1
|
Zeljko M, Ocelić Bulatović V, Špada V, Blagojević SL. Environmentally Friendly UV-Protective Polyacrylate/TiO 2 Nanocoatings. Polymers (Basel) 2021; 13:2609. [PMID: 34451149 PMCID: PMC8400131 DOI: 10.3390/polym13162609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The development of coatings that maintain the attractive natural appearance of wood while providing ultraviolet (UV) protection is extremely important for the widespread use of wood products. In this study, the influence of different types (powder form and aqueous dispersions) of TiO2 in an amount of 1.0 wt% by monomer weight on the properties of environmentally friendly polyacrylate (PA)/TiO2 emulsions prepared by ex situ and in situ polymerization, as well as on the UV-protective properties of the coating films, was investigated. The results showed that the addition of TiO2 significantly affected the particle size distribution of PA and the viscosity of PA varied according to the preparation method. Compared with the ex situ preparation method, in situ polymerization provides better dispersibility of TiO2 nanoparticles in PA coating film, as well as a better UV protection effect and greater transparency of the coating films. Better morphology and transparency of nanocoating films were achieved by adding TiO2 nanofillers in aqueous dispersion as compared to the addition of TiO2 in powder form. An increase in the glass transition temperature during UV exposure associated with cross-linking in the polymer was less pronounced in the in situ-prepared coating films, confirming better UV protection, while the photocatalytic effect of TiO2 was more pronounced in the ex situ-prepared coating films. The results indicate that the method of preparation has a significant influence on the properties of the coating films.
Collapse
Affiliation(s)
- Martina Zeljko
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Vedrana Špada
- METRIS Materials Research Centre of Region of Istria, 52100 Pula, Croatia
| | - Sanja Lučić Blagojević
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Modarres-Gheisari SMM, Gavagsaz-Ghoachani R, Malaki M, Safarpour P, Zandi M. Ultrasonic nano-emulsification - A review. ULTRASONICS SONOCHEMISTRY 2019; 52:88-105. [PMID: 30482437 DOI: 10.1016/j.ultsonch.2018.11.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 05/11/2023]
Abstract
The emulsions with nano-sized dispersed phase is called nanoemulsions having a wide variety of applications ranging from food, dairy, pharmaceutics to paint and oil industries. As one of the high energy consumer methods, ultrasonic emulsification (UE) are being utilized in many processes providing unique benefits and advantages. In the present review, ultrasonic nano-emulsification is critically reviewed and assessed by focusing on the main parameters such pre-emulsion processes, multi-frequency or multi-step irradiations and also surfactant-free parameters. Furthermore, categorizing aposematic data of experimental researches such as frequency, irradiation power and time, oil phase and surfactant concentration and also droplet size and stability duration are analyzed and conceded in tables being beneficial to indicate uncovered fields. It is believed that the UE with optimized parameters and stimulated conditions is a developing method with various advantages.
Collapse
Affiliation(s)
| | | | - Massoud Malaki
- Mechanical Engineering Department, Isfahan University of Technology, Isfahan, Iran
| | - Pedram Safarpour
- Mechanical and Energy Systems Engineering Faculty, Shahid Beheshti University, Tehran, Iran
| | - Majid Zandi
- Mechanical and Energy Systems Engineering Faculty, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
4
|
McKenzie TG, Karimi F, Ashokkumar M, Qiao GG. Ultrasound and Sonochemistry for Radical Polymerization: Sound Synthesis. Chemistry 2019; 25:5372-5388. [DOI: 10.1002/chem.201803771] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/22/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas G. McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering The University of Melbourne Melbourne 3010 Australia
| | - Fatemeh Karimi
- Polymer Science Group, Department of Chemical and Biomolecular Engineering The University of Melbourne Melbourne 3010 Australia
| | | | - Greg G. Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering The University of Melbourne Melbourne 3010 Australia
| |
Collapse
|
5
|
Guo S, Wang X, Gao Z, Wang G, Nie M. Easy fabrication of poly(butyl acrylate)/silicon dioxide core-shell composite microspheres through ultrasonically initiated encapsulation emulsion polymerization. ULTRASONICS SONOCHEMISTRY 2018; 48:19-29. [PMID: 30080542 DOI: 10.1016/j.ultsonch.2018.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
In this study, instead of using the usual chemical methods, poly(butyl acrylate)/silicon dioxide (PBA/SiO2) core-shell composite microspheres were prepared using a physical method-ultrasonically initiated encapsulation emulsion polymerization. The morphology and particle size of the PBA/SiO2 microspheres were analysed using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The encapsulation state was determined using X-ray photoelectron spectroscopy (XPS). The composition and thermogravimetric behavior were characterized using Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The TEM and DLS results show that monodisperse PBA/SiO2 core-shell composite microspheres were successfully obtained. The diameter and shell thickness were 150 nm and 15 nm, respectively. The XPS and FTIR results show that there was no new chemical bond between the PBA shell and the SiO2 core. They were just combined by physical adsorption. The encapsulation efficiency of SiO2 microspheres by PBA is 8.2% through TGA. In addition, this article focuses on the formation mechanism of PBA/SiO2 core-shell microspheres prepared through ultrasonically initiated encapsulation emulsion polymerization. Intuitive observation and the results of TEM and DLS, especially the change in zeta potential, clearly indicate an encapsulation process. Thereinto, a bilayer-structure space established by appropriate amount of cetyltrimethyl ammonium bromide (CTAB) molecules is the key to realize ultrasonically initiated encapsulation emulsion polymerization.
Collapse
Affiliation(s)
- Shengwei Guo
- School of Materials Science & Engineering, North Minzu University, Yinchuan 750021, China; State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610065, China.
| | - Xin Wang
- School of Materials Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Zhiliang Gao
- School of Materials Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Guxia Wang
- School of Chemistry & Chemical Engineering, North Minzu University, Yinchuan 750021, China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610065, China
| |
Collapse
|
6
|
Critical Evaluation of Thermal, Optical and Morphological Properties of V, S and Dy Doped-ZnO/PVDF/Functionalized-PMMA Blended Nanocomposites. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0866-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Mallakpour S, Darvishzadeh M. Nanocomposite materials based on poly(vinyl chloride) and bovine serum albumin modified ZnO through ultrasonic irradiation as a green technique: Optical, thermal, mechanical and morphological properties. ULTRASONICS SONOCHEMISTRY 2018; 41:85-99. [PMID: 29137802 DOI: 10.1016/j.ultsonch.2017.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
In this project, physicochemical properties of poly(vinyl chloride) (PVC) reinforced by ZnO nanoparticles (NPs) were studied. Firstly, ZnO NPs were modified with bovine serum albumin (BSA) as an organo-modifier and biocompatible substance through ultrasound irradiation as environmental friendly, low cost and rapid means. Nanocomposite (NC) films were prepared by loadings of various ratios of ZnO/BSA NPs (3, 6 and 9wt%) inside the PVC. Structural morphology and physical properties of the ZnO-BSA NPs and NC films were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), transmission electron microscopy and field emission scanning electron microscopy. According to the obtained information from the TGA, an increase in the thermal stability can be clearly observed. Also the results of contact angle analysis indicated with increasing percent of ZnO/BSA NPs into PVC the hydrophilic behaviors of NCs were increased.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Marzieh Darvishzadeh
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
8
|
Dossin Zanrosso C, Piazza D, Azário Lansarin M. Polymeric hybrid films with photocatalytic activity under visible light. J Appl Polym Sci 2018. [DOI: 10.1002/app.46367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Crissie Dossin Zanrosso
- Federal University of Rio Grande do Sul, R. Ramiro Barcelos 2777; Porto Alegre RS 90035-007 Brazil
| | - Diego Piazza
- University of Caxias do Sul, R. Francisco Getúlio Vargas 1130; Caxias do Sul RS 95070-560 Brazil
| | - Marla Azário Lansarin
- Federal University of Rio Grande do Sul, R. Ramiro Barcelos 2777; Porto Alegre RS 90035-007 Brazil
| |
Collapse
|