1
|
Murphy KR, Nandi T, Kop B, Osada T, Lueckel M, N'Djin WA, Caulfield KA, Fomenko A, Siebner HR, Ugawa Y, Verhagen L, Bestmann S, Martin E, Butts Pauly K, Fouragnan E, Bergmann TO. A practical guide to transcranial ultrasonic stimulation from the IFCN-endorsed ITRUSST consortium. Clin Neurophysiol 2025; 171:192-226. [PMID: 39933226 DOI: 10.1016/j.clinph.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 02/13/2025]
Abstract
Low-intensity Transcranial Ultrasonic Stimulation (TUS) is a non-invasive brain stimulation technique enabling cortical and deep brain targeting with unprecedented spatial accuracy. Given the high rate of adoption by new users with varying levels of expertise and interdisciplinary backgrounds, practical guidelines are needed to ensure state-of-the-art TUS application and reproducible outcomes. Therefore, the International Transcranial Ultrasonic Stimulation Safety and Standards (ITRUSST) consortium has formed a subcommittee, endorsed by the International Federation of Clinical Neurophysiology (IFCN), to develop recommendations for best practices in human TUS applications. The practical guide presented here provides a brief introduction into ultrasound physics and sonication parameters. It explains the requirements of TUS lab equipment and transducer selection and discusses experimental design and procedures alongside potential confounds and control conditions. Finally, the guide elaborates on essential steps of application planning for stimulation safety and efficacy, as well as considerations when combining TUS with neuroimaging, electrophysiology, or other brain stimulation techniques. We hope that this practical guide to TUS will assist both novice and experienced users in planning and conducting high-quality studies and provide a solid foundation for further advancements in this promising field.
Collapse
Affiliation(s)
- Keith R Murphy
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Tulika Nandi
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany; Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
| | - Benjamin Kop
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Maximilian Lueckel
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - W Apoutou N'Djin
- LabTAU, INSERM, Centre Léon Bérard, Université Claude Bernard Lyon 1, F-69003 Lyon, France
| | - Kevin A Caulfield
- Medical University of South Carolina, Department of Psychiatry & Behavioral Sciences, Charleston, SC, USA
| | - Anton Fomenko
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | - Lennart Verhagen
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
| | - Sven Bestmann
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, UK
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Elsa Fouragnan
- School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Til Ole Bergmann
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
| |
Collapse
|
2
|
Waris A, Siraj M, Khan A, Lin J, Asim M, Alhumaydh FA. A Comprehensive Overview of the Current Status and Advancements in Various Treatment Strategies against Epilepsy. ACS Pharmacol Transl Sci 2024; 7:3729-3757. [PMID: 39698272 PMCID: PMC11650742 DOI: 10.1021/acsptsci.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy affects more than 70 million individuals of all ages worldwide and remains one of the most severe chronic noncommunicable neurological diseases globally. Several neurotransmitters, membrane protein channels, receptors, enzymes, and, more recently noted, various pathways, such as inflammatory and mTORC complexes, play significant roles in the initiation and propagation of seizures. Over the past two decades, significant developments have been made in the diagnosis and treatment of epilepsy. Various pharmacological drugs with diverse mechanisms of action and other treatment options have been developed to control seizures and treat epilepsy. These options include surgical treatment, nanomedicine, gene therapy, natural products, nervous stimulation, a ketogenic diet, gut microbiota, etc., which are in various developmental stages. Despite a plethora of drugs and other treatment options, one-third of affected individuals are resistant to current medications, while the majority of approved drugs have severe side effects, and significant changes can occur, such as pharmacoresistance, effects on cognition, long-term problems, drug interactions, risks of poor adherence, specific effects for certain medications, and psychological complications. Therefore, the development of new drugs and other treatment options that have no or minimal adverse effects is needed to combat this deadly disease. In this Review, we comprehensively summarize and explain all of the treatment options that have been approved or are in developmental stages for epilepsy as well as their status in clinical trials and advancements.
Collapse
Affiliation(s)
- Abdul Waris
- Department
of Biomedical Science, City University of
Hong Kong, 999077 Hong Kong SAR
| | - Muhammad Siraj
- Department
of Biotechnology, Jeonbuk National University−Iksan
Campus, Jeonju 54896, South Korea
| | - Ayyaz Khan
- Department
of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Junyu Lin
- Department
of Neuroscience, City University of Hong
Kong, 999077 Hong Kong SAR
| | - Muhammad Asim
- Department
of Neuroscience, City University of Hong
Kong, 999077 Hong Kong SAR
| | - Fahad A. Alhumaydh
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
3
|
Strohman A, Isaac G, Payne B, Verdonk C, Khalsa SS, Legon W. Low-intensity focused ultrasound to the insula differentially modulates the heartbeat-evoked potential: A proof-of-concept study. Clin Neurophysiol 2024; 167:267-281. [PMID: 39366795 PMCID: PMC11791892 DOI: 10.1016/j.clinph.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVE The heartbeat evoked potential (HEP) is a brain response time-locked to the heartbeat and a potential marker of interoceptive processing that may be generated in the insula and dorsal anterior cingulate cortex (dACC). Low-intensity focused ultrasound (LIFU) can selectively modulate sub-regions of the insula and dACC to better understand their contributions to the HEP. METHODS Healthy participants (n = 16) received stereotaxically targeted LIFU to the anterior insula (AI), posterior insula (PI), dACC, or Sham at rest during continuous electroencephalography (EEG) and electrocardiography (ECG) recording on separate days. Primary outcome was HEP amplitudes. Relationships between LIFU pressure and HEP changes and effects of LIFU on heart rate and heart rate variability (HRV) were also explored. RESULTS Relative to sham, LIFU to the PI, but not AI or dACC, decreased HEP amplitudes; PI effects were partially explained by increased LIFU pressure. LIFU did not affect heart rate or HRV. CONCLUSIONS These results demonstrate the ability to modulate HEP amplitudes via non-invasive targeting of key interoceptive brain regions. SIGNIFICANCE Our findings have implications for the causal role of these areas in bottom-up heart-brain communication that could guide future work investigating the HEP as a marker of interoceptive processing in healthy and clinical populations.
Collapse
Affiliation(s)
- Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech
Carilion, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA,
24016, USA
- Graduate Program in Translational Biology, Medicine, and
Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016,
USA
| | - Gabriel Isaac
- Fralin Biomedical Research Institute at Virginia Tech
Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and
State University, Blacksburg, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech
Carilion, Roanoke, VA, 24016, USA
| | - Charles Verdonk
- Laureate Institute for Brain Research, Tulsa, OK,
USA
- VIFASOM (EA 7330 Vigilance Fatigue, Sommeil et
Santé Publique), Université Paris Cité, Paris, France
- French Armed Forces Biomedical Research Institute,
Brétigny-sur-Orge, France
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, OK,
USA
- Department of Psychiatry and Biobehavioral Sciences, Semel
Institute for Neuroscience and Human Behavior, David Geffen School of Medicine,
University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech
Carilion, Roanoke, VA, 24016, USA
- Center for Human Neuroscience Research, Fralin Biomedical
Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical
Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and
State University, Blacksburg, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA,
24016, USA
- Graduate Program in Translational Biology, Medicine, and
Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016,
USA
- Department of Neurosurgery, Carilion Clinic, Roanoke,
VA, 24016, USA
| |
Collapse
|
4
|
In A, Strohman A, Payne B, Legon W. Low-intensity focused ultrasound to the posterior insula reduces temporal summation of pain. Brain Stimul 2024; 17:911-924. [PMID: 39089647 PMCID: PMC11452899 DOI: 10.1016/j.brs.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The insula and dorsal anterior cingulate cortex (dACC) are core brain regions involved in pain processing and central sensitization, a shared mechanism across various chronic pain conditions. Methods to modulate these regions may serve to reduce central sensitization, though it is unclear which target may be most efficacious for different measures of central sensitization. OBJECTIVE/HYPOTHESIS Investigate the effect of low-intensity focused ultrasound (LIFU) to the anterior insula (AI), posterior insula (PI), or dACC on conditioned pain modulation (CPM) and temporal summation of pain (TSP). METHODS N = 16 volunteers underwent TSP and CPM pain tasks pre/post a 10 min LIFU intervention to either the AI, PI, dACC or Sham stimulation. Pain ratings were collected pre/post LIFU. RESULTS Only LIFU to the PI significantly attenuated pain ratings during the TSP protocol. No effects were found for the CPM task for any of the LIFU targets. LIFU pressure modulated group means but did not affect overall group differences. CONCLUSIONS LIFU to the PI reduced temporal summation of pain. This may, in part, be due to dosing (pressure) of LIFU. Inhibition of the PI with LIFU may be a future potential therapy in chronic pain populations demonstrating central sensitization. The minimal effective dose of LIFU for efficacious neuromodulation will help to translate LIFU for therapeutic options.
Collapse
Affiliation(s)
- Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA; Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA.
| |
Collapse
|
5
|
Legon W, Strohman A, In A, Payne B. Noninvasive neuromodulation of subregions of the human insula differentially affect pain processing and heart-rate variability: a within-subjects pseudo-randomized trial. Pain 2024; 165:1625-1641. [PMID: 38314779 PMCID: PMC11189760 DOI: 10.1097/j.pain.0000000000003171] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 02/07/2024]
Abstract
ABSTRACT The insula is an intriguing target for pain modulation. Unfortunately, it lies deep to the cortex making spatially specific noninvasive access difficult. Here, we leverage the high spatial resolution and deep penetration depth of low-intensity focused ultrasound (LIFU) to nonsurgically modulate the anterior insula (AI) or posterior insula (PI) in humans for effect on subjective pain ratings, electroencephalographic (EEG) contact heat-evoked potentials, as well as autonomic measures including heart-rate variability (HRV). In a within-subjects, repeated-measures, pseudo-randomized trial design, 23 healthy volunteers received brief noxious heat pain stimuli to the dorsum of their right hand during continuous heart-rate, electrodermal, electrocardiography and EEG recording. Low-intensity focused ultrasound was delivered to the AI (anterior short gyrus), PI (posterior longus gyrus), or under an inert Sham condition. The primary outcome measure was pain rating. Low-intensity focused ultrasound to both AI and PI similarly reduced pain ratings but had differential effects on EEG activity. Low-intensity focused ultrasound to PI affected earlier EEG amplitudes, whereas LIFU to AI affected later EEG amplitudes. Only LIFU to the AI affected HRV as indexed by an increase in SD of N-N intervals and mean HRV low-frequency power. Taken together, LIFU is an effective noninvasive method to individually target subregions of the insula in humans for site-specific effects on brain biomarkers of pain processing and autonomic reactivity that translates to reduced perceived pain to a transient heat stimulus.
Collapse
Affiliation(s)
- Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Andrew Strohman
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| |
Collapse
|
6
|
Strohman A, Isaac G, Payne B, Verdonk C, Khalsa SS, Legon W. Low-intensity focused ultrasound to the human insular cortex differentially modulates the heartbeat-evoked potential: a proof-of-concept study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584152. [PMID: 38559271 PMCID: PMC10979877 DOI: 10.1101/2024.03.08.584152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The heartbeat evoked potential (HEP) is a brain response time-locked to the heartbeat and a potential marker of interoceptive processing. The insula and dorsal anterior cingulate cortex (dACC) are brain regions that may be involved in generating the HEP. Low-intensity focused ultrasound (LIFU) is a non-invasive neuromodulation technique that can selectively target sub-regions of the insula and dACC to better understand their contributions to the HEP. Objective Proof-of-concept study to determine whether LIFU modulation of the anterior insula (AI), posterior insula (PI), and dACC influences the HEP. Methods In a within-subject, repeated-measures design, healthy human participants (n=16) received 10 minutes of stereotaxically targeted LIFU to the AI, PI, dACC or Sham at rest during continuous electroencephalography (EEG) and electrocardiography (ECG) recording on separate days. Primary outcome was change in HEP amplitudes. Relationships between LIFU pressure and HEP changes were examined using linear mixed modelling. Peripheral indices of visceromotor output including heart rate and heart rate variability (HRV) were explored between conditions. Results Relative to sham, LIFU to the PI, but not AI or dACC, decreased HEP amplitudes; this was partially explained by increased LIFU pressure. LIFU did not affect time or frequency dependent measures of HRV. Conclusions These results demonstrate the ability to modulate HEP amplitudes via non-invasive targeting of key interoceptive brain regions. Our findings have implications for the causal role of these areas in bottom-up heart-brain communication that could guide future work investigating the HEP as a marker of interoceptive processing in healthy and clinical populations.
Collapse
Affiliation(s)
- Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Gabriel Isaac
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Charles Verdonk
- Laureate Institute for Brain Research, Tulsa, OK, USA
- VIFASOM (EA 7330 Vigilance Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris, France
- French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
- Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA
| |
Collapse
|
7
|
Xu L, Gong Y, Chien CY, Leuthardt E, Chen H. Transcranial focused ultrasound-induced blood‒brain barrier opening in mice without shaving hairs. Sci Rep 2023; 13:13500. [PMID: 37598243 PMCID: PMC10439893 DOI: 10.1038/s41598-023-40598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
Acoustic coupling through hairs remains a challenge to performing transcranial-focused ultrasound procedures. Here, we demonstrated that this challenge could be addressed by using oil as the coupling medium, leveraging oil's high affinity to hairs due to their inherent hydrophobicity. We compared focused ultrasound-induced blood-brain barrier opening (FUS-BBBO) outcomes in mice under three coupling conditions: oil with hairs ("oil + hairs"), ultrasound gel with hair shaving ("ultrasound gel + no hair"), and ultrasound gel with hairs ("ultrasound gel + hairs"). The quality of the coupling was evaluated by [Formula: see text]-weighted magnetic resonance imaging (MRI) and passive cavitation detection (PCD). The outcome of FUS-BBBO was assessed by MRI contrast agent extravasation using in vivo [Formula: see text]-weighted contrast-enhanced MRI. It was also evaluated by ex vivo fluorescence imaging of the mouse brain after intravenous injection of a model drug, Evans blue. The results showed that "oil + hairs" consistently achieved high-quality acoustic coupling without trapping air bubbles. The FUS-BBBO outcome was not significantly different between the "oil + hairs" and the "ultrasound gel + no hair" groups. These two groups had significantly higher levels of BBB opening than the "ultrasound gel + hairs" group. This study demonstrated that oil could be a coupling medium for transcranial FUS procedures without shaving hairs.
Collapse
Affiliation(s)
- Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Chih-Yen Chien
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Eric Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Legon W, Strohman A, In A, Stebbins K, Payne B. Non-invasive neuromodulation of sub-regions of the human insula differentially affect pain processing and heart-rate variability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539593. [PMID: 37205396 PMCID: PMC10187309 DOI: 10.1101/2023.05.05.539593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The insula is a portion of the cerebral cortex folded deep within the lateral sulcus covered by the overlying opercula of the inferior frontal lobe and superior portion of the temporal lobe. The insula has been parsed into sub-regions based upon cytoarchitectonics and structural and functional connectivity with multiple lines of evidence supporting specific roles for each of these sub-regions in pain processing and interoception. In the past, causal interrogation of the insula was only possible in patients with surgically implanted electrodes. Here, we leverage the high spatial resolution combined with the deep penetration depth of low-intensity focused ultrasound (LIFU) to non-surgically modulate either the anterior insula (AI) or posterior insula (PI) in humans for effect on subjective pain ratings, electroencephalographic (EEG) contact head evoked potentials (CHEPs) and time-frequency power as well as autonomic measures including heart-rate variability (HRV) and electrodermal response (EDR). N = 23 healthy volunteers received brief noxious heat pain stimuli to the dorsum of their right hand during continuous heart-rate, EDR and EEG recording. LIFU was delivered to either the AI (anterior short gyrus), PI (posterior longus gyrus) or under an inert sham condition time-locked to the heat stimulus. Results demonstrate that single-element 500 kHz LIFU is capable of individually targeting specific gyri of the insula. LIFU to both AI and PI similarly reduced perceived pain ratings but had differential effects on EEG activity. LIFU to PI affected earlier EEG amplitudes around 300 milliseconds whereas LIFU to AI affected EEG amplitudes around 500 milliseconds. In addition, only LIFU to the AI affected HRV as indexed by an increase in standard deviation of N-N intervals (SDNN) and mean HRV low frequency power. There was no effect of LIFU to either AI or PI on EDR or blood pressure. Taken together, LIFU looks to be an effective method to individually target sub-regions of the insula in humans for site-specific effects on brain biomarkers of pain processing and autonomic reactivity that translates to reduced perceived pain to a transient heat stimulus. These data have implications for the treatment of chronic pain and several neuropsychological diseases like anxiety, depression and addiction that all demonstrate abnormal activity in the insula concomitant with dysregulated autonomic function.
Collapse
Affiliation(s)
- Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Andrew Strohman
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Katelyn Stebbins
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| |
Collapse
|