1
|
Jadhav HB, Choudhary P, Annapure U, Ramniwas S, Mugabi R, Ahmad Nayik G. The role of sonication in developing synbiotic Beverages: A review. ULTRASONICS SONOCHEMISTRY 2024; 107:106941. [PMID: 38861817 PMCID: PMC11209632 DOI: 10.1016/j.ultsonch.2024.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Synbiotics are a combination of probiotic cells and prebiotic components and this harmonious association has numerous health benefits. Conventional processing technologies use high temperatures for processing which reduces the viability and the final quality of synbiotic beverages. Sonication is a rapidly growing technology in the food processing sector and can be employed for the formulation of synbiotic beverages with improved functionalities. The cavitation events generated during the sonication result in beneficial effects like increased viability of probiotic cells, enhanced bifidogenic characteristics of prebiotic components, less processing time, and high-quality products. The sonication process does not affect the sensory attributes of synbiotic beverages however, it alters the structure of prebiotics thus increasing the access by the probiotics. These positive effects are solely dependent on the type of ultrasound process and the ultrasound operating parameters. The review aims to provide information on the technological aspects of ultrasound, a brief about synbiotics, details on the ultrasound process used for the formulation of synbiotics, the influence of ultrasound operating parameters, and a focus on the research gap.
Collapse
Affiliation(s)
- Harsh B Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India; PIHM, Unit UMET, INRAE, 369 Rue Jules Guesde 59650, Villeneuve d'Ascq -59650, France.
| | - Pintu Choudhary
- Department of Food Technology, CBL Government Polytechnic, Bhiwani, Haryana, India.
| | - Uday Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda.
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College, Shopian 192303, J&K, India.
| |
Collapse
|
2
|
Dai C, Shu Z, Xu X, Yan P, Dabbour M, Kumah Mintah B, Huang L, He R, Ma H. Enhancing the growth of thermophilic Bacillus licheniformis YYC4 by low-intensity fixed-frequency continuous ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 100:106611. [PMID: 37757602 PMCID: PMC10550775 DOI: 10.1016/j.ultsonch.2023.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The effect of low-intensity fixed-frequency continuous ultrasound (LIFFCU) on the growth of Bacillus licheniformis YYC4 was investigated. The changes in morphology and activity of the organism, contributing to the growth were also explored. Compared with the control, a significant increase (48.95%) in the biomass of B. licheniformis YYC4 (at the logarithmic metaphase) was observed following the LIFFCU (28 kHz, 1.5 h and 120 W (equivalent to power density of 40 W/L)) treatment. SEM images showed that ultrasonication caused sonoporation, resulting in increased membrane permeability, evidenced by increase in cellular membrane potential, electrical conductivity of the culture, extracellular protein and nucleic acid, and intracellular Ca2+ content. Furthermore, LIFFCU action remarkably increased the extracellular protease activity, volatile components of the culture medium, microbial metabolic activity, and spore germination of the strain. Therefore, LIFFCU could be used to efficiently promote the growth of targeted microorganisms.
Collapse
Affiliation(s)
- Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhenzhen Shu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xueting Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengfei Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | | | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
dos Santos FR, Leite Junior BRDC, Tribst AAL. Impact of ultrasound and protease addition on the fermentation profile and final characteristics of fermented goat and sheep cheese whey. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2444-2453. [PMID: 37424584 PMCID: PMC10326219 DOI: 10.1007/s13197-023-05767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023]
Abstract
Goat (GCW) and sheep cheese whey (SCW) are cheese by-products that can be fermented to develop a new product. However, the limited nutrient availability for lactic acid bacteria (LAB) growth and the low stability of whey are challenges. This work evaluated the addition of protease and/or ultrasound-assisted fermentation as tools to improve GCW and SCW fermentation and the final quality of the products. Results showed that the US/protease increased by 23-32% pH decline rate (for SCW only) and modified the separation of cream (≤ 60% for GCW) and whey (≤ 80% for both whey sources, with higher values for GCW) during storage, explained by changes in the microstructure protein, fat globules, and their interactions. Furthermore, the whey source/composition (mainly lower fat content in SCW) affected the destabilization rate and the LAB viability loss (1.5-3.0 log CFU/mL), caused by nutrient depletion and low tolerance at pH ~ 4.0. Finally, exploratory results showed that fermentation under sonication (with/without protease) resulted in 24-218% higher antioxidant activity in vitro than unfermented samples. Therefore, fermentation associated with proteases/sonication can be an interesting strategy to modify GWC and SCW, and the final process chosen depends on the desired changes in whey. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05767-3.
Collapse
Affiliation(s)
- Fabio Ribeiro dos Santos
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), University Campus, Viçosa, MG 36570-900 Brazil
- Center for Food Studies and Research (NEPA), University of Campinas (UNICAMP), Albert Einstein, 291, Campinas, SP 13083-852 Brazil
| | | | - Alline Artigiani Lima Tribst
- Center for Food Studies and Research (NEPA), University of Campinas (UNICAMP), Albert Einstein, 291, Campinas, SP 13083-852 Brazil
| |
Collapse
|
4
|
Yang X, Yin J, Guo Y, Yu H, Yuan S, Qian H, Yao W, Song J. Ultrasound-Assisted Fermentation to Remove Cadmium from Rice and Its Application. Molecules 2023; 28:molecules28104127. [PMID: 37241867 DOI: 10.3390/molecules28104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Rice, which is a major part of the daily diet, is becoming more and more contaminated by cadmium (Cd). This study combined low-intensity ultrasonic waves with the Lactobacillus plantarum fermentation method and optimized this technique by a single-factor and response surface experiment, aiming to solve the practical problems that the current Cd removal methods for rice cannot address, due to the fact that they require a long time (nearly 24 h), which prevents meeting the rice production demands. The described technique required a short time (10 h), and the highest Cd removal reached 67.05 ± 1.38%. Further analysis revealed that the maximum adsorption capacity of Lactobacillus plantarum for Cd increased by nearly 75%, and the equilibrium adsorption capacity increased by almost 30% after the ultrasonic intervention. Additionally, a sensory evaluation and other experiments proved that the properties of the rice noodles prepared from Cd-reduced rice obtained by ultrasound-assisted fermentation were comparable to those of traditional rice noodles, indicating that this method can be used in actual rice production.
Collapse
Affiliation(s)
- Xiaotong Yang
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Yin
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiangfeng Song
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
5
|
Culture Age, Growth Medium, Ultrasound Amplitude, and Time of Exposure Influence the Kinetic Growth of Lactobacillus acidophilus. FERMENTATION 2023. [DOI: 10.3390/fermentation9010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The growth pattern of probiotics can be modified by changing their nutritional factors and their physiological stage. Meanwhile, high intensity ultrasound (HIUS) can be employed to increase probiotics’ biomass. The one-factor-at-a-time (OFAT) approach was employed to investigate the influence of the growth medium (MRS broth, whole milk, and skim milk), culture age (1 day and 7 days old) and ultrasound parameters (time and amplitude) on the kinetic parameters of L. acidophilus. The oldest culture (7 days) had a greater lag phase and time to reach the end of the sigmoidal curve (Tmax) (p < 0.05) as well as a lower rate (maximum growth potential μmax) compared to the youngest culture (1 day). Regarding the growth medium, skim milk presented the greatest L. acidophilus counts (p < 0.05). Meanwhile, sonication times (60 and 90 s) change µmax and Tmax. When 30% amplitude was applied, a greater μmax and a smaller Tmax were observed (p < 0.05). It can be concluded that the growth medium, culture age, and ultrasound parameters (time and amplitude) influence the kinetic parameters of L. acidophilus. Results from this study could be used in the design and optimization of processes to improve the growth of the probiotic L. acidophilus at industrial scale.
Collapse
|
6
|
Akdeniz V. The quality characteristics of probiotic yogurts enriched with carob flour: ultrasonication effects at different production stages. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:272-282. [PMID: 36618053 PMCID: PMC9813326 DOI: 10.1007/s13197-022-05612-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
The health benefits, nutritional value and also the quality of foods are important aspects for the health-conscious consumers. In this study, the effects of ultrasound treatment at different stages of production (before inoculation (group B), both before and after inoculation (group C), and after inoculation (group D)) on some physicochemical, rheological, microbiological, and sensory properties of probiotic yogurts enriched with carob flour (CF) were investigated. Ultrasound treatment shortened the fermentation time for groups C and D, but did not significantly change the total solids, fat, and protein contents of probiotic yogurts enriched with CF. However, ultrasound-treated groups had higher pH and lower lactic acid values. Ultrasound treatment also improved the counts of yogurt bacteria and probiotic bacteria compared to the untreated control group. In addition, ultrasound-treated groups B and C had higher hardness, viscosity, and water holding capacity (WHC) values, while group D had similar values with the control. Enrichment with CF increased the red and yellow color ratios, and the ultrasound-treated groups (B and C) had higher a* (redness) values and lower b* (yellowness) values. The overall acceptability scores of ultrasound-treated groups were higher, and the texture scores of groups B and C were also higher.
Collapse
Affiliation(s)
- Vildan Akdeniz
- Department of Dairy Technology, Faculty of Agriculture, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
7
|
Zhang X, Zheng Y, Kumar Awasthi M, Zhou C, Barba FJ, Cai Z, Liu L, Rene ER, Pan D, Cao J, Sindhu R, Xia Q. Strategic thermosonication-mediated modulation of lactic acid bacteria acidification kinetics for enhanced (post)-fermentation performance. BIORESOURCE TECHNOLOGY 2022; 361:127739. [PMID: 35940323 DOI: 10.1016/j.biortech.2022.127739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
This study explored the feasibility of thermosonication (TS)-prestressed inoculum with different fermentation patterns for regulating microbial (post)-fermentation acidification kinetics. Through a Box-Behnken design, stimulative (20 min, 400 W, 33 kHz, 25 °C) and inhibitive (10 min, 600 W, 33 kHz, 20 °C) effects on the acidification capability of Lactobacillus plantarum A3 were achieved without observing greatly activated/inactivated strains growth, further confirmed by lactose fermentation performed by Streptococcus thermophilus and Lactobacillus bulgaricus. Lactic acid was the major contributing factor responsible for TS-induced acidification modifications corresponding to the potential fluctuations of CoA biosynthesis, fatty acid degradation and chain elongation pathways to TS prestress. Microscopy observations and quantitative extracellular substance assays showed palpable stress disturbance on microbes, but causing insignificant effects on product characteristics. This investigation demonstrated the potential of controlled sonication prestress strategies to achieve dual engineering effects on microbial metabolic behavior, for alleviating post-acidification problem or enhancing process efficiencies.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Zhendong Cai
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Lianliang Liu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau.
| |
Collapse
|
8
|
Zhang L, Zhang M, Mujumdar AS, Liu K. Antibacterial mechanism of ultrasound combined with sodium hypochlorite and their application in pakchoi (Brassica campestris L. ssp. chinensis). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4685-4696. [PMID: 35191049 DOI: 10.1002/jsfa.11829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In order to prolong the storage and inhibit microorganisms of pakchoi, the antibacterial activity and mechanism of ultrasound combined with sodium hypochlorite (NaClO-US), the efficiency of NaClO-US in reducing Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa as well as preserving quality of pakchoi were investigated. RESULTS Ultrasound treatment could significantly reduce the usage of NaClO solution from 800 ppm to 500 ppm. NaClO-US decreased the counts of E. coli, S. aureus and P. aeruginosa, which disrupted the bacterial cell membrane with cytoplasmic leakage. In addition, NaClO-US significantly increased cell membrane permeability, while cell membrane integrity decreased, the secondary structure of bacterial proteins showed several obvious changes, such as the increase of random coil content, as well as the decrease of α-helix content. The bacterial counts, E. coli, S. aureus and P. aeruginosa population in pakchoi treated with NaClO-US reduced by 1.89, 1.40, 1.60, 1.72 log CFU g-1 , respectively compared to control sample after storage for 15 days. NaClO-US resulted in minimum chlorophyll depletion, flavor and sensory deterioration. CONCLUSION NaClO-US solution treatment inhibited microorganisms and prolonged storage of pakchoi. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Kun Liu
- Sichuan Tianwei Food Group Co., Ltd, Chengdu, China
| |
Collapse
|
9
|
Kong X, Xiao Z, Du M, Wang K, Yu W, Chen Y, Liu Z, Cheng Y, Gan J. Physicochemical, Textural, and Sensorial Properties of Soy Yogurt as Affected by Addition of Low Acyl Gellan Gum. Gels 2022; 8:gels8070453. [PMID: 35877538 PMCID: PMC9318443 DOI: 10.3390/gels8070453] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Soy yogurt is plant-based dairy of great nutritional interest that is widely accepted in developing countries as a milk alternative. Poor stability has been an urgent problem to solve of soy yogurt products over past several years. The present study aimed to construct multiple network composite gel by adding low acyl gellan gum (LAG) to improve the stability. The effect of addition of LAG on property of soy yogurt was investigated by determining water holding capacity, texture, rheology, particle size, and zeta potential. The results showed that water holding capacity was significantly higher than control. The soy yogurt with 0.1% LAG had a stable gel network with much gel strength and viscosity, and strengthened interaction between complex gel. The addition of LAG increased the particle size and decreased zeta potential. Furthermore, sensory properties were acceptable. Therefore, during industrial production, LAG could act as an appropriate stabilizer to inhibit poor body and bring more desirable sensory characteristics of soy yogurt.
Collapse
Affiliation(s)
- Xiao Kong
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
| | - Ziqun Xiao
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengdi Du
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
| | - Kuaitian Wang
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
| | - Wei Yu
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuhang Chen
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhili Liu
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (Y.C.); (J.G.); Tel.: +86-18853596400 (J.G.)
| | - Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
- Correspondence: (Y.C.); (J.G.); Tel.: +86-18853596400 (J.G.)
| |
Collapse
|
10
|
Abesinghe A, Vidanarachchi J, Islam N, Karim M. Effects of ultrasound on the fermentation profile and metabolic activity of lactic acid bacteria in buffalo's (Bubalus bubalis) milk. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Influence of three ultrasound treatments on viability, culturability, cell architecture, enzymatic activity and metabolic potential of Lacticaseibacillus paracasei 90. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Nehring P, Lorenzo JM, Santos SP, Wagner R, de Menezes CR, dos Santos BA, Barin JS, Campagnol PCB, Cichoski AJ. Effect of ultrasound application on the growth of S. xylosus inoculated in by-products from the poultry industry. Curr Res Food Sci 2022; 5:345-350. [PMID: 35198993 PMCID: PMC8841956 DOI: 10.1016/j.crfs.2022.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/06/2022] Open
Abstract
A wide variety of by-products are produced by the industry when animals are slaughtered. However, the proteins present in these by-products, are not being fully useable, in the elaboration of value-added products. Staphylococcus xylosus is commonly used as a starter culture in meat products subjected to ripening for a long period, as it produces proteolytic and lipolytic enzymes that improve the sensory quality of the products. Ultrasound (US) has been arousing interest in the meat industry, as it reduces processing time and also improves the technological and sensory quality of meat products. However, the stimulate effect of US on the growth of S. xylosus in by-products from the poultry industry is still unknown. Thus, this study aimed to evaluate the stimulate effect of US on the growth of S. xylosus inoculated in by-products from the poultry industry. S. xylosus was inoculated (5.63 log CFU/g) in sterilized by-products from the poultry, which were then sonicated at 37 °C for 0, 15, 30, and 45 min according to the following parameters: frequencies of 130 and 35 kHz, amplitudes of 50% and 80% and normal and degas operating modes. The sonicated samples were incubated at 37 °C for 0, 24, 48, and 72 h. Soon after sonication, no stimulate effect of US was observed on the growth of S. xylosus. However, after 24 h of incubation, the samples sonicated for 15 and 30 min in normal mode, at 35 and 130 kHz, and amplitudes of 50 and 80% exhibited better stimulate effect at the growth S. xylosus counts (p < 0.01) when compared to the Control, with values of 8.23 and 7.77 log CFU/g, respectively. These results can be exploited to obtain new added-value products, having as raw material by-products from the poultry industry. We studied the effect of US on the growth of S. xylosus in poultry waste. Frequency, amplitude and US time had a great impact on the growth of S. xylosus. Constant ultrasonic waves stimulated the growth of S. xylosus. This study found a promising new field of application for US in the meat industry.
Collapse
|
13
|
Asaithambi N, Singh SK, Singha P. Current status of non-thermal processing of probiotic foods: A review. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Inactivation of Staphylococcus aureus using ultrasound in combination with thyme essential oil nanoemulsions and its synergistic mechanism. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Choudhary P, Rawson A. Impact of power ultrasound on the quality attributes of curd and its fermentation/gelation kinetics. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pintu Choudhary
- Computational Modeling and Nanoscale Processing Unit Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. of India Thanjavur Tamil Nadu India
| | - Ashish Rawson
- Centre of Excellence in Nonthermal Processing, Indian Institute of Food Processing Technology (IIFPT) Thanjavur Tamil Nadu India
- Department of Food Safety and Quality Testing Indian Institute of Food Processing Technology (Ministry of Food Processing Industries, Govt. of India) Thanjavur Tamil Nadu India
| |
Collapse
|
16
|
He Q, Liu D, Ashokkumar M, Ye X, Jin TZ, Guo M. Antibacterial mechanism of ultrasound against Escherichia coli: Alterations in membrane microstructures and properties. ULTRASONICS SONOCHEMISTRY 2021; 73:105509. [PMID: 33684739 PMCID: PMC7941012 DOI: 10.1016/j.ultsonch.2021.105509] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 05/17/2023]
Abstract
This study was aimed at providing new insights on the response of bacterial cell membranes to ultrasound exposure. Escherichia coli (E. coli) O157:H7 cells were exposed to different ultrasound treatments (power intensities of 64, 191, 372, and 573 W/cm2, frequency of 20 kHz, pulsed mode of 2 sec: 2 sec) and the dynamic changes in cell viability within 27 min were assessed. With an increase in ultrasonic intensity and prolonged duration, a 0.76-3.52 log CFU/mL reduction in E. coli populations was attained. The alterations in the sensitivity of ultrasound-treated cells to antimicrobial compounds were evaluated by exposure to thyme essential oil nanoemulsion (TEON). The treatment reduced the E. coli population by 2.16-7.10 log CFU/mL, indicating the effects of ultrasonic field on facilitating the antibacterial efficacy of TEON. Ultrasonic-treated E. coli cells also displayed remarkable morphological and ultrastructural damages with destroyed membrane integrity and misshaped cell structures, which was observed by electron microscopy analysis. Significant increase in outer and inner membrane permeability, along with the cytoplasmic leakage and membrane depolarization were assessed utilizing spectrophotometry. For the first time, significant reduction in the membrane fluidity in response to ultrasound exposure were investigated. Additional efforts in exploring the effect of ultrasonic field on some bacterial membrane compositions were performed with infrared spectroscopy. In this study, multiple lines of evidence effectively served to elucidate the alterations on cellular membrane structure and property during exposure to sonication that could extend our understanding of the antimicrobial molecular mechanisms of ultrasound.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | | | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, United States
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
17
|
Umego EC, He R, Huang G, Dai C, Ma H. Ultrasound‐assisted fermentation: Mechanisms, technologies, and challenges. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ekene Christopher Umego
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Department of Food Science and Technology University of Nigeria Enugu Nigeria
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Institute of Food Physical Processing Jiangsu University Zhenjiang China
| | - Guoping Huang
- Institute of Life Sciences Jiangsu University Zhenjiang China
| | - Chuanhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Institute of Food Physical Processing Jiangsu University Zhenjiang China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- Institute of Food Physical Processing Jiangsu University Zhenjiang China
| |
Collapse
|
18
|
Peng K, Koubaa M, Bals O, Vorobiev E. Recent insights in the impact of emerging technologies on lactic acid bacteria: A review. Food Res Int 2020; 137:109544. [DOI: 10.1016/j.foodres.2020.109544] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
|
19
|
Akdeniz V, Akalın AS. Recent advances in dual effect of power ultrasound to microorganisms in dairy industry: activation or inactivation. Crit Rev Food Sci Nutr 2020; 62:889-904. [DOI: 10.1080/10408398.2020.1830027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vildan Akdeniz
- Department of Dairy Technology, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Ayşe Sibel Akalın
- Department of Dairy Technology, Faculty of Agriculture, Ege University, Izmir, Turkey
| |
Collapse
|
20
|
Thermal and non-thermal processing effect on açai juice composition. Food Res Int 2020; 136:109506. [DOI: 10.1016/j.foodres.2020.109506] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 01/06/2023]
|
21
|
Biotransformation of two citrus flavanones by lactic acid bacteria in chemical defined medium. Bioprocess Biosyst Eng 2020; 44:235-246. [PMID: 32888093 DOI: 10.1007/s00449-020-02437-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Microbial processes are being developed to transform flavonoid glycosides to varieties of metabolites with higher bioavailability. The aim of this study was to determine the metabolic activity and survival of five lactic acid bacteria (LAB) stains (L. rhamnosus LRa05, L. casei LC89, L. plantarum N13, L. acidophilus LA85, and L. brevis LB01) in two different citrus flavanone standards (hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside). The enzymatic activity, metabolites, antioxidant activities, and α-glucosidase inhibition property in the two standards were also investigated before and after incubated with LAB. The medium contained standards permitted survival of the five LAB stains. All strains exhibited β-glucosidase activity. Of the five LAB strains tested, just L. plantarum N13 and L. brevis LB01 have the ability to metabolize hesperetin-7-O-rutinoside, only L. plantarum N13, L. acidophilus LA85, and L. brevis LB01 could metabolize naringenin-7-O-rutinoside, moreover, L. acidophilus LA85l was the strain with the highest biotransformation ratio of naringenin-7-O-rutinoside. L. acidophilus LA85 and L. plantarum N13 can degrade naringenin-7-O-rutinoside into naringenin. L. brevis LB01 can degrade hesperetin-7-O-rutinoside into hesperetin, 3-(4'-hydroxyphenyl)-2-propenoic acid, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, and 3-(4'-hydroxyphenyl)propionic acid. Incubation of L. acidophilus LA85 in naringenin-7-O-rutinoside solution supposed no apparent influence in the biological activities that tested. L. acidophilus LA85 may potentially contribute to the bioavailability of citrus flavanones, and to be applied as functional cultures to obtain more bioavailable and bioactive metabolites in food products or in the human gastrointestinal tract.
Collapse
|
22
|
Behzadnia A, Moosavi-Nasab M, Tiwari BK, Setoodeh P. Lactobacillus plantarum-derived biosurfactant: Ultrasound-induced production and characterization. ULTRASONICS SONOCHEMISTRY 2020; 65:105037. [PMID: 32179260 DOI: 10.1016/j.ultsonch.2020.105037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 05/26/2023]
Abstract
The aim of the present study was to investigate the effect of ultrasonic treatment (25 kHz) on biosurfactant production by Lactobacillus plantarum ATCC 8014. The impacts of the ultrasonication (with a frequency of 25 kHz and power of 7.4 W for 30 min time duration) were examined at different stages of the fermentation process to obtain the optimum stimulation instant(s). The optimum scenario was found to be one-time sonication at the 12th hour of fermentation which can be beneficial from an economic point of view (compared with multiple applications of sonication). Ultrasonic treatment at this time resulted in enhancement of the productivities of biomass (4.5 g/L) and biosurfactant (2.01 g/L) which was almost 1.3 times higher than those of the non-sonicated control samples. According to our results, it was clearly observed that glucose consumption increased after ultrasonic treatment representing the improved substrate uptake and progression of the cellular metabolism. Furthermore, the transmission electron microscopic images immediately after sonication clarified the pore formation on the cell surfaces. The results also indicated the enhancement of plasma membrane permeability of the sonicated cells. Fourier transform infrared spectroscopy and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy analyses also disclosed respectively no structural differences before and after ultrasonic exposure in the produced biosurfactant and bacterial cell membrane. The biosurfactant was characterized to be a mixture of carbohydrate (28%), protein (23%) and lipid (specified by gas chromatography-mass spectrometry) known as glycolipoprotein. The sustainable critical micelle concentration and the stability of the synthesized biosurfactant can feature its potential applicability in various processes in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Asma Behzadnia
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Brijesh K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| | - Payam Setoodeh
- Department of Chemical Engineering, School of Chemical, Petroleum and Gas Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
23
|
Xu L, Han F, Zhang X, Yu Q. Ultrasound enhanced biosynthesis of L-theanine from L-glutamine and ethylamine by recombinant γ-glutamyltranspeptidase. BIORESOURCE TECHNOLOGY 2020; 307:123251. [PMID: 32245672 DOI: 10.1016/j.biortech.2020.123251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
A mutant library of the key amino acid residue site E387 in γ-glutamyltranspeptidase was constructed to screen the mutant enzymes with significantly improved thermal stability (E387Q). The reaction temperature of the mutant enzyme (E387Q) was 10℃ higher than that of the parent enzyme. Ultrasound-assisted synthesis of L-theanine by γ-glutamyltranspeptidase was investigated. The effects of ultrasonic power, reaction pH and substrate concentration on the enzymatic synthesis of L-theanine were studied by the response surface method. The results showed that the optimal process conditions are ultrasonic power of 100 W, reaction pH of 9, substrate L-glutamine concentration of 120 mmol/L, reaction temperature of 45℃, and L-theanine yield of 89.1%. The yield of L-theanine is 2.61 times higher than that obtained without ultrasound. Ultrasound can significantly promote the synthesis of L-theanine by γ-glutamyltranspeptidase.
Collapse
Affiliation(s)
- Lisheng Xu
- Department of Life and Food Science, Suzhou University, Suzhou 234000, China.
| | - Fangkai Han
- Department of Life and Food Science, Suzhou University, Suzhou 234000, China
| | - Xingtao Zhang
- Department of Life and Food Science, Suzhou University, Suzhou 234000, China
| | - Qiaoling Yu
- Department of Life and Food Science, Suzhou University, Suzhou 234000, China
| |
Collapse
|
24
|
Pawar SV, Rathod VK. Role of ultrasound in assisted fermentation technologies for process enhancements. Prep Biochem Biotechnol 2020; 50:627-634. [DOI: 10.1080/10826068.2020.1725773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Shweta V. Pawar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Virendra K. Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
25
|
Stimulatory effects of low intensity ultrasound on the growth kinetics and metabolic activity of Lactococcus lactis subsp. Lactis. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Zheng ZY, Xie G, Li L, Liu WL. The joint effect of ultrasound and magnetic Fe3O4 nanoparticles on the yield of 2,6-dimethoxy-ρ-benzoquinone from fermented wheat germ: Comparison of evolutionary algorithms and interactive analysis of paired-factors. Food Chem 2020; 302:125275. [DOI: 10.1016/j.foodchem.2019.125275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
|
27
|
Behzadnia A, Moosavi-Nasab M, Tiwari BK. Stimulation of biosurfactant production by Lactobacillus plantarum using ultrasound. ULTRASONICS SONOCHEMISTRY 2019; 59:104724. [PMID: 31421618 DOI: 10.1016/j.ultsonch.2019.104724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/15/2019] [Accepted: 08/04/2019] [Indexed: 05/26/2023]
Abstract
Due to their nonpathogenic status, biosurfactants produced by Lactobacillus strains have been shown to have potential applicability in several industrial sectors, particularly food and pharmaceutical industries. However, products with high efficiency are needed to fulfill the demand for these biosurfactants. Therefore, the present study investigated kinetic parameters, biomass and biosurfactant production of Lactobacillus plantarum ATCC 8014 applying standard MRS and modified MRS (supplemented standard MRS by nitrogen and carbon sources) culture medium under various ultrasonic frequencies of 20, 25, 35, 45, 130 and 950 kHz to obtain more efficient conditions. The optimum conditions were found when using the modified MRS treated by the frequency of 25 kHz (the power of 7.4 W) for 30 min, which led to a significant effect on the growth rate (µmax, h-1) rather than control. Furthermore, this condition caused the highest population (10.07 ± 0.1 log CFU/mL) and biomass concentration (4.33 ± 0.06 g/L), and lowest surface tension (39.26 ± 0.5 mN/m), leading to higher biosurfactant production. Hence, given the results of the present study, it can be established that controlled ultrasound exposure and supplementation of culture media using the main growth factors can intensify the microbial activity and the productivity of biological processes.
Collapse
Affiliation(s)
- Asma Behzadnia
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran; Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Brijesh K Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| |
Collapse
|
28
|
Manufacture of high-protein yogurt without generating acid whey – Impact of the final pH and the application of power ultrasound on texture properties. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.104541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Guimarães JT, Balthazar CF, Scudino H, Pimentel TC, Esmerino EA, Ashokkumar M, Freitas MQ, Cruz AG. High-intensity ultrasound: A novel technology for the development of probiotic and prebiotic dairy products. ULTRASONICS SONOCHEMISTRY 2019; 57:12-21. [PMID: 31208607 DOI: 10.1016/j.ultsonch.2019.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Accepted: 05/05/2019] [Indexed: 05/08/2023]
Abstract
High-intensity ultrasound (HIUS) can be used as a mild-preservation technology in dairy products, due to its ability to inactivate pathogenic microorganisms and enzymes. In addition, it can result in physical and chemical alterations in the products and has impact on the probiotic viability and metabolic activity. This review provides an overview of the effects of HIUS on dairy products manufactured with probiotics and prebiotics. Furthermore, it presents perspectives of HIUS application on paraprobiotics and postbiotics products. HIUS has been proven to be a potential technology and its application to fermented dairy products can result in shorter processing time, increased probiotic viability, and products with low lactose content, higher oligosaccharides concentration, less undesirable taste (lower propionic and acetic acids content) and reduced ingredients (no need of prebiotic addition or β-galactosidase inclusion). In cheeses, HIUS can reduce the ripening time and accelerate proteolysis, resulting in products with better sensory, textural and nutritional (bioactive peptides) characteristics. Furthermore, it can change the prebiotic structure, facilitating the access for the probiotics. The impact of the HIUS is highly dependent on the process parameters (frequency, power, processing time, pulse mode and duration), type of probiotic culture and food composition. Therefore, HIUS process parameters must be precisely quantified and controlled. The HIUS can also be applied to the inactivation of probiotic cultures and development of paraprobiotic products or to the improvement in the production of soluble factors (postbiotics) with health effects. Further researches should be conducted to evaluate the efficiency of this methodology in the cases of paraprobiotic and postbiotic products.
Collapse
Affiliation(s)
- Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Celso F Balthazar
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Hugo Scudino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Tatiana C Pimentel
- Federal Institute of Paraná (IFPR), Campus Paranavaí, 87703-536 Paranavaí, PR, Brazil
| | - Erick A Esmerino
- Department of Food Technology, Federal Rural University of Rio de Janeiro (UFRRJ), 23890-000 Seropédica, RJ, Brazil
| | | | - Monica Q Freitas
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
Abesinghe A, Islam N, Vidanarachchi J, Prakash S, Silva K, Karim M. Effects of ultrasound on the fermentation profile of fermented milk products incorporated with lactic acid bacteria. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Strategic ultrasound-induced stress response of lactic acid bacteria on enhancement of β-glucosidase activity for bioconversion of isoflavones in soymilk. J Microbiol Methods 2018; 148:145-150. [DOI: 10.1016/j.mimet.2018.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 11/19/2022]
|
32
|
Dong W, Zhao F, Xin F, He A, Zhang Y, Wu H, Fang Y, Zhang W, Ma J, Jiang M. Ultrasound-assisted d-tartaric acid whole-cell bioconversion by recombinant Escherichia coli. ULTRASONICS SONOCHEMISTRY 2018; 42:11-17. [PMID: 29429650 DOI: 10.1016/j.ultsonch.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 10/13/2017] [Accepted: 11/01/2017] [Indexed: 06/08/2023]
Abstract
d-Tartaric acid has wide range of application in the pharmaceutical industry and scarcely exists in nature. In this study, cis-epoxysuccinate hydrolase (CESH)-containing Escherichia coli was used to perform whole-cell bioconversion of cis-epoxysuccinate (CES) to D-tartaric acid and the catalytic efficiency was investigated by ultrasound treatment. The bioconversion rate of CES sodium reached 70.36% after 60 min treated after ultrasound, which is 3-fold higher than that in the control. The specific rate could be further improved by 2-fold after 5 repeated batches compared with the first one, however, the specific rate gradually decreased with the increase of repeat batches (>5 batches). The CESH from Bordetella sp. BK-52 was a typical Michaelis-Menten enzyme with Vmax and Km values of 28.17 mM/h/g WCW (wet of cell weight) and 30.18 mM, respectively. The process for the d-tartaric acid bioconversion, which consisted of 102.31 g/L CES sodium, 8.78 mg/mL whole cell and ultrasound power of 79.36 W, is further optimized using response surface methodology. The specific rate finally reached 194.79 ± 1.78 mM/h/g WCW under the optimal conditions. Furthermore, the permeability of inner and outer membrane was improved approximately 1.6 and 1.4-fold after ultrasound treatment, respectively, which may be a crucial factor for improvement of the bioconversion efficiency.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Fenglian Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, PR China
| | - Yue Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Yan Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
33
|
Goh KM, Lai OM, Abas F, Tan CP. Effects of sonication on the extraction of free-amino acids from moromi and application to the laboratory scale rapid fermentation of soy sauce. Food Chem 2017; 215:200-8. [DOI: 10.1016/j.foodchem.2016.07.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/16/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
|
34
|
Zang CZ, Kan SC, Yeh CW, Lin CC, Shieh CJ, Liu YC. Ultrasound-assisted (R)-phenylephrine whole-cell bioconversion by S. marcescens N10612. ULTRASONICS SONOCHEMISTRY 2015; 26:415-421. [PMID: 25691009 DOI: 10.1016/j.ultsonch.2015.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
The strain Serratia marcescens N10612 is used to perform the bioconversion of 1-(3-hydroxyphenyl)-2-(methyamino)-ethanone (HPMAE) to (R)-phenylephrine ((R)-PE), which is an ephedrine drug substitute. The use of an ultrasound approach is found to improve the efficiency of the (R)-PE bioconversion. The optimization of the (R)-PE bioconversion is carried out by means of statistical experiment design. The optimal conditions obtained are 1.0mM HPMAE, 18.68 g/L glucose and ultrasound power of 120 W, where the predicted specific rate of the (R)-PE bioconversion is 31.46 ± 2.22 (ìmol/h/g-cells) and the experimental specific rate is 33.27 ± 1.46 (ìmol/h/g-cells), which is 3-fold higher than for the operation under ultrasound power of 200 W (11.11 ìmol/h/g-cells) and 4.3-fold higher than for the shaking operation (7.69 ìmol/h/g-cells). The kinetics study of the bioconversion also shows that under the ultrasound operation, the optimal rate (Vmax) of the (R)-PE bioconversion increases from 7.69 to 11.11 (μmol/h/g-cells) and the substrate inhibition constant (KSi) increases from 1.063 mM for the shaking operation to 1.490 mM for ultrasound operation.
Collapse
Affiliation(s)
- Chi-Zong Zang
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Shu-Chen Kan
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Chiung-Wen Yeh
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Chia-Chi Lin
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Chwen-Jen Shieh
- Biotechnology Center, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 40227, Taiwan, ROC.
| |
Collapse
|
35
|
Influence of high intensity ultrasound on microbial reduction, physico-chemical characteristics and fermentation of sweet whey. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2014.10.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Hor K, Lew L, Choi S, Liong M. Effects of ultrasonication on the production of hyaluronic acid by lactobacilli. ACTA ALIMENTARIA 2014. [DOI: 10.1556/aalim.43.2014.2.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Stability and Quality Parameters of Probiotic Cantaloupe Melon Juice Produced with Sonicated Juice. FOOD BIOPROCESS TECH 2012. [DOI: 10.1007/s11947-012-0962-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Ewe JA, Wan-Abdullah WN, Alias AK, Liong MT. Effects of ultrasound on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of Lactobacillus fermentum BT 8633 in biotin-supplemented soymilk. ULTRASONICS SONOCHEMISTRY 2012; 19:890-900. [PMID: 22305107 DOI: 10.1016/j.ultsonch.2012.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/05/2012] [Accepted: 01/10/2012] [Indexed: 05/31/2023]
Abstract
This study aimed to evaluate the effects of ultrasound on Lactobacillus fermentum BT 8633 in parent and subsequent passages based on their growth and isoflavone bioconversion activities in biotin-supplemented soymilk. The treated cells were also assessed for impact of ultrasound on probiotic properties. The growth of ultrasonicated parent cells increased (P<0.05) by 3.23-9.14% compared to that of the control during fermentation in biotin-soymilk. This was also associated with enhanced intracellular and extracellular (8.4-17.0% and 16.7-49.2%, respectively; P<0.05) β-glucosidase specific activity, leading to increased bioconversion of isoflavones glucosides to aglycones during fermentation in biotin-soymilk compared to that of the control (P<0.05). Such traits may be credited to the reversible permeabilized membrane of ultrasonicated parent cells that have facilitated the transport of molecules across the membrane. The growing characteristics of first, second and third passage of treated cells in biotin-soymilk were similar (P>0.05) to that of the control, where their growth, enzyme and isoflavone bioconversion activities (P>0.05) were comparable. This may be attributed to the temporary permeabilization in the membrane of treated cells. Ultrasound affected probiotic properties of parent L. fermentum, by reducing tolerance ability towards acid (pH 2) and bile; lowering inhibitory activities against selected pathogens and reducing adhesion ability compared to that of the control (P<0.05). The first, second and third passage of treated cells did not exhibit such traits, with the exception of their bile tolerance ability which was inherited to the first passage (P<0.05). Our results suggested that ultrasound could be used to increase bioactivity of biotin-soymilk via fermentation by probiotic L. fermentum FTDC 8633 for the development of functional food.
Collapse
Affiliation(s)
- Joo-Ann Ewe
- School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | | | | | | |
Collapse
|