1
|
Sukhatskiy Y, Shepida M, Lysak D, Znak Z, Gogate PR. Modified sono-Fenton process for oxidative degradation of chloramphenicol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54559-54573. [PMID: 39210221 DOI: 10.1007/s11356-024-34827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Oxidative degradation of chloramphenicol (CAP) using a hybrid approach (US/HA+/n-Fe2O3/SPC) involving sodium percarbonate (SPC; "solid H2O2" carrier), Fe2O3 nanoparticles (n-Fe2O3; H2O2 decomposition catalyst), hydroxylamine in its protonated form (HA+; Fe (III) to Fe (II) reducer), and ultrasonic cavitation (to increase the generation of hydroxyl radicals) has been studied for the first time. The average size of n-Fe2O3 synthesized by the sonochemical method, as calculated according to the Debye-Scherrer equation, was ~ 18 nm. The maximum degradation degree of CAP (83.1%) and first-order oxidative degradation rate constant of CAP as 1.253 × 10-3 s-1 were achieved using the modified sono-Fenton process under the optimized conditions as the initial concentration of CAP - 50 mg/L, the molar ratio of CAP:HA+:n-Fe2O3:SPC of 1:100:100:100, pH as 3, the temperature as 318 K, the specific ultrasonic power as 53.3 W/L, and the treatment duration of 7200 s. In general, the efficiency and intensity of CAP degradation increased with a decrease in the pH value, an increase in the molar ratio of CAP:HA+:n-Fe2O3:SPC, a decrease in the initial concentration of CAP, an increase in temperature, and showed a minor change with the specific power of US. The synergistic coefficient for the combination of the US and the heterogeneous Fenton process was 17.9. The active participation of hydroxyl radicals in the oxidative degradation of CAP using the modified sono-Fenton process was confirmed by scavenging experiments performed using tert-butyl alcohol. The proposed process can be a promising direction in the remediation of pharmaceutical effluents with significant potential for commercial exploitation.
Collapse
Affiliation(s)
- Yurii Sukhatskiy
- Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine
| | - Mariana Shepida
- Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine
| | - Dmytro Lysak
- Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine
| | - Zenovii Znak
- Department of Chemistry and Technology of Inorganic Substances, Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, Bandera Str., Lviv, 79013, Ukraine
| | - Parag Ratnakar Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 40019, India.
| |
Collapse
|
2
|
Fedorov K, Kong L, Wang C, Boczkaj G. High-performance activation of ozone by sonocavitation for BTEX degradation in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121343. [PMID: 38843727 DOI: 10.1016/j.jenvman.2024.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
This work presents a novel advanced oxidation process (AOP) for degradation of emerging organic pollutants - benzene, toluene, ethylbenzene and xylenes (BTEXs) in water. A comparative study was performed for sonocavitation assisted ozonation under 40-120 kHz and 80-200 kHz dual frequency ultrasounds (DFUS). Based on the obtained results, the combination of 40-120 kHz i.e., low-frequency US (LFDUS) with O3 exhibited excellent oxidation capacity degrading 99.37-99.69% of BTEXs in 40 min, while 86.09-91.76% of BTEX degradation was achieved after 60 min in 80-200 kHz i.e., high-frequency US (HFDUS) combined with O3. The synergistic indexes determined using degradation rate constants were found as 7.86 and 2.9 for LFDUS/O3 and HFDUS/O3 processes, respectively. The higher extend of BTEX degradation in both processes was observed at pH 6.5 and 10. Among the reactive oxygen species (ROSs), hydroxyl radicals (HO•) were found predominant according to scavenging tests, singlet oxygen also importantly contributed in degradation, while O2•- radicals had a minor contribution. Sulfate (SO42-) ions demonstrated higher inhibitory effect compared to chloride (Cl-) and carbonate (CO32-) ions in both processes. Degradation pathways of BTEX was proposed based on the intermediates identified using GC-MS technique.
Collapse
Affiliation(s)
- Kirill Fedorov
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk, Poland
| | - Lingshuai Kong
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk, Poland; Gdansk University of Technology, EcoTech Center, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| |
Collapse
|
3
|
Jadhav SP, Ayare SD, Gogate PR. Intensified degradation of tartrazine dye present in effluent using ultrasound combined with ultraviolet irradiation and oxidants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:431. [PMID: 38580863 DOI: 10.1007/s10661-024-12561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Effluent containing tartrazine can affect the environment and human health significantly prompting the current study into degradation using a sonochemical reactor operated individually and combined with advanced oxidation processes. The optimum conditions for ultrasound treatment were established as dye concentration of 10 ppm, pH of 3, temperature as 35 °C, and power as 90 W. The combination approach of H2O2/UV, H2O2/US, and H2O2/UV/US resulted in higher degradation of 25.44%, 57.4%, and 74.36% respectively. Use of ZnO/UV/US approach increased the degradation significantly to 85.31% whereas maximum degradation as 93.11% was obtained for the US/UV/Fenton combination. COD reduction was found maximum as 83.78% for the US/UV/Fenton combination. The kinetic analysis showed that tartrazine dye degradation follows pseudo first-order kinetics for all the studied processes. Combination of Fenton with UV and US was elucidated as the best approach for degradation of tartrazine.
Collapse
Affiliation(s)
- Sonali P Jadhav
- Department of Chemical Engineering, Gharda Institute of Technology, Lavel, Khed, Maharashtra, 415708, India
| | - Sudesh D Ayare
- Department of Chemical Engineering, Gharda Institute of Technology, Lavel, Khed, Maharashtra, 415708, India
| | - Parag R Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India.
| |
Collapse
|
4
|
Xiao F, Xia Q, Zhang S, Li Q, Chen D, Li H, Yang D, Yang Y. Ultrasound and defect engineering-enhanced nanozyme with high laccase-like activity for oxidation and detection of phenolic compounds and adrenaline. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133126. [PMID: 38056252 DOI: 10.1016/j.jhazmat.2023.133126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Perusing metal-based redox nanozyme offers new opportunity for pollutant removal and biosensor, but ultrasound (US)-driven laccase-like nanozyme remains a significant challenge, especially in combination with defect engineering strategy. Herein, the Cu2Ov@Ce-TCPP was synthesized by doping Ce3+ on the surface of Cu2O nanocube and then coating with the porphyrin sonosensitizer. The Ce-doped porphyrin metal-structure in nanozyme was demonstrated to generate oxygen vacancy defects, which could obviously promote the laccase-like activity of Cu2Ov@Ce-TCPP nanozyme under US. XPS characterization and density functional theory (DFT) theoretical calculation revealed that the ultrasonic stimulation is beneficial to accelerate the electron transfer rate and O2 adsorption to improve catalytic activity, and Cu2Ov@Ce-TCPP nanozyme exhibits low adsorption energy and activation energy due to the presence of oxygen defect site, resulting in high laccase-like activity. The interaction between Ce atom and porphyrin structure also improved the sonocatalytic ability of the nanozyme. Meanwhile, Cu2Ov@Ce-TCPP nanozyme has been used for detecting and degrading a series of phenolic compounds. The detection adrenaline method has a linear range of 3.3-1000 μM and a detection limit as low as 0.96 μM with good reproducibility. The developed US-enhancing and recyclable laccase-like nanozyme system provides a promising strategy for the oxidation and detection of phenolic compounds.
Collapse
Affiliation(s)
- Feijian Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, People's Republic of China
| | - Qinghai Xia
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650500, People's Republic of China
| | - Shengyuan Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, People's Republic of China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, People's Republic of China
| | - Dan Chen
- Peking University, School of Materials Science and Engineering, Beijing 100871, People's Republic of China; Yunnan Institute of Tobacco Quality Inspection & Supervision, Kunming 650106, People's Republic of China
| | - Haiyan Li
- School of Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, People's Republic of China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, People's Republic of China.
| |
Collapse
|
5
|
Preethi, Shanmugavel SP, Kumar G, N YK, M G, J RB. Recent progress in mineralization of emerging contaminants by advanced oxidation process: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122842. [PMID: 37940020 DOI: 10.1016/j.envpol.2023.122842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Emerging contaminants are chemicals generated due to the usage of pesticide, endocrine disrupting compounds, pharmaceuticals, and personal care products and are liberated into the environment in trace quantities. The emerging contaminants eventually become a greater menace to living beings owing to their wide range and inhibitory action. To diminish these emerging contaminants from the environment, an Advanced Oxidation Process was considered as an efficient option. The Advanced Oxidation Process is an efficient method for mineralizing fractional or generous contaminants due to the generation of reactive species. The primary aim of this review paper is to provide a thorough knowledge on different Advanced Oxidation Process methods and to assess their mineralization efficacy of emerging contaminants. This study indicates the need for an integrated process for enhancing the treatment efficiency and overcoming the drawbacks of the individual Advanced Oxidation Process. Further, its application concerning technical and economic aspects is reviewed. Until now, most of the studies have been based on lab or pilot scale and do not represent the actual scenario of the emerging contaminant mineralization. Thus, the scaling up of the process was discussed, and the major challenges in large scale implementation were pointed out.
Collapse
Affiliation(s)
- Preethi
- Department of Physics, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Surya Prakash Shanmugavel
- Department of Solid Waste Management and Health, Greater Chennai Corporation, Tamil Nadu, 600 003, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yogalakshmi K N
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Gunasekaran M
- Department of Physics, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, India.
| |
Collapse
|
6
|
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials 2023; 303:122391. [PMID: 37995457 DOI: 10.1016/j.biomaterials.2023.122391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating the metabolism of tumor growth, metastasis, death and other biological processes. ROS-based nanodynamic therapies (NDTs) are becoming attractive due to non-invasive, low side effects and tumor-specific advantages. NDTs have rapidly developed into numerous branches, such as photodynamic therapy, chemodynamic therapy, sonodynamic therapy and so on. However, the complexity of the tumor microenvironment and the limitations of existing sensitizers have greatly restricted the therapeutic effects of NDTs, which heavily rely on ROS levels. To address the limitations of NDTs, various strategies have been developed to increase ROS yield, which is an urgent aspect for the positive development of NDTs. In this review, the nanodynamic potentiation strategies in terms of unique properties and universalities of NDTs are comprehensively outlined. We mainly summarize the current dilemmas faced by each NDT and the respective solutions. Meanwhile, the NDTs universalities-based potentiation strategies and NDTs-based combined treatments are elaborated. Finally, we conclude with a discussion of the key issues and challenges faced in the development and clinical transformation of NDTs.
Collapse
Affiliation(s)
- Yifan Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Ruizhu Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
7
|
Sun J, Chu R, Khan ZUH. A Theoretical Study on the Degradation Mechanism, Kinetics, and Ecotoxicity of Metronidazole (MNZ) in •OH- and SO 4•--Assisted Advanced Oxidation Processes. TOXICS 2023; 11:796. [PMID: 37755806 PMCID: PMC10535747 DOI: 10.3390/toxics11090796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Metronidazole (MNZ), a typical example of nitroimidazole antibiotics, is widely used in the treatment of infectious diseases caused by anaerobic bacteria. The degradation mechanism and kinetics of MNZ in the presence of HO• and SO4•- were studied using density functional theory (DFT). It was confirmed that both HO• and SO4•- easily added to the carbon atom bonded to the NO2 group in the MNZ molecule as the most feasible reaction channel. This study shows that subsequent reactions of the most important product (M-P) include the O2 addition, hydrogen abstraction and bond breakage mechanisms. The rate constants of HO• and SO4•--initiated MNZ in the aqueous phase were calculated in the temperature range of 278-318 K. The total rate constants of MNZ with HO• and SO4•- were determined to be 8.52 × 109 and 1.69 × 109 M-1s-1 at 298 K, which were consistent with experimental values of (3.54 ± 0.42) × 109 and (2.74 ± 0.13) × 109 M-1s-1, respectively. The toxicity of MNZ and its degradation products to aquatic organisms has been predicted. The results proposed that the toxicity of the initial degradation product (M-P) was higher than that of MNZ. However, further degradation products of MNZ induced by HO• were not harmful to three aquatic organisms (fish, daphnia, and green algae). This study provides a comprehensive theoretical basis for understanding the degradation behavior of MNZ.
Collapse
Affiliation(s)
- Jingyu Sun
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi 435002, China;
| | - Ruijun Chu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi 435002, China;
| | - Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan;
| |
Collapse
|
8
|
Pereira TC, Flores EMM, Abramova AV, Verdini F, Calcio Gaudino E, Bucciol F, Cravotto G. Simultaneous hydrodynamic cavitation and glow plasma discharge for the degradation of metronidazole in drinking water. ULTRASONICS SONOCHEMISTRY 2023; 95:106388. [PMID: 37011519 PMCID: PMC10457580 DOI: 10.1016/j.ultsonch.2023.106388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
In this study, a novel hydrodynamic cavitation unit combined with a glow plasma discharge system (HC-GPD) was proposed for the degradation of pharmaceutical compounds in drinking water. Metronidazole (MNZ), a commonly used broad-spectrum antibiotic, was selected to demonstrate the potential of the proposed system. Cavitation bubbles generated by hydrodynamic cavitation (HC) can provide a pathway for charge conduction during glow plasma discharge (GPD). The synergistic effect between HC and GPD promotes the production of hydroxyl radicals, emission of UV light, and shock waves for MNZ degradation. Sonochemical dosimetry provided information on the enhanced formation of hydroxyl radicals during glow plasma discharge compared to hydrodynamic cavitation alone. Experimental results showed a MNZ degradation of 14% in 15 min for the HC alone (solution initially containing 300 × 10-6 mol L-1 MNZ). In experiments with the HC-GPD system, MNZ degradation of 90% in 15 min was detected. No significant differences were observed in MNZ degradation in acidic and alkaline solutions. MNZ degradation was also studied in the presence of inorganic anions. Experimental results showed that the system is suitable for the treatment of solutions with conductivity up to 1500 × 10-6 S cm-1. The results of sonochemical dosimetry showed the formation of oxidant species of 0.15 × 10-3 mol H2O2 L-1 in the HC system after 15 min. For the HC-GPD system, the concentration of oxidant species after 15 min reached 13 × 10-3 molH2O2L-1. Based on these results, the potential of combining HC and GPD systems for water treatment was demonstrated. The present work provided useful information on the synergistic effect between hydrodynamic cavitation and glow plasma discharge and their application for the degradation of antibiotics in drinking water.
Collapse
Affiliation(s)
| | | | - Anna V Abramova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Federico Verdini
- Department of Drug Science and Technology, Turin University, Turin, Italy
| | | | - Fabio Bucciol
- Department of Drug Science and Technology, Turin University, Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, Turin University, Turin, Italy
| |
Collapse
|
9
|
Lykos C, Kourkouta T, Konstantinou I. Study on the photocatalytic degradation of metronidazole antibiotic in aqueous media with TiO 2 under lab and pilot scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161877. [PMID: 36716886 DOI: 10.1016/j.scitotenv.2023.161877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, the increased consumption of antibiotics, such as metronidazole (MTZ), leads to their introduction in wastewater as well as in the receiving surface waters due to their incomplete removal by conventional wastewater treatment plants. Heterogeneous photocatalysis is a versatile technology that can efficiently degrade such organic contaminants. In the present research, the photocatalytic degradation of MTZ with TiO2 P25 was studied under lab and pilot (CPC reactor) conditions. The antibiotic was efficiently removed at high rates in both cases (100 % and 91 %) following pseudo-first order kinetics with rate constants equal to 0.0452 min-1 (±RSD% = 0.68 % - 2.57 %) and 0.0462 L KJ-1 (±RSD% = 8.94 % - 21.64 %) respectively. Also, by scavenging lab scale experiments, the contribution of the generated reactive species was investigated and hydroxy radicals (HO•) were proposed as the predominant species. By applying high resolution mass spectrometry techniques, the transformation products (TPs) were identified and possible transformation pathways were proposed. The ecotoxicity of the TPs was assessed in silico using the ECOSAR software with the results revealing that most of them were less toxic than the parent compound. Similarly, the mutagenicity, developmental toxicity and bioconcentration factors of the TPs were predicted by utilizing the T.E.S.T. software and in their majority, were found to be less mutagenic and developmentally toxic than MTZ. The ecotoxicity monitoring with the Vibrio fischeri bioassay in both laboratory and pilot scale experiments indicated that through heterogeneous photocatalysis it is possible to reduce the toxicity of wastewater containing MTZ. Finally, the stability and reusability of the photocatalyst was investigated through three consecutive catalytic cycles with the results showing that the performance of TiO2 decreased after each use. For the heterogeneous photocatalysis with TiO2 to be a "real life" applicable technique, further studies focusing on catalyst regeneration and optimization of the catalytic conditions must be conducted.
Collapse
Affiliation(s)
- Christos Lykos
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | | | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina 45110, Greece.
| |
Collapse
|
10
|
Chen Q, Lü F, Zhang H, He P. Where should Fenton go for the degradation of refractory organic contaminants in wastewater? WATER RESEARCH 2023; 229:119479. [PMID: 36521313 DOI: 10.1016/j.watres.2022.119479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Fenton process has become a research hotspot due to the nonselective and efficient degradation of dissolved organic matter (DOM) by ·OH. However, there are still many challenges and bottlenecks for conventional Fenton (CF). This study provides the first comprehensive insight into the mechanisms of DOM degradation by the Fenton process, including the various subcategories of humic substances, emerging trace contaminants, including persistent organic pollutants, endocrine disrupting chemicals, and pharmaceuticals and personal care products, and the interference of humus and low molecular weight organic acids on the removal of trace contaminants. In addition, a statistical comparison of the economics of CF and three types of Fenton-like technologies (Photo-Fenton, Electro-Fenton, and Ultrasonic-Fenton) is conducted based on existing studies, which can be used as a reference for engineering applications. Moreover, a brief overview of the categories and characteristics of heterogeneous Fenton, which have been extensively studied in recent years, and a comparison of their catalysts are presented. In the end, the paper advances a possible future research direction.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, China.
| |
Collapse
|
11
|
Pirsaheb M, Moradi N, Hossini H. Sonochemical processes for antibiotics removal from water and wastewater: A systematic review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Innocenzi V, Zueva SB, Ippolito NM, Ferella F, Prisciandaro M, Vegliò F. A review of the existing and emerging technologies for wastewaters containing tetramethyl ammonium hydroxide (TMAH) and waste management systems in micro-chip microelectronic industries. CHEMOSPHERE 2022; 307:135913. [PMID: 35952791 DOI: 10.1016/j.chemosphere.2022.135913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The present work aims to describe and review the available technologies and the recent advancements in treating industrial wastewater containing tetramethylammonium hydroxide (TMAH). It is a quaternary ammonium salt and widely used in the microelectronics industry; this kind of company produces large quantities of wastewater containing TMAH. The exhausted solutions must be treated appropriately since TMAH is corrosive, toxic to human health, and ecotoxic. Regarding the concentration at discharge, currently there are no European regulations. Still, it has been indicated that the substance has a negative influence on the oxygen balance and cause eutrophication, and fall into the relevant categories. In the first part of the work, the available technologies and the recent advancements for the treatment of TMAH contained in industrial wastewater are reviewed. Separation methods as such adsorption, ion exchange, membrane processes, and destruction technologies classified as advanced oxidation processes and biological processes have been considered. In the second part of the manuscript, industrial patented wastewater treatments have been described. Biological processes are those more used, being more economically feasible, require very long times not always sustainable.
Collapse
Affiliation(s)
- Valentina Innocenzi
- Department of Industrial and Information Engineering and Economics - University of L'Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100, L'Aquila, Italy.
| | - Svetlana B Zueva
- Department of Industrial and Information Engineering and Economics - University of L'Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100, L'Aquila, Italy
| | - Nicolò Maria Ippolito
- Department of Industrial and Information Engineering and Economics - University of L'Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100, L'Aquila, Italy
| | - Francesco Ferella
- Department of Industrial and Information Engineering and Economics - University of L'Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100, L'Aquila, Italy
| | - Marina Prisciandaro
- Department of Industrial and Information Engineering and Economics - University of L'Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100, L'Aquila, Italy
| | - Francesco Vegliò
- Department of Industrial and Information Engineering and Economics - University of L'Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100, L'Aquila, Italy
| |
Collapse
|
13
|
Parsa JB, Alamdar M, Jafari F. Integrated ozone-sono-Fenton for the enhanced degradation of acid orange 7: process optimization and kinetic evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78444-78456. [PMID: 35689772 DOI: 10.1007/s11356-022-21249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The performance of novel hybrid advanced oxidation, ozone-sono-Fenton process in degradation of acid orange 7 (AO7), as a model of azo dyes was modelled and optimized using response surface methodology (RSM) based on central composite design (CCD). Utilizing a bubbling reactor equipped with an ultrasound probe and in the presence of Fenton reagents, a promising hybrid homogeneous AOP, ozone-sono-Fenton, was investigated. According to the experimental results, the variation trend of degradation efficiency (DE%) with pH, reaction time and Fe2+/H2O2 molar ratio was modelled with the reduced quadratic model. Additionally, the suitability of the model was indicated with close to unity regression coefficient [Formula: see text]. Furthermore, the comparative study of degradation efficiency and COD removal for the individual methods including ozonation, sonication and Fenton reagents as well as their hybrid processes reveals that the novel proposed technique, ozone-sono-Fenton process, is able to rapid and complete degradation of acid orange 7 with initial concentration of 300 mg L-1, 100% in only 12 min. The complete degradation was obtained under optimum conditions such as pH = 6, reaction time = 12 min and Fe2+/H2O2 molar ratio = 0.0040. The kinetics evaluation of the acid orange 7 concentration during the processing implied the first-order reaction. Considering the synergetic effect and cost-effectiveness of the hybrid method, the promising ozone-sono-Fenton method could effectively degrade using a wide range of organic contaminants.
Collapse
Affiliation(s)
- Jalal Basiri Parsa
- Applied Chemistry Department, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65178-38683, Iran.
| | - Mahya Alamdar
- Applied Chemistry Department, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Farnaz Jafari
- Applied Chemistry Department, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| |
Collapse
|
14
|
Al-Musawi TJ, Mazari Moghaddam NS, Rahimi SM, Amarzadeh M, Nasseh N. Efficient photocatalytic degradation of metronidazole in wastewater under simulated sunlight using surfactant- and CuS-activated zeolite nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115697. [PMID: 35868191 DOI: 10.1016/j.jenvman.2022.115697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Hexadecyltrimethylammonium-bromide-activated zeolite nanoparticles coated with copper sulfide (ZEO/HDTMA-Br/CuS) was evaluated as a photocatalyst under sunlight for the degradation of metronidazole (MET). The surface and structural characteristics of ZEO/HDTMA-Br/CuS and other materials used in this study were analyzed using field emission-scanning electron microscopy, Fourier transform infrared and ultraviolet-visible diffuse reflectance spectroscopies, X-ray diffraction, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda pore size and volume analyses, and pH of zero charge test. ZEO/HDTMA-Br/CuS exhibited excellent surface and structural catalytic properties. For a comprehensive study of the degradation process, several parameters, such as the pH (3-11), MET concentration (10-30 mg/L), ZEO/HDTMA-Br/CuS dose (0.005-0.1 g/L), reaction time (5-200 min), and H2O2 concentration (50-200 mg/L), were optimized. ZEO/HDTMA-Br/CuS achieved 100% degradation efficiency when 10 mg/L MET was used under the optimum conditions: pH = 7, ZEO/HDTMA-Br/CuS dose = 0.01 g/L, and reaction time = 180 min. The degradation efficiency increased when the concentration of H2O2 was increased from 50 to 150 mg/L and decreased with further increase to 200 mg/L, indicating that the efficiency of MET degradation highly depends on the concentration of H2O2 in an aqueous solution. The degradation kinetics analysis revealed that the degradation is of the pseudo first-order. Thus, ZEO/HDTMA-Br/CuS proved to be an exceptional catalyst for the photodegradation of MET in aqueous media.
Collapse
Affiliation(s)
- Tariq J Al-Musawi
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, 51001 Hillah, Babylon, Iraq
| | | | | | - Mohamadamin Amarzadeh
- Department of Safety Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Negin Nasseh
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
15
|
Zhang X, Pan R, Hou T, Zhang S, Wan X, Li Y, Liu S, Liu J, Zhang J. Doping transition metal in PdSeO3 atomic layers by aqueous cation exchange: A new doping protocol for a new 2D photocatalyst. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Unveiling a MnxCo1−xSe Fenton-like catalyst for organic pollutant degradation: A key role of ternary redox cycle and Se vacancy. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Jiang Y, Ran J, Mao K, Yang X, Zhong L, Yang C, Feng X, Zhang H. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113464. [PMID: 35395600 DOI: 10.1016/j.ecoenv.2022.113464] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The frequent use of antibiotics allows them to enter aqueous environments via wastewater, and many types of antibiotics accumulate in the environment due to difficult degradation, causing a threat to environmental health. It is crucial to adopt effective technical means to remove antibiotics in aqueous environments. The Fenton reaction, as an effective organic pollution treatment technology, is particularly suitable for the treatment of antibiotics, and at present, it is one of the most promising advanced oxidation technologies. Specifically, rapid Fenton oxidation, which features high removal efficiency, thorough reactions, negligible secondary pollution, etc., has led to many studies on using the Fenton reaction to degrade antibiotics. This paper summarizes recent progress on the removal of antibiotics in aqueous environments by Fenton and Fenton-like reactions. First, the applications of various Fenton and Fenton-like oxidation technologies to the removal of antibiotics are summarized; then, the advantages and disadvantages of these technologies are further summarized. Compared with Fenton oxidation, Fenton-like oxidations exhibit milder reaction conditions, wider application ranges, great reduction in economic costs, and great improved cycle times, in addition to simple and easy recycling of the catalyst. Finally, based on the above analysis, we discuss the potential for the removal of antibiotics under different application scenarios. This review will enable the selection of a suitable Fenton system to treat antibiotics according to practical conditions and will also aid the development of more advanced Fenton technologies for removing antibiotics and other organic pollutants.
Collapse
Affiliation(s)
- Yu Jiang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiabing Ran
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Li Zhong
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, China
| | - Changying Yang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
18
|
Omri A, Benzina M. Sono-activation of persulfate by Fe-expanded perlite catalyst for oxidative degradation of Orange G: synergy study, influence of parameters and phytotoxicity tests. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04673-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Yao J, Tang Y, Zhang Y, Ruan M, Wu W, Sun J. New theoretical investigation of mechanism, kinetics, and toxicity in the degradation of dimetridazole and ornidazole by hydroxyl radicals in aqueous phase. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126930. [PMID: 34449347 DOI: 10.1016/j.jhazmat.2021.126930] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Dimetridazole (DMZ) and ornidazole (ONZ) have been widely used to treat anaerobic and protozoal infections. The residues of DMZ/ONZ persist in the water environment. The mechanisms and kinetics of hydroxyl-initiated oxidation, the primary DMZ/ONZ degradation method, were evaluated by quantum chemical methods.·OH-induced degradation of DMZ and ONZ shared many mechanistic and kinetic characteristics. The most feasible degradation pathway involved forming OH-imidazole adducts and NO2. The OH-imidazole adducts were subsequently degraded into double·OH imidazole intermediates. The rate coefficients for·OH degradation of DMZ and ONZ were 4.32 × 109 M-1 s-1 and 4.42 × 109 M-1 s-1 at 298 K, respectively. The lifetimes of DMZ and ONZ treated with·OH at concentrations of 10-9-10-18 mol L-1 at 298 K were τDMZ = 0.231-2.31 × 108 s and τONZ = 0.226-2.26 × 108 s, respectively. Toxicity assessment showed that the first degradation products of DMZ and ONZ exhibited enhanced aquatic toxicity, whereas most of the secondary degradation products were not harmful to aquatic organisms. Some of transformation products were still developmental toxicant or mutagenicity positive.
Collapse
Affiliation(s)
- Junfang Yao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei 435002, PR China
| | - Yizhen Tang
- School of Environmental and municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, PR China
| | - Yunju Zhang
- Key Laboratory of Photoinduced Functional Materials, Mianyang Normal University, Mianyang, Sichuan 621000, PR China
| | - Min Ruan
- Institute of Materials Science and Engineering, Hubei Polytechnic University, Huangshi, Hubei 435002, PR China
| | - Wenzhong Wu
- College of Foreign Languages, Hubei Normal University, Cihu Road 11, Huangshi, Hubei 435002, PR China
| | - Jingyu Sun
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei 435002, PR China.
| |
Collapse
|
20
|
Malakootian M, Aghasi M, Fatehizadeh A, Ahmadian M. Synergetic metronidazole removal from aqueous solutions using combination of electro-persulfate process with magnetic Fe 3O 4@AC nanocomposites: nonlinear fitting of isotherms and kinetic models. Z PHYS CHEM 2021; 235:1297-1321. [DOI: 10.1515/zpch-2020-1702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Abstract
The removal of metronidazole (MNZ) from aqueous solutions by the electro-persulfate (EC–PS) process was performed in combination with magnetic Fe3O4@activated carbon (AC) nanocomposite. In the first step, the Fe3O4@AC nanocomposites were synthesized and characterized using energy-dispersive X-ray spectroscopy (XRD), vibrating-sample magnetometer (VSM) and field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), mapping, and Fourier-transform infrared spectroscopy (FTIR) analysis. The effect of Fe3O4@AC, PS and EC processes were studied separately and in combination and finally, the appropriate process for MNZ removal was selected. The effect of key parameters on the EC–Fe3O4@AC–PS process including pH, Fe3O4@AC dosage, initial MNZ concentration, and PS concentration were investigated. Based on the results obtained, the Fe3O4@AC had a good structure. The MNZ removal in EC, PS, Fe3O4@AC, EC–Fe3O4@AC, EC–PS, EC–Fe3O4@AC–NaCl, EC–Fe3O4@AC–PS, and EC–Fe3O4@AC–PS–NaCl processes were 0, 0, 59.68, 62, 68.94, 67.71, 87.23 and 88%, respectively. Due to the low effect of NaCl insertion on the EC–Fe3O4@AC–PS process, it was not added into the reactor and optimum conditions for the EC–Fe3O4@AC–PS process were determined. Under ideal conditions, including MNZ = 40 mg/L, Fe3O4@AC dose = 1 g/L, pH = 3, PS concentration = 1.68 mM, current density (CD) = 0.6 mA/cm2 and time = 80 min, the MNZ removal was 92%. Kinetic study showed that the pseudo-second-order model was compatible with the obtained results. In the isotherm studies, the Langmuir model was the most consistent for the data of the present study, and the Q
max for Fe3O4@AC dose from 0.25 to 1 g/L was 332 to 125 mg/g, respectively.
Collapse
Affiliation(s)
- Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences , Kerman , Iran
- Department of Environmental Health , School of Public Health, Kerman University of Medical Sciences , Kerman , Iran
| | - Majid Aghasi
- Department of Environmental Health , School of Public Health, Kerman University of Medical Sciences , Kerman , Iran
| | - Ali Fatehizadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences , Isfahan , Iran
- Department of Environmental Health Engineering , School of Health, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Mohammad Ahmadian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences , Kerman , Iran
- Department of Environmental Health , School of Public Health, Kerman University of Medical Sciences , Kerman , Iran
| |
Collapse
|
21
|
Reggiane de Carvalho Costa L, Guerra Pacheco Nunes K, Amaral Féris L. Ultrasound as an Advanced Oxidative Process: A Review on Treating Pharmaceutical Compounds. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Letícia Reggiane de Carvalho Costa
- Federal University of Rio Grande do Sul Department of Chemical Engineering Ramiro Barcelos Street, 2777 90035-007 Porto Alegre RS Brazil
| | - Keila Guerra Pacheco Nunes
- Federal University of Rio Grande do Sul Department of Chemical Engineering Ramiro Barcelos Street, 2777 90035-007 Porto Alegre RS Brazil
| | - Liliana Amaral Féris
- Federal University of Rio Grande do Sul Department of Chemical Engineering Ramiro Barcelos Street, 2777 90035-007 Porto Alegre RS Brazil
| |
Collapse
|
22
|
Xu H, Ye Q, Zhang J, Li Q, Wang M, Zhou P, Zhou G, Wang Q. Oxygen functionalized g-C 3N 4 strengthen Fe(III)/H 2O 2 system by accelerating Fe(III)/Fe(II) cycles under natural solar light: A mutual-promoting configuration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146280. [PMID: 34030394 DOI: 10.1016/j.scitotenv.2021.146280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/14/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
In response to the inherent restriction of low Fe(II) regeneration in the Fenton process, this study demonstrated a mutual-promoting configuration, where oxygen functionalized g-C3N4 (OCN) was applied in Fe(III)/H2O2 system to utilize mild natural solar light (SL) for persistent Fe(II) generation. The constructed OCN/Fe(III)/H2O2/SL system exhibited strong adaptability to various pollutants, and it well outperformed the g-C3N4 (GCN) modified system and the traditional Fenton system in pollutants degradation efficiency. Compared with GCN, OCN could significantly promote the Fe(II) generation under solar light (SL), leading to more efficient H2O2 activation. The characterization analyses revealed the larger surface area and enhanced charge separation of OCN, which were considered to take main responsibility for its enhanced photoactivity. The complexation of Fe(III) with the carboxyl groups of OCN also benefited the Fe(II) generation. ·OH was detected as the dominant radical responsible for metronidazole (MNZ) degradation, and its production in the OCN modified system was about twice that in the GCN modified system and the Fenton system. Moreover, the precipitation of FeOx on the OCN surface benefited the charge separation of the OCN, so that the improved OCN enabled a slight enhancement of MNZ degradation in the reuse experiments. The intermediates of MNZ degradation were analyzed based on the results of LC-MS, which provided insight into MNZ degradation pathways. This work highlighted the concept of self-improving photocatalyst, the ingenious combination of photocatalysis and Fenton-like system formed a mutual-promoting situation where the OCN and the Fenton-like system could both be improved, which endowed the configuration great potential for green and economical oxidation in environmental remediation.
Collapse
Affiliation(s)
- Hao Xu
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Qian Ye
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Jing Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Qiansong Li
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Meijing Wang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Peng Zhou
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Guanyu Zhou
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Qingguo Wang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
23
|
Liu P, Wu Z, Abramova AV, Cravotto G. Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. ULTRASONICS SONOCHEMISTRY 2021; 74:105566. [PMID: 33975189 PMCID: PMC8122362 DOI: 10.1016/j.ultsonch.2021.105566] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 05/15/2023]
Abstract
Antibiotic residues in water are general health and environmental risks due to the antibiotic-resistance phenomenon. Sonication has been included among the advanced oxidation processes (AOPs) used to remove recalcitrant contaminants in aquatic environments. Sonochemical processes have shown substantial advantages, including cleanliness, safety, energy savings and either negligible or no secondary pollution. This review provides a wide overview of the different protocols and degradation mechanisms for antibiotics that either use sonication alone or in hybrid processes, such as sonication with catalysts, Fenton and Fenton-like processes, photolysis, ozonation, etc.
Collapse
Affiliation(s)
- Pengyun Liu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy
| | - Zhilin Wu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy
| | - Anna V Abramova
- Federal State Budgetary Institution of Science N.S. Kurnakov Institute of General Inorganic Chemistry of the Russian Academy of Sciences, GSP-1, V-71, Leninsky Prospekt 31, 119991 Moscow, Russia
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, Turin 10125, Italy; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, 8 Trubetskaya ul, Moscow, Russia.
| |
Collapse
|
24
|
Jana D, Wang D, Bindra AK, Guo Y, Liu J, Zhao Y. Ultrasmall Alloy Nanozyme for Ultrasound- and Near-Infrared Light-Promoted Tumor Ablation. ACS NANO 2021; 15:7774-7782. [PMID: 33844517 DOI: 10.1021/acsnano.1c01830] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The therapeutic effect of chemodynamic therapy (CDT) is significantly restricted by the stern reaction conditions and slow reaction rate of the Fenton reaction (pH 3-4). Herein, we report an ultrasmall trimetallic (Pd, Cu, and Fe) alloy nanozyme (PCF-a NEs) possessing dynamic active-site synergism, thus exhibiting a cascade glutathione peroxidase and peroxidase (POD) mimicking activities in circumneutral pH. PCF-a NEs exhibit photothermally augmented POD property and high photothermal conversion efficiency (62%) for synergistic tumor cell apoptosis. In addition, ultrasound can also enhance the mass transfer at active catalytic sites of PCF-a NEs, in turn accelerating Fenton-like reaction for tumor-specific CDT. This work provides a strategy for engineering alloy nanozymes in a bioinspired way for the amplification of intratumor reactive oxygen species in response to external stimuli, demonstrating enhanced efficiency for the inhibition of tumor growth in vitro and in vivo.
Collapse
Affiliation(s)
- Deblin Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yi Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiawei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
25
|
Forouzesh M, Ebadi A, Abedini F. Thermocatalytic persulfate activation for metronidazole removal in the continuous operation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Xu J, Yun X, Li M, Tian Y, Lei X, Zhang F. Iron-containing palygorskite clay as Fenton reagent for the catalytic degradation of phenol in water. RSC Adv 2021; 11:29537-29542. [PMID: 35479539 PMCID: PMC9040631 DOI: 10.1039/d1ra05416c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Mechanism diagram of palygorskite clay degradation of phenol-containing wastewater.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuehai Yun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ye Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
27
|
Cao H, Zhang W, Wang C, Liang Y. Sonochemical degradation of poly- and perfluoroalkyl substances - A review. ULTRASONICS SONOCHEMISTRY 2020; 69:105245. [PMID: 32702636 DOI: 10.1016/j.ultsonch.2020.105245] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 05/27/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) have received considerable attention from environmental scientists and engineers because of their stability and widespread. Sonochemical process has been widely used in the environmental field to remove pollutants due to its advantages in terms of operational simplicity, no secondary pollutant formation and safety. Currently, many studies have reported sonochemical degradation of various PFAS in laboratory settings and showed excellent removal potential. This article reviewed the effects of different power densities, ultrasonic frequencies, temperatures, atmosphere conditions, additives, and initial concentration and chemical properties of PFAS on the sonochemical degradation of PFAS. Sonochemical methods combined with conventional techniques for PFAS removal were elaborated as well. Additionally, this article discussed the challenges and prospects of using sonochemical approaches for PFAS remediation.
Collapse
Affiliation(s)
- Huimin Cao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY 12222, USA
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY 12222, USA
| | - Cuiping Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY 12222, USA.
| |
Collapse
|
28
|
Li M, Ma F, Li R, Ren G, Yan D, Zhang H, Zhu X, Wu R, Wu J. Degradation of Tremella fuciformis polysaccharide by a combined ultrasound and hydrogen peroxide treatment: Process parameters, structural characteristics, and antioxidant activities. Int J Biol Macromol 2020; 160:979-990. [DOI: 10.1016/j.ijbiomac.2020.05.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022]
|
29
|
Moteshaker PM, Rokni SE, Farnoodian N, Mohassel Akhlaghi N, Saadi S, Ahmadidoust G, Yousefi A. Application of response surface methodology for optimization of electrochemical process in metronidazole (MNZ) removal from aqueous solutions using stainless steel 316 (SS316) and lead (Pb) anodes. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2020-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPharmaceutical compounds in drinking water sources, in addition to threatening environmental health, increase bacterial resistance in aquatic environments. The purpose of this study was to investigate the application of response surface methodology for the optimization of the electrochemical process in the removal of metronidazole (MNZ) aqueous solutions using stainless steel 316 (SS316) and Lead (Pb) anodes. In this experimental study, the effect of different parameters including pH (4–10), electrolysis time (40–120 min), MNZ antibiotic concentration (30–150 mg/L), and current density (2–10 mA/cm2) on Antibiotic removal efficiency was evaluated by a central composite design method using Design-Expert software. Data were analyzed using ANOVA and p-Value tests. Hence, central composite design (CCD) established a reduced quadratic polynomial model with P-value < 0.0001 and R2 = 0.98. The optimal values for the solution pH initial, electrolysis time, current density, and MNZ antibiotic concentration were 5.5, 100.0 min, 8.0 mA/cm2, and 50 mg/L, respectively. By employing the optimum conditions obtained, the maximum experimental removal efficiencies by SS316 and Pb anodes were 67.85 and 78.66%, respectively. The Chemical Oxygen Demand/total organic carbon (COD/TOC) ratio was decreased from 1.67 at the inlet to 1.53 at the outlet for SS316 and from 1.7 to 1.42 for Pb. Moreover, average oxidation state (AOS) was increased from 1.45 to 1.7 for SS316 and from 1.45 to 1.86 for Pb, which indicates the biodegradability of MNZ antibiotics by the electrochemical process. The electrochemical degradation process was identified as an effective method for the removal of MNZ from aquatic solutions, and it has an outstanding potential in removing other refractory pollutants from the environment.
Collapse
Affiliation(s)
| | - Seyed Ehsan Rokni
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Narges Farnoodian
- Department of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Sommayeh Saadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghobad Ahmadidoust
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arman Yousefi
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University Bonab, Bonab, Iran
| |
Collapse
|
30
|
Pakzad K, Alinezhad H, Nasrollahzadeh M. Euphorbia polygonifolia
extract assisted biosynthesis of Fe
3
O
4
@CuO nanoparticles: Applications in the removal of metronidazole, ciprofloxacin and cephalexin antibiotics from aqueous solutions under UV irradiation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5910] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Khatereh Pakzad
- Faculty of Chemistry University of Mazandaran Babolsar 47416‐13534 Iran
| | | | | |
Collapse
|
31
|
Xu L, Zhang X, Han J, Gong H, Meng L, Mei X, Sun Y, Qi L, Gan L. Degradation of emerging contaminants by sono-Fenton process with in situ generated H 2O 2 and the improvement by P25-mediated visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122229. [PMID: 32044626 DOI: 10.1016/j.jhazmat.2020.122229] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Developing advanced treatment methods to minimize the release of emerging contaminants to natural water has become a matter of considerable interest. Sono-Fenton process was investigated to degrade bisphenol A (BPA) and sulfadiazine (SDZ). The H2O2 generated in situ was used as the exclusive source. Results showed that, the 400 kHz ultrasound is more efficient in creating homogeneous sono-Fenton than the 20 kHz apparatus due to the higher production of OH. Influence of Fe2+ was more remarkable on the degradation of hydrophilic SDZ, and its degradation kinetics was well fitted by two-stage kinetic model. However, the Fe2+ and H2O2 were unproductively wasted, which could not be improved by changing the dosing modes of Fe2+. The presence of P25 under visible light irradiation could significantly accelerate SDZ degradation at small amount of iron precursors, mainly via promoting the Fe2+/Fe3+ cycling by the photoelectrons. Moreover, SDZ degradation in sono-Fenton process was significantly inhibited at pH > 7, but the inhibition was very weak in P25-assisted sono-Fenton process. The presence of P25 also improved the mineralization. Three primary degradation pathways of SDZ degradation were proposed, including the attacking of the benzene ring, the oxidation of the amino group and the extrusion of SO2.
Collapse
Affiliation(s)
- Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Xiaomeng Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China.
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Liang Meng
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiang Mei
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Yang Sun
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Lanyue Qi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Saadi S, Moteshaker PM, Rokni SE, Ahmadidoust G, Farnoodian N, Yousefi A. The electrochemical degradation of the metronidazole (MNZ) antibiotic using electrochemical oxidation on a stainless steel316 coated with beta lead oxide (SS316/β-PbO2) anode. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2019-0226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractMetronidazole (MNZ) is one of the pharmaceutical products which is considered as one of the most important pollutants in the environment due to its wide use and resistance to biodegradation. Hence, the purpose of this study is the optimization of the electrochemical degradation of the metronidazole (MNZ) antibiotic using electrochemical oxidation on a stainless steel316 coated with beta lead oxide (SS316/β-PbO2) anode. In the studied electrochemical process, the response surface methodology (RSM) involving a five-level ((pH (A) and electrolysis time (B), current density (C), and MNZ concentration (D)). The central composite design (CCD) was employed for optimizing and modeling of the electrochemical process in the degradation of MNZ. The preparation of SS316/β-PbO2 anode was accomplished using the electro-deposition method. Scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) analyses were conducted for accurate evaluation and characterization of the coated electrode. The effect of influencing factors on electrochemical degradation of MNZ was studied, and the highest MNZ degradation efficiency was observed to be 98.88% after 120 min under the optimal conditions including the supporting electrolyte concentration of 1.0 g/100 cc, the initial MNZ concentration of 30.1 mg/L, pH of 4 and the current density of 9.99 mA/cm2. The linear regression coefficient (R2) between experiments and different response values in the model was 0.99. Moreover, the statistical analysis of the results indicated that in the range studied, the most effective parameters in MNZ degradation are MNZ concentration and pH. In general, it can be concluded that the electrochemical process using SS316/β-PbO2 anode can effectively eliminate metronidazole, and it can be considered as an efficient method in the degradation of various pollutants.
Collapse
Affiliation(s)
- Sommayeh Saadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parisa Mahmoudpoor Moteshaker
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Seyed Ehsan Rokni
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Ghobad Ahmadidoust
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Narges Farnoodian
- Department of Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Arman Yousefi
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University Bonab, Bonab, Islamic Republic of Iran
| |
Collapse
|
33
|
Lee WJ, Goh PS, Lau WJ, Ismail AF. Removal of Pharmaceutical Contaminants from Aqueous Medium: A State-of-the-Art Review Based on Paracetamol. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04446-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Ighalo JO, Igwegbe CA, Adeniyi AG, Adeyanju CA, Ogunniyi S. Mitigation of Metronidazole (Flagyl) pollution in aqueous media by adsorption: a review. ENVIRONMENTAL TECHNOLOGY REVIEWS 2020; 9:137-148. [DOI: 10.1080/21622515.2020.1849409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Joshua O. Ighalo
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | | | | | | | - Samuel Ogunniyi
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
35
|
Tran ML, Nguyen CH, Fu CC, Juang RS. Hybridizing Ag-Doped ZnO nanoparticles with graphite as potential photocatalysts for enhanced removal of metronidazole antibiotic from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109611. [PMID: 31586748 DOI: 10.1016/j.jenvman.2019.109611] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/13/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
In this study, the ZnO nanoparticles were doped with Ag and then hybridized on graphite (GP) layer (Ag-ZnO/GP) by a hydrothermal method, which was used as photocatalysts to remove metronidazole (MNZ) antibiotic from aqueous solutions. The fine structure, morphologies, and optical properties of the synthesized composites were first examined. The incorporation of Ag would readily reduce the rate of the recombination of electron-hole pairs and enhance the photocatalytic activity in a wide range of light wavelength. The graphite surface also acted as an electron sink to efficiently inhibit the photocorrosion of ZnO, thereby improving the photostability of the composites. The composition of the composite was optimized to be 0.5 wt% GP/ZnO and 1.0 wt% Ag/ZnO according to the extent of the enhancement of photocatalytic activity. In a solution containing 30 mg L-1 of MNZ and 0.5 g L-1 of Ag-ZnO/GP composite, it was shown that 88.5% and 97.3% of MNZ was removed after 60 min of 100-W UV and 180-min solar irradiation, respectively. Moreover, six over a total of eleven transformation products formed during UV photocatalysis were ascribed to the roles of reactive holes (h+), all which were detected and identified by high-resolution liquid chromatography-mass spectrometry (LC-MS). Finally, the pathways of MNZ degradation over Ag-ZnO/GP composite were proposed.
Collapse
Affiliation(s)
- Mai Lien Tran
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Chi Hieu Nguyen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Chun-Chieh Fu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Ruey-Shin Juang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan.
| |
Collapse
|
36
|
|
37
|
Yabalak E, Külekçi B, Gizir AM. Application of ultrasound-assisted and subcritical water oxidation methods in the mineralisation of Procion Crimson H-EXL using response surface methodology and artificial neural network. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1412-1422. [PMID: 31378134 DOI: 10.1080/10934529.2019.1647749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Eco-friendly methods, the ultrasound-assisted oxidation (UAO) and the subcritical water oxidation (SWO) methods, were applied to mineralise the widely used commercial reactive azo dye, Procion Crimson H-EXL in the presence of H2O2. 72.20% and 72.86% of total organic carbon removal were achieved in the UAO and SWO methods, respectively. The Box-Behnken design (BBD) was applied to design the experimental processes and optimise both methods. ANOVA and validation tests were performed to assess the employed models. F and P values were obtained as 36.72 and <0.0001 in the UAO method, respectively, and 605.97 and <0.0001 in the SWO method, respectively. The artificial neural network (ANN) was applied in both the UAO and the SWO methods. The predictive performance of the BBD and ANN models were evaluated and compared to each other over R2, root mean square error and absolute average deviation values.
Collapse
Affiliation(s)
- Erdal Yabalak
- Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, Turkey
| | - Büşra Külekçi
- Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, Turkey
| | - A Murat Gizir
- Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, Turkey
| |
Collapse
|
38
|
Javaid R, Qazi UY. Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2066. [PMID: 31212717 PMCID: PMC6603921 DOI: 10.3390/ijerph16112066] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023]
Abstract
Dyes are used in various industries as coloring agents. The discharge of dyes, specifically synthetic dyes, in wastewater represents a serious environmental problem and causes public health concerns. The implementation of regulations for wastewater discharge has forced research towards either the development of new processes or the improvement of available techniques to attain efficient degradation of dyes. Catalytic oxidation is one of the advanced oxidation processes (AOPs), based on the active radicals produced during the reaction in the presence of a catalyst. This paper reviews the problems of dyes and hydroxyl radical-based oxidation processes, including Fenton's process, non-iron metal catalysts, and the application of thin metal catalyst-coated tubular reactors in detail. In addition, the sulfate radical-based catalytic oxidation technique has also been described. This study also includes the effects of various operating parameters such as pH, temperature, the concentration of the oxidant, the initial concentration of dyes, and reaction time on the catalytic decomposition of dyes. Moreover, this paper analyzes the recent studies on catalytic oxidation processes. From the present study, it can be concluded that catalytic oxidation processes are very active and environmentally friendly methods for dye removal.
Collapse
Affiliation(s)
- Rahat Javaid
- Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST, 2-2-9 Machiikedai, Koriyama, Fukushima 963-0298, Japan.
| | - Umair Yaqub Qazi
- Chemistry Department, College of Science, University of Hafr Al Batin, P.O Box 1803 Hafr Al Batin 31991, Saudi Arabia.
| |
Collapse
|
39
|
Serna-Galvis EA, Botero-Coy AM, Martínez-Pachón D, Moncayo-Lasso A, Ibáñez M, Hernández F, Torres-Palma RA. Degradation of seventeen contaminants of emerging concern in municipal wastewater effluents by sonochemical advanced oxidation processes. WATER RESEARCH 2019; 154:349-360. [PMID: 30818100 DOI: 10.1016/j.watres.2019.01.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 05/09/2023]
Abstract
The simultaneous degradation of seventeen emerging concern pollutants in effluent from the municipal wastewater treatment plant (MWTP) of Bogotá-Colombia was studied using high frequency ultrasound (375 kHz). The considered compounds in the effluent corresponded to pharmaceuticals (diclofenac, carbamazepine, venlafaxine, ciprofloxacin, norfloxacin, valsartan, losartan, irbesartan, sulfamethoxazole, clarithromycin, azithromycin, erythromycin, metronidazole, trimethoprim and clindamycin); cocaine and its major metabolite benzoylecgonine. Due to limitation of the MWTP for the pollutants elimination, ultrasound was applied to remove these compounds. Interestingly, ultrasonic physical action led to releasing of ciprofloxacin, norfloxacin, diclofenac and sulfamethoxazole from suspended solids, whereas the chemical effects induced degradation of the rest of compounds. For the latter ones, an interesting correlation between the sonodegradation and arithmetic multiplication between hydrophobicity and concentration of pollutants was established. Afterwards, the sonochemical process was complemented with ferrous ions (sono-Fenton), ferrous ions plus light (sono-photo-Fenton) or ferrous ions plus light in presence of oxalic acid (sono-photo-Fenton/oxalic acid). Additionally, to clarify fundamental aspects of the different systems, individual treatments in distilled water of a model pollutant (valsartan) were performed. The complemented processes significantly enhanced all compounds degradation, following the order: sono-photo-Fenton/oxalic acid > sono-photo-Fenton ∼ sono-Fenton > sonochemistry. The Fe2+ addition improved the pollutants elimination by generation of more hydroxyl radicals in the solution bulk. Meanwhile, oxalic acid avoided Fe3+ precipitation favoring the iron catalytic cycle. Thus, the work demonstrates the high potentiality of the sono-photo-Fenton/oxalic acid system for the pollutants elimination in real-world wastewater matrices.
Collapse
Affiliation(s)
- Efraim A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Ana María Botero-Coy
- Research Institute for Pesticides and Water (IUPA), University Jaume I (UJI), Castellón, Spain
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño (UAN), Bogotá D.C., Colombia
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño (UAN), Bogotá D.C., Colombia
| | - María Ibáñez
- Research Institute for Pesticides and Water (IUPA), University Jaume I (UJI), Castellón, Spain
| | - Félix Hernández
- Research Institute for Pesticides and Water (IUPA), University Jaume I (UJI), Castellón, Spain.
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
40
|
Xu L, Yang Y, Li W, Tao Y, Sui Z, Song S, Yang J. Three-dimensional macroporous graphene-wrapped zero-valent copper nanoparticles as efficient micro-electrolysis-promoted Fenton-like catalysts for metronidazole removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:219-233. [PMID: 30577018 DOI: 10.1016/j.scitotenv.2018.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Three-dimensional macroporous graphene-wrapped zero-valent copper nanoparticles (3D-GN@Cu0) were synthesized using a self-assembly process of liquid-phase reduction and characterized by field emission scanning electron microscopy, nitrogen adsorption/desorption isotherms, X-ray diffraction, Raman spectrum analysis, and X-ray photoelectron spectroscopy. The catalytic activity of 3D-GN@Cu0 was evaluated in view of the effects of various systems, the pH value, catalyst dosage, initial metronidazole concentration and temperature, and it showed a high efficiency for removing metronidazole with saturated dissolved oxygen (without adding extra H2O2) in a wide range of pH value from 3.2 to 9.8. Combined with the results of dissolved oxygen activation, determination of reactive oxidizing species, and X-ray photoelectron spectroscopy (XPS) analysis, the surface-bounded ·OHads formed by the reaction of the in situ generation H2O2 with 3D-GN@Cu0 was mainly responsible for the removal of metronidazole. The charge distribution and electrostatic potential (ESP) of 3D-GN@Cu0 further illustrated the distribution and transfer of electrons on the catalyst surface, which predicted a micro-electrolysis-promoted Fenton-like reaction mechanism.
Collapse
Affiliation(s)
- Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Yujia Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Wuyang Li
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Yujie Tao
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Zengguang Sui
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jun Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
41
|
Xia Y, Zhang Q, Li G, Tu X, Zhou Y, Hu X. Biodegradability enhancement of real antibiotic metronidazole wastewater by a modified electrochemical Fenton. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Optimization the Effects of Physicochemical Parameters on the Degradation of Cephalexin in Sono-Fenton Reactor by Using Box-Behnken Response Surface Methodology. Catal Letters 2019. [DOI: 10.1007/s10562-019-02713-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
43
|
Degradation of metronidazole antibiotic in aqueous medium using activated carbon as a persulfate activator. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.066] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Xu L, Li W, Désesquelles P, Van-Oanh NT, Thomas S, Yang J. A Statistical Model and DFT Study of the Fragmentation Mechanisms of Metronidazole by Advanced Oxidation Processes. J Phys Chem A 2019; 123:933-942. [DOI: 10.1021/acs.jpca.8b10554] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
| | - Wuyang Li
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
| | - Pierre Désesquelles
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
- Centre des Sciences Nucléaires et des Sciences de la Matière (CSNSM), Université Paris-Sud and CNRS-IN2P3, Université Paris-Saclay, Bâtiment 104, 15 rue Clemenceau, F91405 Orsay Cédex, France
| | - Nguyen-Thi Van-Oanh
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Université Paris-Sud, Université Paris-Saclay, F91405 Orsay Cédex, France
| | - Sébastien Thomas
- Centre des Sciences Nucléaires et des Sciences de la Matière (CSNSM), Université Paris-Sud and CNRS-IN2P3, Université Paris-Saclay, Bâtiment 104, 15 rue Clemenceau, F91405 Orsay Cédex, France
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Université Paris-Sud, Université Paris-Saclay, F91405 Orsay Cédex, France
| | - Jun Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|
45
|
Dükkancı M. Heterogeneous sonocatalytic degradation of Bisphenol-A and the influence of the reaction parameters and ultrasonic frequency. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:386-397. [PMID: 30865610 DOI: 10.2166/wst.2019.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the present study, the sonocatalytic oxidation of Bisphenol-A (BPA) was investigated in the presence of a LaFeO3 perovskite catalyst. The effects of the reaction temperature, initial pH, catalyst loading, presence of inorganic anions and sonication source (power and frequency) on the removal of BPA using heterogeneous sonocatalytic process were investigated. Under the studied temperature range of 288-318 K, 308 K was selected as the optimum temperature and the highest BPA removal and total oxygen demand (TOC) reduction of, 95.8% and 30.4% were achieved at that temperature. The thermodynamic parameters were calculated in the studied temperature range of 288-308 K. It was seen that an acidic pH of 3.0 was favorable for the BPA oxidation with the highest BPA removal and TOC reduction of 95.4% and 31.5%, respectively. Doubling the catalyst amount from 0.25 g/L to 0.5 g/L increased the BPA removal degree from 81.6% to 90.8%. However, further increase in catalyst amount has no remarkable positive effect on the removal of BPA. The removal of BPA was described by the first order kinetics with an activation energy of 14.9 kJ/mol. The results obtained from this study showed that the LaFeO3 perovskite catalyst was a good sonocatalyst giving high oxidation rates of BPA.
Collapse
Affiliation(s)
- Meral Dükkancı
- Engineering Faculty, Chemical Engineering Department, Ege University, 35100, Bornova, Izmir, Turkey E-mail:
| |
Collapse
|
46
|
Shokoofehpoor F, Chaibakhsh N, Ghanadzadeh Gilani A. Optimization of sono-Fenton degradation of Acid Blue 113 using iron vanadate nanoparticles. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1556299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
| | - Naz Chaibakhsh
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
- The Caspian Sea Basin Research Centre, University of Guilan, Rasht, Iran
| | | |
Collapse
|
47
|
Aboudalle A, Djelal H, Fourcade F, Domergue L, Assadi AA, Lendormi T, Taha S, Amrane A. Metronidazole removal by means of a combined system coupling an electro-Fenton process and a conventional biological treatment: By-products monitoring and performance enhancement. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:85-95. [PMID: 30014918 DOI: 10.1016/j.jhazmat.2018.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
In order to mineralize Metronidazole (MTZ), a process coupling an electro-Fenton pretreatment and a biological degradation was implemented. A mono-compartment batch reactor containing a carbon-felt cathode and a platinum anode was employed to carry out the electro-Fenton pretreatment of MTZ. A total degradation of MTZ (100 mg L-1) was observed at 0.07 mA.cm-2 after only 20 min of electrolysis. Yet, after 1 and 2 h of electrolysis, the mineralization level remained low (16.2% and 32% respectively), guaranteeing a significant residual organic content for further biological treatment. LCMS/MS was used to determine the intermediates by-products and hence to propose a plausible degradation pathway. An increase from 0 to 0.44 and 0.6 for 1 and 2 h of electrolysis was observed for the BOD5/COD ratio. Thus, from 1 h of electro-Fenton pretreatment, the electrolysis by-products were considered biodegradable. A biological treatment of the electrolysis by-products after 1 and 2 h was then realized. The mineralization yields reached very close values, about 84% for 1 and 2 h of electrolysis after 504 h of biological treatment, namely close to 89% for the overall process, showing the pertinence of the proposed coupled process.
Collapse
Affiliation(s)
- Arwa Aboudalle
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France; Laboratoire de Biotechnologies Appliquées, Centre AZM pour la recherche en biotechnologies et ses applications, Ecole doctorale des sciences et technologies, Université Libanaise, Rue Al-Mitein, Tripoli, Lebanon.
| | - Hayet Djelal
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France; Ecole des Métiers de l'Environnement, Campus de Ker Lann, 35170 Bruz, France
| | - Florence Fourcade
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Lionel Domergue
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Aymen Amin Assadi
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Thomas Lendormi
- Université Bretagne Sud, FRE CNRS 3744, IRDL, F-56300 Pontivy, France
| | - Samir Taha
- Laboratoire de Biotechnologies Appliquées, Centre AZM pour la recherche en biotechnologies et ses applications, Ecole doctorale des sciences et technologies, Université Libanaise, Rue Al-Mitein, Tripoli, Lebanon; Faculté de santé publique, Université Libanaise, quartier Dam et Farz, Tripoli, Lebanon
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| |
Collapse
|
48
|
Degradation of macrolide antibiotics via sono or photo coupled with Fenton methods in the presence of ZnS quantum dots decorated SnO2 nanosheets. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:24-31. [DOI: 10.1016/j.jphotobiol.2018.05.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/15/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
|
49
|
Zhou R, Li T, Su Y, Ma T, Zhang L, Ren H. Oxidative removal of metronidazole from aqueous solution by thermally activated persulfate process: kinetics and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:2466-2475. [PMID: 29127632 DOI: 10.1007/s11356-017-0518-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Metronidazole (MNZ) is widely used in clinical applications and animal feed as an antibiotic agent and additive, respectively. Widespread occurrence of MNZ in wastewater treatment and hospital effluents has been reported. In this study, the mechanism of MNZ degradation in aqueous solutions via thermally activated persulfate (TAP) process was established under different conditions. The kinetic model was derived for MNZ degradation and followed pseudo-first-order reaction kinetics and was consistent with the model fitted by experimental data (R 2 > 98.8%). The rate constant increased with the initial dosage of persulfate, as well as the temperature, and the yielding apparent activation energy was 23.9 kcal mol-1. The pH of the solutions did not have significant effect on MNZ degradation. The degradation efficiency of MNZ reached 96.6% within 180 min for an initial MNZ concentration of 100 mg L-1 under the optional condition of [PS]0 = 20 mM, T = 60 °C, and unadjusted pH. [Formula: see text] and HO · were confirmed using electron paramagnetic resonance (EPR) spectra during TAP process. Radical quenching study revealed that [Formula: see text] was mainly responsible for MNZ degradation at an unadjusted pH. MNZ mineralization evaluation showed that the removal efficiency of total organic carbon (TOC) reached more than 97.2%.
Collapse
Affiliation(s)
- Rui Zhou
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Tingting Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Yu Su
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Taigang Ma
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Lijian Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China
| | - Hejun Ren
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, 2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
50
|
Du W, Xu Q, Jin D, Wang X, Shu Y, Kong L, Hu X. Visible-light-induced photo-Fenton process for the facile degradation of metronidazole by Fe/Si codoped TiO2. RSC Adv 2018; 8:40022-40034. [PMID: 35558215 PMCID: PMC9091309 DOI: 10.1039/c8ra08114j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/19/2018] [Indexed: 11/21/2022] Open
Abstract
This work investigated the feasibility and efficiency of a heterogeneous photo-Fenton catalyst, Fe/Si codoped TiO2, for the degradation of metronidazole (MNZ) under visible light irradiation. The Fe/Si codoped TiO2 was prepared via a facile and simple sol–gel solvothermal process followed by annealing at 480 °C for 4 hours. High resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) measurements revealed that the photo-Fenton process did not change the structure, textural and surface morphologies of this catalyst. Elemental mapping results indicated the good dispersion of Fe and Si ions in TiO2. Nitrogen adsorption and desorption measurements indicated that Si doping increased the surface area of the catalysts. The Fe and Si doping narrowed the band gap of TiO2. They also facilitated the transfer of photo-generated electrons from TiO2 to Fe(iii). Under visible light irradiation and the optimum operating conditions, MNZ could be completely degraded in 50 min by this catalyst within a wide pH range. Hydroxyl radicals and holes were verified to be responsible for degrading MNZ. The leaching of iron ions was less than 0.047 ppm even after illuminating the catalyst for 6 hours, indicating the good stability of the Fe/Si codoped TiO2. The as-prepared catalysts with excellent catalytic activity, and remarkable reusability and stability could provide a new insight into the preparation of photocatalysts and have wide applications for antibiotics removal. This work investigated the feasibility and efficiency of a heterogeneous photo-Fenton catalyst, Fe/Si codoped TiO2, for the degradation of metronidazole (MNZ) under visible light irradiation.![]()
Collapse
Affiliation(s)
- Wei Du
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Qin Xu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Dangqin Jin
- Department of Chemical Engineering
- Yangzhou Polytechnic Institute
- Yangzhou 225127
- China
| | - Xiaoyu Wang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Yun Shu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Liming Kong
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Guangling College
| |
Collapse
|