1
|
Agustiningsih D, Kunarti ES, Nuryono N, Santosa SJ, Darussalam Mardjan MI, Kamiya Y, Otomo R. Novel nickel-immobilized-SiO 2-TiO 2 fine particles in the presence of cetyltrimethylammonium bromide as a catalyst for ultrasound-assisted-Kumada cross-coupling reaction. Heliyon 2024; 10:e34614. [PMID: 39130425 PMCID: PMC11315103 DOI: 10.1016/j.heliyon.2024.e34614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/19/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Kumada cross-coupling reaction is useful for producing biphenyls, where nickel and copper have been widely investigated as catalysts but mainly homogeneous ones. In this study, we investigated ultrasound-assisted-Kumada cross-coupling reaction over the heterogeneous catalysts in which Ni2+, Cu2+, or both was immobilized on aminopropylsilane-functionalized-SiO2-TiO2 prepared in the presence of cetyltrimethylammonium bromide (CTAB). The presence of CTAB effectively prevented the particle growth and therefore SiO2-TiO2 fine particles with high surface area (502 m2 g-1) were formed. The Ni2+-immobilized catalyst showed high catalytic activity for the ultrasound-assisted-Kumada cross-coupling reaction of a wide variety of substrates and was reusable three times. Performing the reaction under ultrasound irradiation was very effective in significantly accelerating the reaction rate compared with the conventional mechanical method. In contrast to Ni2+, Cu2+ was deposited on the support as crystalline Cu(OH)2 and the resulting catalysts with Cu2+ and Ni2+-Cu2+ were less active and less stable under the reaction conditions.
Collapse
Affiliation(s)
- Dewi Agustiningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
- Graduate School of Environmental Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo, 060–0810, Japan
| | - Eko Sri Kunarti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Nuryono Nuryono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Sri Juari Santosa
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Muhammad Idham Darussalam Mardjan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Yuichi Kamiya
- Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo, 060–0810, Japan
| | - Ryoichi Otomo
- Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo, 060–0810, Japan
| |
Collapse
|
2
|
Wang Z, Zhang L, Su R, Yang L, Xiao F, Chen L, He P, Yang D, Zeng Y, Zhou Y, Wan Y, Tang B. PANI/GO and Sm co-modified Ti/PbO 2 dimensionally stable anode for highly efficient amoxicillin degradation: Performance assessment, impact parameters and degradation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121435. [PMID: 38889646 DOI: 10.1016/j.jenvman.2024.121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The abuse and uncontrolled discharge of antibiotics present a severe threat to environment and human health, necessitating the development of efficient and sustainable treatment technology. In this work, we employ a facile one-step electrodeposition method to prepare polyaniline/graphite oxide (PANI/GO) and samarium (Sm) co-modified Ti/PbO2 (Ti/PbO2-PANI/GO-Sm) electrode for the degradation of amoxicillin (AMX). Compared with traditional Ti/PbO2 electrode, Ti/PbO2-PANI/GO-Sm electrode exhibits more excellent oxygen evolution potential (2.63 V) and longer service life (56 h). In degradation experiment, under optimized conditions (50 mg L-1 AMX, 20 mA cm-2, pH 3, 0.050 M Na2SO4, 25 °C), Ti/PbO2-PANI/GO-Sm electrode achieves remarkable removal efficiencies of 88.76% for AMX and 79.92% for chemical oxygen demand at 90 min. In addition, trapping experiment confirms that ·OH plays a major role in the degradation process. Based on theoretical calculation and liquid chromatography-mass spectrometer results, the heterocyclic portion of AMX molecule is more susceptible to ·OH attacks. Thus, this novel electrode offers a sustainable and efficient solution to address environmental challenges posed by antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Zeyi Wang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Luyao Zhang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Rong Su
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; School of Science, Xichang University, Xichang, 615000, PR China
| | - Lu Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Feng Xiao
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lichuan Chen
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ping He
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Dingming Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Yali Zeng
- Sichuan Mianyang 404 Hospital, Mianyang, 621000, PR China
| | - Yun Zhou
- Sichuan Mianyang 404 Hospital, Mianyang, 621000, PR China.
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China
| | - Bin Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
3
|
Hegde S, Nizam A, Vijayan A, Dateer RB, Krishna SBN. Palladium immobilized on guanidine functionalized magnetic nanoparticles: a highly effective and recoverable catalyst for ultrasound aided Suzuki–Miyaura cross-coupling reactions. NEW J CHEM 2023; 47:18856-18864. [DOI: 10.1039/d3nj03444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The Fe3O4@SiO2-TCT-Gua-Pd catalyst anchored with guanidine moiety on Fe3O4 nanoparticles was synthesised for Suzuki–Miyaura cross coupling reaction.
Collapse
Affiliation(s)
- Sumanth Hegde
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore-560029, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore-560029, India
| | - Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore-560029, India
| | - Ramesh B. Dateer
- Centre for Nano and Material Sciences, Jain University, Bangalore, Karnataka 562112, India
| | - Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban-4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban-4000, South Africa
| |
Collapse
|
4
|
Romdhane RB, Atoui D, Ktata N, Dali S, Moussaoui Y, Salem RB. Pd‐supported on Locust bean gum as reusable green catalyst for Heck, Sonogashira coupling reactions and 4‐nitroaniline reduction under ultrasound irradiation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rabeb Ben Romdhane
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
| | - Dhieb Atoui
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
| | - Nahed Ktata
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
| | - Souad Dali
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
- Higher Institute of Applied Sciences and Technology of Gabes University of Gabes Tunisia
| | - Younes Moussaoui
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
- Faculty of Sciences of Gafsa University of Gafsa Tunisia
| | - Ridha Ben Salem
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax University of Sfax Tunisia
| |
Collapse
|
5
|
Aalinejad M, Pesyan Noroozi N, Alamgholiloo H. Stabilization of Pd–Ni alloy nanoparticles on Kryptofix 23 modified SBA-15 for catalytic enhancement. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
|
7
|
Hornink MM, Nascimento VR, Couto JL, Santos CS, Andrade LH. Ultrasound-mediated radical cascade reactions: Fast synthesis of functionalized indolines from 2-(((N-aryl)amino)methyl)acrylates. ULTRASONICS SONOCHEMISTRY 2021; 79:105778. [PMID: 34649162 PMCID: PMC8517378 DOI: 10.1016/j.ultsonch.2021.105778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Novel functionalized indolines were synthesized from 2-(((N-aryl)amino)methyl)acrylates and formamides under ultrasonic irradiation for the first time. Aiming to develop a straightforward and easy-to-implement methodology for the synthesis of indolines, an instrumentation setup was designed, including ultrasound (US) equipment (Ultrasonic Horn; tip diameter of 12.7 mm, 20 kHz, maximum power of 400 W), an open reaction flask, and an inexpensive and green catalyst (1 mol%; FeSO4·7H2O; CAS: 7782-63-0) without the need for anhydrous conditions. The use of the sono-Fenton process in the presence of formamides and 2-(((N-aryl)amino)methyl)acrylates afforded a broad range of functionalized indolines within 60 s in high yields. Several experimental parameters of the ultrasound-assisted reaction were evaluated, such as amplitude (40-80%), sonication time (15-60 s), and pulsed ultrasonic irradiation. A 60 s silent reaction did not produce the desired indoline. The optimized conditions for US-mediated reactions allowed the production of functionalized indolines in high isolated yields (up to 99%, 60 s reaction, pulse ration 1 s:1 s, US amplitude 60 %).
Collapse
Affiliation(s)
- Milene M Hornink
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP, Brazil
| | - Vinicius R Nascimento
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP, Brazil
| | - Julia L Couto
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP, Brazil
| | - Caroline S Santos
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP, Brazil
| | - Leandro H Andrade
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Degradation of amoxicillin from water by ultrasound-zero-valent iron activated sodium persulfate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
9
|
Andrade MA, Martins LMDRS. New Trends in C-C Cross-Coupling Reactions: The Use of Unconventional Conditions. Molecules 2020; 25:E5506. [PMID: 33255429 PMCID: PMC7727871 DOI: 10.3390/molecules25235506] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/24/2022] Open
Abstract
The ever-growing interest in the cross-coupling reaction and its applications has increased exponentially in the last decade, owing to its efficiency and effectiveness. Transition metal-mediated cross-couplings reactions, such as Suzuki-Miyaura, Sonogashira, Heck, and others, are powerful tools for carbon-carbon bond formations and have become truly fundamental routes in catalysis, among other fields. Various greener strategies have emerged in recent years, given the widespread popularity of these important reactions. The present review comprises literature from 2015 onward covering the implementation of unconventional methodologies in carbon-carbon (C-C) cross-coupling reactions that embodies a variety of strategies, from the use of alternative energy sources to solvent- free and green media protocols.
Collapse
Affiliation(s)
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| |
Collapse
|
10
|
de Souza GBM, Ribeiro TSS, Mourão LC, Pereira MB, Leles MIG, Lião LM, de Oliveira GR, Alonso CG. Nb 2O 5 supported catalysts for cross-coupling reactions. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1786075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Thiago Soares Silva Ribeiro
- Institute of Chemistry, Federal University of Goias (UFG), Av. Esperança s/n, Campus Samambaia, Goiânia, Goias, CEP 74690-900, Brazil
| | - Lucas Clementino Mourão
- Institute of Chemistry, Federal University of Goias (UFG), Av. Esperança s/n, Campus Samambaia, Goiânia, Goias, CEP 74690-900, Brazil
| | - Mariana Bisinotto Pereira
- Institute of Chemistry, Federal University of Goias (UFG), Av. Esperança s/n, Campus Samambaia, Goiânia, Goias, CEP 74690-900, Brazil
| | - Maria Inês Gonçalves Leles
- Institute of Chemistry, Federal University of Goias (UFG), Av. Esperança s/n, Campus Samambaia, Goiânia, Goias, CEP 74690-900, Brazil
| | - Luciano Morais Lião
- Institute of Chemistry, Federal University of Goias (UFG), Av. Esperança s/n, Campus Samambaia, Goiânia, Goias, CEP 74690-900, Brazil
| | - Guilherme Roberto de Oliveira
- Institute of Chemistry, Federal University of Goias (UFG), Av. Esperança s/n, Campus Samambaia, Goiânia, Goias, CEP 74690-900, Brazil
| | - Christian Gonçalves Alonso
- Institute of Chemistry, Federal University of Goias (UFG), Av. Esperança s/n, Campus Samambaia, Goiânia, Goias, CEP 74690-900, Brazil
| |
Collapse
|
11
|
Zettl M, Kreimer M, Aigner I, Mannschott T, van der Wel P, Khinast J, Krumme M. Runtime Maximization of Continuous Precipitation in an Ultrasonic Process Chamber. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel Zettl
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
| | - Manuel Kreimer
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
| | - Isabella Aigner
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
| | | | - Peter van der Wel
- Hosokawa Micron B.V., Gildenstraat 26, 7005 BL Doetinchem, The Netherlands
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
- Institute for Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria
| | | |
Collapse
|
12
|
Ujwaldev SM, Rohit KR, Radhika S, Anilkumar G. Sonochemistry in Transition Metal Catalyzed Cross-coupling Reactions: Recent Developments. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191118103844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
:
Transition metal catalyzed cross-coupling reactions have always been very important
in synthetic organic chemistry due to their versatility in forming all sorts of carbon-carbon
and carbon-hetero atom bonds. Incorporation of ultrasound assistance to these protocols resulted
in milder reaction conditions, faster reaction rates, etc. This review focuses on the contributions
made by ultrasound-assisted protocols towards transition metal catalyzed crosscoupling
reactions.
Collapse
Affiliation(s)
| | - K. R. Rohit
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| |
Collapse
|
13
|
New routes for the synthesis of unsymmetrical diarylselenides: Effect of heat, light and ultrasound. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Kuvayskaya A, Vasiliev A. Functionalization of silica gel by ultrasound-assisted surface Suzuki coupling. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Wu Z, Tagliapietra S, Giraudo A, Martina K, Cravotto G. Harnessing cavitational effects for green process intensification. ULTRASONICS SONOCHEMISTRY 2019; 52:530-546. [PMID: 30600212 DOI: 10.1016/j.ultsonch.2018.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The impressive chemico-physical effects observed in sonochemistry are a result of cavitation, as ultrasonic and hydrodynamic cavitation does not interact with matter at the atomic and molecular levels. Bubble collapse leads to the quasi-adiabatic heating of the vapour inside bubbles, giving rise to local hot spots in the fluid. Cavitation thus transforms a mechanical energy into high kinetic energy, which is released in very short bursts that are exploited for green process intensification. This paper reviews relevant applications of hydrodynamic and acoustic cavitation with the aim of highlighting the particular advantages that these phenomena offer to the intensification of green chemical processes. Emulsification, biodiesel preparation, wastewater decontamination, organic synthesis, enzymatic catalysis and extractions are discussed among others. As a comparison, hydrodynamic cavitation technique is more advantageous in dealing with process intensification at large-scale, as well as the enhancement of mass transfer and heat transfer, while ultrasonic cavitation technique is more convenient to operate, easier to control in the studies at lab-scale, and exhibits more efficient in producing active free radicals and inducing the cleavage of volatile compounds.
Collapse
Affiliation(s)
- Zhilin Wu
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Alessadro Giraudo
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy.
| |
Collapse
|
16
|
Highly recoverable, reusable, cost-effective, and Schiff base functionalized pectin supported Pd(II) catalyst for microwave-accelerated Suzuki cross-coupling reactions. Int J Biol Macromol 2019; 127:232-239. [DOI: 10.1016/j.ijbiomac.2019.01.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 11/20/2022]
|
17
|
Hfidhi N, bkhairia I, Atoui D, Boonmak J, Nasri M, Ben Salem R, Youngme S, Naïli H. Catalytic and biological valorization of a supramolecular mononuclear copper complex based 4-aminopyridine. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nabil Hfidhi
- Laboratoire Physico-chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax; Université de Sfax; B.P. 1171 3000 Sfax Tunisia
| | - Intidhar bkhairia
- Laboratory of Enzyme Engineering and Microbiology; University of Sfax, National School of Engineering of Sfax (ENIS); Tunisia
| | - Dhieb Atoui
- Organic Chemistry Laboratory (LR17/ES08); University of Sfax, Faculty of Sciences of Sfax; Tunisia
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Khon Kaen University; Khon Kaen 40002 Thailand
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology; University of Sfax, National School of Engineering of Sfax (ENIS); Tunisia
| | - Ridha Ben Salem
- Organic Chemistry Laboratory (LR17/ES08); University of Sfax, Faculty of Sciences of Sfax; Tunisia
| | - Sujittra Youngme
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science; Khon Kaen University; Khon Kaen 40002 Thailand
| | - Houcine Naïli
- Laboratoire Physico-chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax; Université de Sfax; B.P. 1171 3000 Sfax Tunisia
| |
Collapse
|
18
|
Su J, Castro TG, Noro J, Fu J, Wang Q, Silva C, Cavaco-Paulo A. The effect of high-energy environments on the structure of laccase-polymerized poly(catechol). ULTRASONICS SONOCHEMISTRY 2018; 48:275-280. [PMID: 30080551 DOI: 10.1016/j.ultsonch.2018.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The laccase polymerization of catechol was performed using different reactors namely a water bath (WB), an ultrasonic bath (US) and a high-pressure homogenizer (HPH). The total content of free OH and the MALDI-TOF spectra of polymers obtained demonstrated that reactions are favored in the presence of high-energy environments. Higher conversion yields and polymerization degrees (DP) were obtained after polymerization using US or HPH. Molecular dynamic simulation studies supported these findings by revealing a more open enzyme active site upon environments with high molecular agitation. The higher mass transport generated by US and HPH is the main feature responsible for a higher substrate accessibility to the enzyme which contributed to produce longer polymers.
Collapse
Affiliation(s)
- Jing Su
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tarsila G Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jennifer Noro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jiajia Fu
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China
| | - Qiang Wang
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- International Joint Research Laboratory for Textile and Fiber Bioprocesses, Jiangnan University, Wuxi 214122, China; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
19
|
Baran T. Ultrasound-accelerated synthesis of biphenyl compounds using novel Pd(0) nanoparticles immobilized on bio-composite. ULTRASONICS SONOCHEMISTRY 2018; 45:231-237. [PMID: 29705317 DOI: 10.1016/j.ultsonch.2018.03.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 05/12/2023]
Abstract
This study describes (i) an eco-friendly approach for design of Pd(0) nanoparticles on a natural composite, which is composed of carboxymethyl cellulose/agar polysaccharides (CMC/AG), without using any toxic reducing agents and (ii) development of ultrasound assisted simple protocol for synthesis of biphenyl compounds. Chemical characterization studies of Pd(0) nanoparticles (Pd NPs@CMC/AG) revealed that size of the particles were in the range of 37-55 nm. Catalytic performance of Pd NPs@CMC/AG was evaluated in synthesis of various biphenyl compounds by using the ultrasound-assisted method that was developed in this study. Pd NPs@CMC/AG exhibited excellent catalytic performance by producing high reaction yields. In addition, Pd NPs@CMC/AG was successfully used up to six reaction cycles without losing its catalytic activity, indicating high reproducibility of Pd NPs@CMC/AG. Additionally, compared to conventional the methods, new ultrasound-assisted synthesis technique that was followed in this study exhibited some advantages such as shorter reaction time, greener reaction conditions, higher yields and easier work-up.
Collapse
Affiliation(s)
- Talat Baran
- Aksaray University, Faculty of Science and Letters, Department of Chemistry, 68100 Aksaray, Turkey.
| |
Collapse
|