Venet
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Bordeaux University Hospital, Department of Pediatric and Adult Congenital Cardiology, Pessac, France; Electrophysiology and Heart Modeling Institute, Institut Hospital-Universitaire Liryc, Fondation Bordeaux Université, Bordeaux, France.
| | - Aimen Malik
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Samantha Gold
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Naiyuan Zhang
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Josh Gopaul
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John Dauz
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kana Yazaki
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matteo Ponzoni
- Department of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Coles
- Department of Cardiovascular Surgery, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mei Sun
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alison Howell
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rajiv Chaturvedi
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Luc Mertens
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dariusz Mroczek
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kiyoshi Uike
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jerome Baranger
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olivier Villemain
- Department of Cardiology, The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; Bordeaux University Hospital, Department of Pediatric and Adult Congenital Cardiology, Pessac, France; Electrophysiology and Heart Modeling Institute, Institut Hospital-Universitaire Liryc, Fondation Bordeaux Université, Bordeaux, France. https://twitter.com/Villemain_Team
| |
Collapse
|
2
|
Youssef AS, Petrescu A, Salaets T, Bézy S, Wouters L, Orlowska M, Caenen A, Duchenne J, Puvrez A, Cools B, Heying R, D'hooge J, Gewillig M, Voigt JU. Evolution of Natural Myocardial Shear Wave Behavior in Young Hearts: Determinant Factors and Reproducibility Analysis. J Am Soc Echocardiogr 2024; 37:1051-1061. [PMID: 39002706 DOI: 10.1016/j.echo.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Myocardial diastolic function assessment in children by conventional echocardiography is challenging. High-frame rate echocardiography facilitates the assessment of myocardial stiffness, a key factor in diastolic function, by measuring the propagation velocities of myocardial shear waves (SWs). However, normal values of natural SWs in children are currently lacking. The aim of this study was to explore the behavior of natural SWs among children and adolescents, their reproducibility, and the factors affecting SW velocities from childhood into adulthood. METHODS One hundred six healthy children (2-18 years of age) and 62 adults (19-80 years of age) were recruited. High-frame rate images were acquired using a modified commercial scanner. An anatomic M-mode line was drawn along the ventricular septum, and propagation velocities of natural SWs after mitral valve closure were measured in the tissue acceleration-coded M-mode display. RESULTS Throughout life, SW velocities after mitral valve closure exhibited pronounced age dependency (r = 0.73; P < .001). Among the pediatric population, SW velocities correlated significantly with measures of cardiac geometry (septal thickness and left ventricular end-diastolic dimension), local hemodynamics (systolic blood pressure), and echocardiographic parameters of systolic and diastolic function (global longitudinal strain, mitral E/e' ratio, isovolumic relaxation time, and mitral deceleration time) (P < .001). In a multivariate analysis including all these factors, the predictors of SW velocities were age, mitral E/e', and global longitudinal strain (r = 0.81). CONCLUSIONS Natural myocardial SW velocities in children can be detected and measured. SW velocities showed significant dependence on age and diastolic function. Natural SWs could be a promising additive tool for the assessment of diastolic function among children.
Collapse
Affiliation(s)
- Ahmed S Youssef
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Cardiovascular Medicine, Suez Canal University, Ismailia, Egypt
| | - Aniela Petrescu
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Cardiology, University Medical Center of the Johannes Gutenber-Universitat Mainz, Mainz, Germany
| | - Thomas Salaets
- Department of Pediatric Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Stéphanie Bézy
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Laurine Wouters
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marta Orlowska
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Annette Caenen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Jürgen Duchenne
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Alexis Puvrez
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Bjorn Cools
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Pediatric Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Ruth Heying
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Pediatric Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marc Gewillig
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Pediatric Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Caenen A, Bézy S, Pernot M, Nightingale KR, Vos HJ, Voigt JU, Segers P, D'hooge J. Ultrasound Shear Wave Elastography in Cardiology. JACC Cardiovasc Imaging 2024; 17:314-329. [PMID: 38448131 DOI: 10.1016/j.jcmg.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 03/08/2024]
Abstract
The advent of high-frame rate imaging in ultrasound allowed the development of shear wave elastography as a noninvasive alternative for myocardial stiffness assessment. It measures mechanical waves propagating along the cardiac wall with speeds that are related to stiffness. The use of cardiac shear wave elastography in clinical studies is increasing, but a proper understanding of the different factors that affect wave propagation is required to correctly interpret results because of the heart's thin-walled geometry and intricate material properties. The aims of this review are to give an overview of the general concepts in cardiac shear wave elastography and to discuss in depth the effects of age, hemodynamic loading, cardiac morphology, fiber architecture, contractility, viscoelasticity, and system-dependent factors on the measurements, with a focus on clinical application. It also describes how these factors should be considered during acquisition, analysis, and reporting to ensure an accurate, robust, and reproducible measurement of the shear wave.
Collapse
Affiliation(s)
- Annette Caenen
- Institute for Biomedical Engineering and Technology, Ghent University, Ghent, Belgium; Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium; Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Stéphanie Bézy
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Mathieu Pernot
- Physics for Medicine, INSERM, CNRS, ESPCI, PSL University, Paris, France
| | | | - Hendrik J Vos
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium; Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium.
| | - Patrick Segers
- Institute for Biomedical Engineering and Technology, Ghent University, Ghent, Belgium
| | - Jan D'hooge
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Kortenbout AJ, Costerus S, Dudink J, de Jong N, de Graaff JC, Vos HJ, Bosch JG. Automatic Max-Likelihood Envelope Detection Algorithm for Quantitative High-Frame-Rate Ultrasound for Neonatal Brain Monitoring. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:434-444. [PMID: 38143187 DOI: 10.1016/j.ultrasmedbio.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/07/2023] [Accepted: 12/03/2023] [Indexed: 12/26/2023]
Abstract
OBJECTIVE Post-operative brain injury in neonates may result from disturbed cerebral perfusion, but accurate peri-operative monitoring is lacking. High-frame-rate (HFR) cerebral ultrasound could visualize and quantify flow in all detectable vessels using spectral Doppler; however, automated quantification in small vessels is challenging because of low signal amplitude. We have developed an automatic envelope detection algorithm for HFR pulsed wave spectral Doppler signals, enabling neonatal brain quantitative parameter maps during and after surgery. METHODS HFR ultrasound data from high-risk neonatal surgeries were recorded with a custom HFR mode (frame rate = 1000 Hz) on a Zonare ZS3 system. A pulsed wave Doppler spectrogram was calculated for each pixel containing blood flow in the image, and spectral peak velocity was tracked using a max-likelihood estimation algorithm of signal and noise regions in the spectrogram, where the most likely cross-over point marks the blood flow velocity. The resulting peak systolic velocity (PSV), end-diastolic velocity (EDV) and resistivity index (RI) were compared with other detection schemes, manual tracking and RIs from regular pulsed wave Doppler measurements in 10 neonates. RESULTS Envelope detection was successful in both high- and low-quality arterial and venous flow spectrograms. Our technique had the lowest root mean square error for EDV, PSV and RI (0.46 cm/s, 0.53 cm/s and 0.15, respectively) when compared with manual tracking. There was good agreement between the clinical pulsed wave Doppler RI and HFR measurement with a mean difference of 0.07. CONCLUSION The max-likelihood algorithm is a promising approach to accurate, automated cerebral blood flow monitoring with HFR imaging in neonates.
Collapse
Affiliation(s)
- Anna J Kortenbout
- Biomedical Engineering, Department of Cardiology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Sophie Costerus
- Department of Pediatric Surgery, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nico de Jong
- Biomedical Engineering, Department of Cardiology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands; Department of Imaging Physics, Medical Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Jurgen C de Graaff
- Department of Anesthesiology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands; Department of Anesthesiology, Erasmus MC, Goes, The Netherlands; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands; Department of Imaging Physics, Medical Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Johan G Bosch
- Biomedical Engineering, Department of Cardiology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Espeland T, Wigen MS, Dalen H, Berg EAR, Hammer TA, Salles S, Lovstakken L, Amundsen BH, Aakhus S. Mechanical Wave Velocities in Left Ventricular Walls in Healthy Subjects and Patients With Aortic Stenosis. JACC Cardiovasc Imaging 2024; 17:111-124. [PMID: 37676209 DOI: 10.1016/j.jcmg.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Mechanical wave velocity (MWV) measurement is a promising method for evaluating myocardial stiffness, because these velocities are higher in patients with myocardial disease. OBJECTIVES Using high frame rate echocardiography and a novel method for detection of myocardial mechanical waves, this study aimed to estimate the MWVs for different left ventricular walls and events in healthy subjects and patients with aortic stenosis (AS). Feasibility and reproducibility were evaluated. METHODS This study included 63 healthy subjects and 13 patients with severe AS. All participants underwent echocardiographic examination including 2-dimensional high frame rate recordings using a clinical scanner. Cardiac magnetic resonance was performed in 42 subjects. The authors estimated the MWVs at atrial kick and aortic valve closure in different left ventricular walls using the clutter filter wave imaging method. RESULTS Mechanical wave imaging in healthy subjects demonstrated the highest feasibility for the atrial kick wave reaching >93% for all 4 examined left ventricular walls. The MWVs were higher for the inferolateral and anterolateral walls (2.2 and 2.6 m/s) compared with inferoseptal and anteroseptal walls (1.3 and 1.6 m/s) (P < 0.05) among healthy subjects. The septal MWVs at aortic valve closure were significantly higher for patients with severe AS than for healthy subjects. CONCLUSIONS MWV estimation during atrial kick is feasible and demonstrates higher velocities in the lateral walls, compared with septal walls. The authors propose indicators for quality assessment of the mechanical wave slope as an aid for achieving consistent measurements. The discrimination between healthy subjects and patients with AS was best for the aortic valve closure mechanical waves. (Ultrasonic Markers for Myocardial Fibrosis and Prognosis in Aortic Stenosis; NCT03422770).
Collapse
Affiliation(s)
- Torvald Espeland
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Cardiology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Morten S Wigen
- Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Havard Dalen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Cardiology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Internal Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Erik A R Berg
- Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Cardiology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tommy A Hammer
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Radiology, Clinic of Radiology and Nuclear Medicine, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Sebastien Salles
- Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lasse Lovstakken
- Centre for Innovative Ultrasound Solutions, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Brage H Amundsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Cardiology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Svend Aakhus
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Cardiology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
6
|
Caenen A, Pernot M, Nightingale KR, Voigt JU, Vos HJ, Segers P, D'hooge J. Assessing cardiac stiffness using ultrasound shear wave elastography. Phys Med Biol 2021; 67. [PMID: 34874312 DOI: 10.1088/1361-6560/ac404d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Shear wave elastography offers a new dimension to echocardiography: it measures myocardial stiffness. Therefore, it could provide additional insights into the pathophysiology of cardiac diseases affecting myocardial stiffness and potentially improve diagnosis or guide patient treatment. The technique detects fast mechanical waves on the heart wall with high frame rate echography, and converts their propagation velocity into a stiffness value. A proper interpretation of shear wave data is required as the shear wave interacts with the intrinsic, yet dynamically changing geometrical and material characteristics of the heart under pressure. This dramatically alters the wave physics of the propagating wave, demanding adapted processing methods compared to other shear wave elastography applications as breast tumor and liver stiffness staging. Furthermore, several advanced analysis methods have been proposed to extract supplementary material features such as viscosity and anisotropy, potentially offering additional diagnostic value. This review explains the general mechanical concepts underlying cardiac shear wave elastography and provides an overview of the preclinical and clinical studies within the field. We also identify the mechanical and technical challenges ahead to make shear wave elastography a valuable tool for clinical practice.
Collapse
Affiliation(s)
- Annette Caenen
- Institute for Biomedical Engineering and Technology, Ghent University, Ghent, BELGIUM
| | - Mathieu Pernot
- INSERM U979 "Physics for medicine", ESPCI Paris, PSL Research University, CNRS UMR 7587, Institut Langevin, Paris, FRANCE
| | - Kathryn R Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, UNITED STATES
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, KU Leuven, Leuven, BELGIUM
| | - Hendrik J Vos
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Zuid-Holland, NETHERLANDS
| | - Patrick Segers
- Institute of Biomedical Engineering and Technology, Universiteit Gent, Gent, BELGIUM
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, BELGIUM
| |
Collapse
|
7
|
Sabbadini A, Caenen A, Keijzer LBH, van Neer PLMJ, Vos HJ, de Jong N, Verweij MD. Tapering of the interventricular septum can affect ultrasound shear wave elastography: An in vitro and in silico study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:428. [PMID: 34340474 DOI: 10.1121/10.0005646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Shear wave elastography (SWE) has the potential to determine cardiac tissue stiffness from non-invasive shear wave speed measurements, important, e.g., for predicting heart failure. Previous studies showed that waves traveling in the interventricular septum (IVS) may display Lamb-like dispersive behaviour, introducing a thickness-frequency dependency in the wave speed. However, the IVS tapers across its length, which complicates wave speed estimation by introducing an additional variable to account for. The goal of this work is to assess the impact of tapering thickness on SWE. The investigation is performed by combining in vitro experiments with acoustic radiation force (ARF) and 2D finite element simulations, to isolate the effect of the tapering curve on ARF-induced and natural waves in the heart. The experiments show a 11% deceleration during propagation from the thick to the thin end of an IVS-mimicking tapered phantom plate. The numerical analysis shows that neglecting the thickness variation in the wavenumber-frequency domain can introduce errors of more than 30% in the estimation of the shear modulus, and that the exact tapering curve, rather than the overall thickness reduction, determines the dispersive behaviour of the wave. These results suggest that septal geometry should be accounted for when deriving cardiac stiffness with SWE.
Collapse
Affiliation(s)
- A Sabbadini
- Applied Sciences, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| | - A Caenen
- Biomedical Engineering, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - L B H Keijzer
- Biomedical Engineering, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - P L M J van Neer
- Ultrasone Lab, Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, Oude Waalsdorperweg 63, Den Haag, 2597 AK, The Netherlands
| | - H J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - N de Jong
- Applied Sciences, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| | - M D Verweij
- Applied Sciences, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| |
Collapse
|
8
|
Illiano E, Trama F, Ruffo A, Romeo G, Riccardo F, Crocetto F, Iacono F, Costantini E. Testicular shear wave elastography in oligo-astheno-teratozoospermic individuals: a prospective case-control study. Int Urol Nephrol 2021; 53:1773-1783. [PMID: 34114152 PMCID: PMC8380242 DOI: 10.1007/s11255-021-02909-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Purpose The primary objective of this study was to evaluate the testicular stiffness by ultrasound shear wave elastography (SWE) both in men with oligo-astheno-teratozospermia (OAT) and in control group. The secondary objective was to identify a possible correlation between semen quality with testicular stiffness. Methods This was a prospective case-control study. We divided the sample in two groups; Group A (case group) included men with OAT, and Group B (control group) men with normal sperm parameters. All participants had at last two semen analysis in the past 180 days (at last 90 days apart), using performed ultrasound and SWE elastography. Results We analyzed 100 participants, 50 patients in Group A and 50 controls in Group B. There were statistically significant differences in term of testicular volume and testicular stiffness between two groups. Men with OAT had the testicular stiffness value higher than the controls in both sides (left testicular stiffness 21.4 ± 5.4 kPa vs 9.9 ± 1.6 kPa, p < 0.0001; right testicular stiffness 22.9 ± 4.8 kPa vs 9.5 ± 2.4 kPa, p < 0.0001). Men with abnormal semen parameters showed an inverse correlation between the mean value of testicular stiffness and total sperm count (22.15 ± 3.38 kPa, r = − 0.387, p = 0.005), sperm concentration (22.15 ± 3.38 kPa, r = − 0.244, p = 0.04), and progressive motility (22.15 ± 3.38 kPa, r = − 0.336, p = 0.01), while the correlation was not evident in controls group. Conclusion SWE is able to differentiate between testicles with spermatogenic changes from a healthy testicle. For this reason, it could be used to evaluate, in a non-invasive way, the tissue alterations of the organ.
Collapse
Affiliation(s)
- Ester Illiano
- Andrology and Urogynecology Clinic, Santa Maria Terni Hospital, University of Perugia, Viale Tristano di Jannuccio 1 Terni, Perugia, Italy
| | - Francesco Trama
- Andrology and Urogynecology Clinic, Santa Maria Terni Hospital, University of Perugia, Viale Tristano di Jannuccio 1 Terni, Perugia, Italy.
| | - Antonio Ruffo
- Andrea Grimaldi Hospital, San Giorgio a Cremano (NA), Naples, Italy
| | - Giuseppe Romeo
- Urology Department, A.O.R.N. A. Cardarelli, Naples, Italy
| | - Filippo Riccardo
- Department of General and Specialized Surgeries, Renal Transplantation, Nephrology, Intensive Care and Pain Management, University of Federico II, Naples, Italy
| | - Felice Crocetto
- Department of General and Specialized Surgeries, Renal Transplantation, Nephrology, Intensive Care and Pain Management, University of Federico II, Naples, Italy
| | - Fabrizio Iacono
- Department of General and Specialized Surgeries, Renal Transplantation, Nephrology, Intensive Care and Pain Management, University of Federico II, Naples, Italy
| | - Elisabetta Costantini
- Andrology and Urogynecology Clinic, Santa Maria Terni Hospital, University of Perugia, Viale Tristano di Jannuccio 1 Terni, Perugia, Italy
| |
Collapse
|
9
|
Keijzer LBH, Caenen A, Voorneveld J, Strachinaru M, Bowen DJ, van de Wouw J, Sorop O, Merkus D, Duncker DJ, van der Steen AFW, de Jong N, Bosch JG, Vos HJ. A direct comparison of natural and acoustic-radiation-force-induced cardiac mechanical waves. Sci Rep 2020; 10:18431. [PMID: 33116234 PMCID: PMC7595170 DOI: 10.1038/s41598-020-75401-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Natural and active shear wave elastography (SWE) are potential ultrasound-based techniques to non-invasively assess myocardial stiffness, which could improve current diagnosis of heart failure. This study aims to bridge the knowledge gap between both techniques and discuss their respective impacts on cardiac stiffness evaluation. We recorded the mechanical waves occurring after aortic and mitral valve closure (AVC, MVC) and those induced by acoustic radiation force throughout the cardiac cycle in four pigs after sternotomy. Natural SWE showed a higher feasibility than active SWE, which is an advantage for clinical application. Median propagation speeds of 2.5-4.0 m/s and 1.6-4.0 m/s were obtained after AVC and MVC, whereas ARF-based median speeds of 0.9-1.2 m/s and 2.1-3.8 m/s were reported for diastole and systole, respectively. The different wave characteristics in both methods, such as the frequency content, complicate the direct comparison of waves. Nevertheless, a good match was found in propagation speeds between natural and active SWE at the moment of valve closure, and the natural waves showed higher propagation speeds than in diastole. Furthermore, the results demonstrated that the natural waves occur in between diastole and systole identified with active SWE, and thus represent a myocardial stiffness in between relaxation and contraction.
Collapse
Affiliation(s)
- Lana B H Keijzer
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Annette Caenen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands.
- IBiTech-bioMMeda, Ghent University, Ghent, Belgium.
- Cardiovascular Imaging and Dynamics Lab, Catholic University of Leuven, Leuven, Belgium.
| | - Jason Voorneveld
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Daniel J Bowen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jens van de Wouw
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Oana Sorop
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Daphne Merkus
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Johan G Bosch
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Hendrik J Vos
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
10
|
Strachinaru M, Bosch JG, Schinkel AFL, Michels M, Feyz L, de Jong N, Geleijnse ML, Vos HJ. Local myocardial stiffness variations identified by high frame rate shear wave echocardiography. Cardiovasc Ultrasound 2020; 18:40. [PMID: 32993683 PMCID: PMC7525991 DOI: 10.1186/s12947-020-00222-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Shear waves are generated by the closure of the heart valves. Significant differences in shear wave velocity have been found recently between normal myocardium and disease models of diffusely increased muscle stiffness. In this study we correlate in vivo myocardial shear wave imaging (SWI) with presence of scarred tissue, as model for local increase of stiffness. Stiffness variation is hypothesized to appear as velocity variation. METHODS Ten healthy volunteers (group 1), 10 hypertrophic cardiomyopathy (HCM) patients without any cardiac intervention (group 2), and 10 HCM patients with prior septal reduction therapy (group 3) underwent high frame rate tissue Doppler echocardiography. The SW in the interventricular septum after aortic valve closure was mapped along two M-mode lines, in the inner and outer layer. RESULTS We compared SWI to 3D echocardiography and strain imaging. In groups 1 and 2, no change in velocity was detected. In group 3, 8/10 patients showed a variation in SW velocity. All three patients having transmural scar showed a simultaneous velocity variation in both layers. Out of six patients with endocardial scar, five showed variations in the inner layer. CONCLUSION Local variations in stiffness, with myocardial remodeling post septal reduction therapy as model, can be detected by a local variation in the propagation velocity of naturally occurring shear waves.
Collapse
Affiliation(s)
- Mihai Strachinaru
- Erasmus MC Rotterdam, Cardiology, Postbus 2040, 3000, CA, Rotterdam, The Netherlands.
| | - Johan G Bosch
- Erasmus MC Rotterdam, Biomedical Engineering, Rotterdam, The Netherlands
| | - Arend F L Schinkel
- Erasmus MC Rotterdam, Cardiology, Postbus 2040, 3000, CA, Rotterdam, The Netherlands
| | - Michelle Michels
- Erasmus MC Rotterdam, Cardiology, Postbus 2040, 3000, CA, Rotterdam, The Netherlands
| | - Lida Feyz
- Erasmus MC Rotterdam, Cardiology, Postbus 2040, 3000, CA, Rotterdam, The Netherlands
| | - Nico de Jong
- Erasmus MC Rotterdam, Biomedical Engineering, Rotterdam, The Netherlands
| | - Marcel L Geleijnse
- Erasmus MC Rotterdam, Cardiology, Postbus 2040, 3000, CA, Rotterdam, The Netherlands
| | - Hendrik J Vos
- Erasmus MC Rotterdam, Biomedical Engineering, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Keijzer LBH, Strachinaru M, Bowen DJ, Caenen A, van Steen AFWD, Verweij MD, de Jong N, Bosch JG, Vos HJ. Parasternal Versus Apical View in Cardiac Natural Mechanical Wave Speed Measurements. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1590-1602. [PMID: 32149686 DOI: 10.1109/tuffc.2020.2978299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shear wave speed measurements can potentially be used to noninvasively measure myocardial stiffness to assess the myocardial function. Several studies showed the feasibility of tracking natural mechanical waves induced by aortic valve closure in the interventricular septum, but different echocardiographic views have been used. This article systematically studied the wave propagation speeds measured in a parasternal long-axis and in an apical four-chamber view in ten healthy volunteers. The apical and parasternal views are predominantly sensitive to longitudinal or transversal tissue motion, respectively, and could, therefore, theoretically measure the speed of different wave modes. We found higher propagation speeds in apical than in the parasternal view (median of 5.1 m/s versus 3.8 m/s, , n = 9 ). The results in the different views were not correlated ( r = 0.26 , p = 0.49 ) and an unexpectedly large variability among healthy volunteers was found in apical view compared with the parasternal view (3.5-8.7 versus 3.2-4.3 m/s, respectively). Complementary finite element simulations of Lamb waves in an elastic plate showed that different propagation speeds can be measured for different particle motion components when different wave modes are induced simultaneously. The in vivo results cannot be fully explained with the theory of Lamb wave modes. Nonetheless, the results suggest that the parasternal long-axis view is a more suitable candidate for clinical diagnosis due to the lower variability in wave speeds.
Collapse
|