1
|
Huang Z, Zhao Y, Yang W, Lang L, Sheng J, Tian Y, Gao X. Preparation of flavonoids from Amomum tsaoko and evaluation of their antioxidant and α-glucosidase inhibitory activities. Food Chem X 2025; 25:102177. [PMID: 39897968 PMCID: PMC11786917 DOI: 10.1016/j.fochx.2025.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
Amomum tsaoko is an important homologous medicinal and food plant, and its fruit is rich in flavonoids. However, few studies have reported the preparation and bioactivity of flavonoids in A. tsaoko (ATF). In this study, the optimal conditions for ultrasound-assisted extraction of ATF were identified through response surface optimization. HPD300 was identified as the best resin for the purification of ATF, as it exhibited a Freundlich model-conformative adsorption isotherm. Among the different concentrations of ethanol, 20 % and 30 % resulted in higher flavonoid purity (>90 %) and stronger antioxidant and α-glucosidase inhibition activities. A widely targeted metabolomics assay revealed that the relative abundance of flavonoids in a mixture of 20 % and 30 % ethanol eluates was greater than 73 %, which mainly contained (+)-epicatechin, isoquercitrin, astragalin kaempferol-3-O-rutinoside, and procyanidin B2. These findings provide a theoretical basis for the in-depth development and potential use of ATF in the functional food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Zelin Huang
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Zhao
- Division of Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weixing Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lu Lang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyu Gao
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Zhang L, Shi P, Sun J, Xie M, Wang H, Shi T, Yu M. Analysis of roasted peanuts based on GC-MS combined with GC-IMS. Food Sci Nutr 2024; 12:1888-1901. [PMID: 38455194 PMCID: PMC10916660 DOI: 10.1002/fsn3.3882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024] Open
Abstract
The present study used gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS) to separate and identify the characteristic volatile flavor substances in 30 roasted peanut samples. GC-MS identified 59 volatile compounds, and GC-IMS detected 61 volatile flavor substances. The 30 peanut varieties were then divided into four groups on the basis of their volatile flavor substances using principal component analysis (PCA), and a fingerprint profile of the varieties' volatile characteristics was established from information peaks identified in the spectra. Descriptive sensory analysis (DSA) was performed to distinguish differences in flavor attributes between roasted peanut varieties. Partial least squares regression (PLSR) was performed with the volatile flavor content of roasted peanuts as the independent variable and the flavor attribute score as the dependent variable. These findings provide a basis for predicting the appeal of roasted peanuts based on their composition and demonstrate a potential avenue for improving food flavor quality.
Collapse
Affiliation(s)
- Liangchen Zhang
- Institute of Food and Processing, Liaoning Academy of Agricultural SciencesShenyangChina
| | - Puxiang Shi
- Institute of Sandy Land Management and Utilization of LiaoningFuxinChina
| | - Jian Sun
- Institute of Food and Processing, Liaoning Academy of Agricultural SciencesShenyangChina
- Department of Food ScienceShenyang Agricultural UniversityShenyangChina
| | - Mengxi Xie
- Institute of Food and Processing, Liaoning Academy of Agricultural SciencesShenyangChina
| | - Haixin Wang
- Institute of Sandy Land Management and Utilization of LiaoningFuxinChina
| | - Taiyuan Shi
- Institute of Food and Processing, Liaoning Academy of Agricultural SciencesShenyangChina
| | - Miao Yu
- Institute of Food and Processing, Liaoning Academy of Agricultural SciencesShenyangChina
| |
Collapse
|
3
|
Kumari S, Alam AN, Hossain MJ, Lee EY, Hwang YH, Joo ST. Sensory Evaluation of Plant-Based Meat: Bridging the Gap with Animal Meat, Challenges and Future Prospects. Foods 2023; 13:108. [PMID: 38201136 PMCID: PMC10778684 DOI: 10.3390/foods13010108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Globally, the demand for plant-based meat is increasing rapidly as these products are becoming quite popular among vegans and vegetarians. However, its development is still in the early stage and faces various technological challenges; the imitation of the sensory profile of meat is the most challenging part as these products are meant to be an alternative to animal meat. The development of a product similar to meat requires accurate selection of ingredients and processing techniques. An understanding of the relevant sensory profile can help in constructing products and technologies that are consumer-centric and sustainable. In this review, we focus on the comparative differences in the sensory profiles of animal meat and plant-based meat alternatives, particularly regarding the color, texture, and flavor, along with the methods used to compare them. This paper also explains the sensory evaluation and how it affects consumer preference and acceptability. Additionally, a direction for further research on developing better plant-based meat products is suggested.
Collapse
Affiliation(s)
- Swati Kumari
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea; (S.K.); (A.N.A.); (M.J.H.); (E.-Y.L.)
| | - Amm Nurul Alam
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea; (S.K.); (A.N.A.); (M.J.H.); (E.-Y.L.)
| | - Md. Jakir Hossain
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea; (S.K.); (A.N.A.); (M.J.H.); (E.-Y.L.)
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea; (S.K.); (A.N.A.); (M.J.H.); (E.-Y.L.)
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea;
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea; (S.K.); (A.N.A.); (M.J.H.); (E.-Y.L.)
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea;
| |
Collapse
|
4
|
Zhang J, Zhang M, Ju R, Chen K, Bhandari B, Wang H. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Crit Rev Food Sci Nutr 2023; 63:11482-11503. [PMID: 35766478 DOI: 10.1080/10408398.2022.2092834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the increase of people's awareness of food safety, it is crucial to find natural and green antimicrobial agents to replace traditional antimicrobial agents. Essential oils of spices (SEOs) are low toxicity or nontoxic, which exhibited antioxidants and antimicrobial activity according to many in vitro and in situ experiments. Spices are widely available and low cost as a plant raw material for the extraction of SEOs. This review summarized highly efficient extraction techniques for SEOs, such as physical field assisted extraction technology, supercritical fluid extraction, and biological-based techniques. Furthermore, purification of SEOs and components were also recapitulated. Purification techniques of SEOs improve their utilization value due to the increased content of bioactive components. Finally, the review concentrated on the applications of SEOs in food industry, including food preservation, food active packaging by means of films or coatings, antioxidant properties. In addition, addressing the problem of unstability of SEOs and its role to inhibit the pathogenic bacteria, the encapsulation of SEOs for use in the food industrial sectors reduces the safety risk to human health.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd., Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Duque-Soto C, Ruiz-Vargas A, Rueda-Robles A, Quirantes-Piné R, Borrás-Linares I, Lozano-Sánchez J. Bioactive Potential of Aqueous Phenolic Extracts of Spices for Their Use in the Food Industry-A Systematic Review. Foods 2023; 12:3031. [PMID: 37628030 PMCID: PMC10453399 DOI: 10.3390/foods12163031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The interest on the use of natural sources in the food industry has promoted the study of plants' phenolic compounds as potential additives. However, the literature has been focusing on essential oils, with very few studies published regarding aqueous extracts, their phenolic composition, and bioactivity. A systematic review was conducted on different databases following PRISMA guidelines to evaluate the relevance of the phenolic content of different aromatic spices (oregano, rosemary, thyme, ginger, clove, and pepper), as related to their bioactivity and potential application as food additives. Although different extraction methods have been applied in the literature, the use of green approaches using ethanol and deep eutectic solvents has increased, leading to the development of products more apt for human consumption. The studied plants present an interesting phenolic profile, ranging from phenolic acids to flavonoids, establishing a correlation between their phenolic content and bioactivity. In this sense, results have proven to be very promising, presenting those extracts as having similar if not higher bioactivity than synthetic additives already in use, with associated health concerns. Nevertheless, the study of spices' phenolic extracts is somehow limited to in vitro studies. Therefore, research in food matrices is needed for more understanding of factors interfering with their preservation activity.
Collapse
Affiliation(s)
- Carmen Duque-Soto
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain; (C.D.-S.); (A.R.-V.); (A.R.-R.); (J.L.-S.)
| | - Ana Ruiz-Vargas
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain; (C.D.-S.); (A.R.-V.); (A.R.-R.); (J.L.-S.)
| | - Ascensión Rueda-Robles
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain; (C.D.-S.); (A.R.-V.); (A.R.-R.); (J.L.-S.)
| | - Rosa Quirantes-Piné
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, Edificio BioRegión, 18016 Granada, Spain;
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain; (C.D.-S.); (A.R.-V.); (A.R.-R.); (J.L.-S.)
| |
Collapse
|
6
|
Oe M, Wada K, Asikin Y, Arakaki M, Horiuchi M, Takahashi M. Effects of processing methods on the aroma constituents of hihatsumodoki (Piper retrofractum Vahl). J Food Sci 2023. [PMID: 37183927 DOI: 10.1111/1750-3841.16606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
Hihatsumodoki (Piper retrofractum Vahl) is a traditional spice from Okinawa (Japan) that can be processed in different ways to create the desired flavor. Herein, we examined the effects of processing (sun-drying, oven-drying, roasting, and steaming) on the volatile aroma constituents of hihatsumodoki fruits. Among the 106 chromatographic peaks observed in total, 58 were assigned to known aroma compounds. The relative contents of terpenes, for example, linalool, β-caryophyllene, α-caryophyllene, and germacrene D, ranged from 57.6% to 88.1%. Sun-drying decreased the content of aldehydes such as hexanal and trans-2-hexenal but did not significantly affect the total content of aroma compounds. The amount of aroma compounds released during oven-drying and roasting increased with temperature up to a certain point (90°C) and decreased at an excessively high temperature of 180°C. High-temperature roasting generated Maillard reaction products such as furans and furanones, which could impart sweet caramel odors. Steamed fruits had the lowest content of aroma compounds, which was ascribed to the loss of these compounds to vapor. Meanwhile, drying steamed fruits resulted in an approximately 3.6-fold increase in their aroma compound content, and the content of sesquiterpenes in the steamed-dried fruits was similar to that in fruits exposed to high temperatures. The effects of processing on aroma quality were visualized using multivariate statistical analysis. The aroma characteristics of roasted (180°C), steamed, and steamed-dried fruits were different from those of the control. The combined findings provide useful information for the selection of processing methods to achieve the desired flavor of hihatsumodoki. Practical Application: This study reveals the effects of different processing methods on the aroma profile of hihatsumodoki (Piper retrofractum Vahl), a subtropical spice from Okinawa (Japan). The results facilitate the selection of preferred hihatsumodoki flavors for household and industrial applications in foods and beverages. In addition, they inspire research on the processing-induced flavor changes of other tropical or subtropical spices.
Collapse
Affiliation(s)
- Moena Oe
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of Ryukyus, Nishihara, Japan
| | - Koji Wada
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of Ryukyus, Nishihara, Japan
| | - Yonathan Asikin
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of Ryukyus, Nishihara, Japan
| | - Mika Arakaki
- Subtropical Field Science Center, Faculty of Agriculture, University of Ryukyus, Nishihara, Japan
| | | | - Makoto Takahashi
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of Ryukyus, Nishihara, Japan
| |
Collapse
|
7
|
Popescu L, Cojocari D, Ghendov-Mosanu A, Lung I, Soran ML, Opriş O, Kacso I, Ciorîţă A, Balan G, Pintea A, Sturza R. The Effect of Aromatic Plant Extracts Encapsulated in Alginate on the Bioactivity, Textural Characteristics and Shelf Life of Yogurt. Antioxidants (Basel) 2023; 12:antiox12040893. [PMID: 37107268 PMCID: PMC10135706 DOI: 10.3390/antiox12040893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The article investigated the antioxidant and antimicrobial activity of extracts from two aromatic plants—Satureja hortensis L. (SE) and Rosmarinus officinalis L. (RE), encapsulated in alginate, on—yogurt properties. The encapsulation efficiency was controlled by FTIR and SEM analysis. In both extracts, the individual polyphenol content was determined by HPLC–DAD–ESI-MS. The total polyphenol content and the antioxidant activity were spectrophotometrically quantified. The antimicrobial properties of SE and RE against gram-positive bacteria (Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Geobacillus stearothermophilus), gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Salmonella abony) and yeasts (Candida albicans) were analyzed in vitro. The encapsulated extracts were used to prepare the functional concentrated yogurt. It was established that the addition of 0.30–0.45% microencapsulated plant extracts caused the inhibition of the post-fermentation process, the improvement of the textural parameters of the yogurt during storage, thus the shelf life of the yogurt increased by seven days, compared to the yogurt simple. Mutual information analysis was applied to establish the correlation between the concentration of the encapsulated extracts on the sensory, physical-chemical, and textural characteristics of the yogurt.
Collapse
Affiliation(s)
- Liliana Popescu
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova
| | - Daniela Cojocari
- Department of Preventive Medicine, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Stefan cel Mare Bd., MD-2004 Chisinau, Moldova
| | - Aliona Ghendov-Mosanu
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova
| | - Ildiko Lung
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Ocsana Opriş
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Irina Kacso
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Alexandra Ciorîţă
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babes-Bolyai University, 5–7 Clinicilor, 400006 Cluj-Napoca, Romania
| | - Greta Balan
- Department of Preventive Medicine, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Stefan cel Mare Bd., MD-2004 Chisinau, Moldova
| | - Adela Pintea
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3–5 Calea Manastus St., 400374 Cluj-Napoca, Romania
| | - Rodica Sturza
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova
| |
Collapse
|
8
|
Zhang J, Zhang M, Bhandari B, Wang M. Basic sensory properties of essential oils from aromatic plants and their applications: a critical review. Crit Rev Food Sci Nutr 2023; 64:6990-7003. [PMID: 36803316 DOI: 10.1080/10408398.2023.2177611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
With higher standards in terms of diet and leisure enjoyment, spices and essential oils of aromatic plants (APEOs) are no longer confined to the food industry. The essential oils (EOs) produced from them are the active ingredients that contribute to different flavors. The multiple odor sensory properties and their taste characteristics of APEOs are responsible for their widespread use. The research on the flavor of APEOs is an evolving process attracting the attention among scientists in the past decades. For APEOs, which are used for a long time in the catering and leisure industries, it is necessary to analyze the components associated with the aromas and the tastes. It is important to identify the volatile components and assure quality of APEOs in order to expand their application. It is worth celebrating the different means by which the loss of flavor of APEOs can be retarded in practice. Unfortunately, relatively little research has been done on the structure and flavor mechanisms of APEOs. This also points the way to future research on APEOs.Therefore, this paper reviews the principles of flavor, identification of components and sensory pathways in humans for APEOs. Moreover, the article outlines the means of increasing the efficiency of using of APEOs. Finally, with respect to the sensory applications of APEOs, the review focuses on the practical application of APEOs in food sector and in aromatherapy.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mingqi Wang
- R & D Center, Zhengzhou Xuemailong Food Flavor Co, Zhengzhou, China
| |
Collapse
|
9
|
liu F, Kan Q, Feng K, Chen Y, Wen L, He B, Zhu X, Wen C, Cao Y, Liu G. Process of Zanthoxylum armatum DC. oil by a novel low-temperature continuous phase transition extraction: Evaluation of aroma, pungent compounds and quality. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Li J, Hou X, Jiang L, Xia D, Chen A, Li S, Li Q, Gu X, Mo X, Zhang Z. Optimization and characterization of Sichuan pepper (Zanthoxylum bungeanum Maxim) resin microcapsule encapsulated with β-cyclodextrin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Zhang Z, Zang M, Zhang K, Wang S, Li D, Li X. Effect of two types of thermal processing methods on the aroma and taste profiles of three commercial plant-based beef analogues and beef by GC-MS, E-nose, E-tongue, and sensory evaluation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
12
|
Avila-Sosa R, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Hernández-Carranza P, Cid-Pérez TS. Detection of Saffron’s Main Bioactive Compounds and Their Relationship with Commercial Quality. Foods 2022. [PMCID: PMC9601577 DOI: 10.3390/foods11203245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review aims to evaluate the state of saffron’s main bioactive compounds and their relationship with its commercial quality. Saffron is the commercial name for the dried red stigmas of the Crocus sativus L. flower. It owes its sensory and functional properties mainly to the presence of its carotenoid derivatives, synthesized throughout flowering and also during the whole production process. These compounds include crocin, crocetin, picrocrocin, and safranal, which are bioactive metabolites. Saffron’s commercial value is determined according to the ISO/TS3632 standard that determines their main apocatotenoids. Other techniques such as chromatography (gas and liquid) are used to detect the apocarotenoids. This, together with the determination of spectral fingerprinting or chemo typing are essential for saffron identification. The determination of the specific chemical markers coupled with chemometric methods favors the discrimination of adulterated samples, possible plants, or adulterating compounds and even the concentrations at which these are obtained. Chemical characterization and concentration of various compounds could be affected by saffron’s geographical origin and harvest/postharvest characteristics. The large number of chemical compounds found in the by-products (flower parts) of saffron (catechin, quercetin, delphinidin, etc.) make it an interesting aromatic spice as a colorant, antioxidant, and source of phytochemicals, which can also bring additional economic value to the most expensive aromatic species in the world.
Collapse
Affiliation(s)
- Raul Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | | | - Carlos Enrique Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Addí Rhode Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Teresa Soledad Cid-Pérez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
- Correspondence:
| |
Collapse
|
13
|
Liao Y, Chen F, Xu L, Dessie W, Li J, Qin Z. Study on extraction and antibacterial activity of aucubin from Eucommia ulmoides seed-draff waste biomass. Heliyon 2022; 8:e10765. [PMID: 36267368 PMCID: PMC9576858 DOI: 10.1016/j.heliyon.2022.e10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/13/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Aucubin (AU) is an active ingredient exerting strong antioxidant and anti-inflammatory effects in treating several diseases. This study evaluated the extraction of AU from Eucommia ulmoides seed-draff (EUSD) waste biomass using a series of solvents (methanol, ethanol, i-propanol, n-propanol, n-butanol, n-pentanol and cyclohexane) assisted with microwave and ultrasound, and proposed the optimized method for extraction. Five factors were investigated by Box-Behnken design (BBD) and response surface methodology (RSM). The optimized extraction conditions were as follows: liquid-solid ratio of 46.37 mL/g, methanol percentage of 89.56%, ultrasonic (extraction) time of 59.95 min, microwave power of 306.73 W, and microwave (extraction) time of 18.93 s. To this end, the AU extraction reached the maximum value (149.1 mg/g), which was consistent with the theoretical value (149.3 mg/g). Furthermore, the kinetics of extraction process were investigated by mathematic modeling. The extraction process analysis was also explored by 1H nuclear magnetic resonance (1H-NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and COSMOtherm program. This study found out that methanol provided better extraction efficiency than the conventional solvents (water, ethanol, i-propanol, n-propanol, n-butanol, n-pentanol, cyclohexane) due to possible interactions by the formation of hydrogen bond between AU and methanol, and ultrasound and microwave could significantly enhance mass transfer, which exhibited higher extraction efficiency and lower energy consumptions (149.1 mg/g and 0.102 kW·h vs. 73.4 mg/g and 0.700 kW·h for Soxhlet extraction). In the antibacterial activity study, the AU extract exerted strong antibacterial ability against 4 tested pathogens, and the antibacterial effect followed the order of: Staphylococcus aureus (35.9 ± 1.32 mm) > Escherichia coli (30.7 ± 1.38 mm) > Bacillus subtilis (20.5 ± 1.36 mm) > Salmonella (15.9 ± 1.39 mm) with the AU concentration of 40 mg/mL. Therefore, the development of this study will help to deepen the further understanding of natural product extraction by methanol-based ultrasonic and microwave, and has certain application value for the development and utilization of natural iridoid glycosides product.
Collapse
Affiliation(s)
- Yunhui Liao
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Feng Chen
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Lujie Xu
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wubliker Dessie
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
| | - Jiaxing Li
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China
- Corresponding author.
| |
Collapse
|
14
|
Li G, Liu S, Zhou Q, Han J, Qian C, Li Y, Meng X, Gao X, Zhou T, Li P, Gu Q. Effect of Response Surface Methodology-Optimized Ultrasound-Assisted Pretreatment Extraction on the Composition of Essential Oil Released From Tribute citrus Peels. Front Nutr 2022; 9:840780. [PMID: 35571948 PMCID: PMC9097513 DOI: 10.3389/fnut.2022.840780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The traditional hydrodistillation (HD) and ultrasound-assisted pretreatment extraction (UAPE) methods were proposed to obtain essential oil (EO) from Tribute citrus (TC) peels. The Box-Behnken design was employed to optimize the HD and UAPE procedures. Moreover, gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) were applied to identify the discrepancy of the extraction methods. The yield of EO extracted by UAPE (114.02 mg/g) was significantly higher than that by HD (85.67 mg/g) (p < 0.01) undergoing 40 min short time-consuming UPAE. A total of 28 compounds were extracted from the TC peels as terpenes were the predominant components. d-Limonene was the most vital compound in the T. citrus essential oil (TCEO), accounting for 86.38% of the total volatile concentration in HD and 86.75% in UAPE, respectively, followed by α-pinene, sabinene, γ-myrcene, and β-phellandrene. The chart of radar and graphic of the principal component analysis by E-nose displayed no significance, which was similar to the GC-MS results. This study demonstrated that UAPE is an efficient and short time-consuming method for TCEO extraction, which provides a promising method for the separation of EO from aromatic plant materials.
Collapse
Affiliation(s)
- Guoqiang Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Cheng Qian
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yongquan Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xia Meng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xin Gao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
15
|
Ford PW, Berger TA, Jackoway G. Spice authentication by fully automated chemical analysis with integrated chemometrics. J Chromatogr A 2022; 1667:462889. [DOI: 10.1016/j.chroma.2022.462889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
|
16
|
Procopio FR, Ferraz MC, Paulino BN, do Amaral Sobral PJ, Hubinger MD. Spice oleoresins as value-added ingredient for food industry: Recent advances and perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Lyu Y, Bi J, Chen Q, Wu X, Gou M, Yang X. Color enhancement mechanisms analysis of freeze-dried carrots treated by ultrasound-assisted osmosis (ascorbic acid-CaCl 2) dehydration. Food Chem 2022; 381:132255. [PMID: 35114628 DOI: 10.1016/j.foodchem.2022.132255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/29/2023]
Abstract
Color enhancement mechanisms of freeze-dried carrot sample (FDS) treated by ultrasound-assisted osmotic (ascorbic acid-CaCl2) dehydration (UAA) were comprehensively investigated from physical microstructures and color-related carotenoid compounds. Results of scanning electron microscope and confocal laser scanning microscopy showed that cells in samples treated by UAA were intact, had less porosity and showed stronger carotenoid autofluorescence. As for color-related compounds, UAA not only increased the retention ratios of total carotenoid content (36.38%) and β-carotene (51.73%) of FDS, but also preserved the high raman intensity of CC in-plane expansion (9986 A.U) and induced the formation of coloring-carotenoid-derivatives. Additionally, correlation and PCA-X model analysis showed that fresh carrot had higher extractable color value (78.46), which was positively linearly related to 2-n-pentylfuran (p < 0.01), whereas FDS mainly affected the surface color that was dominated by β-carotene. This work provided the practical analysis and theoretical basis of color enhancement of freeze-dried carrot foods.
Collapse
Affiliation(s)
- Ying Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Department of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Department of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qinqin Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Min Gou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinrui Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
18
|
Huang Y, Pu D, Hao Z, Yang X, Zhang Y. The Effect of Prickly Ash ( Zanthoxylum bungeanum Maxim) on the Taste Perception of Stewed Sheep Tail Fat by LC-QTOF-MS/MS and a Chemometrics Analysis. Foods 2021; 10:foods10112709. [PMID: 34828990 PMCID: PMC8622103 DOI: 10.3390/foods10112709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
This work aims to explore the contribution of prickly ash (Zanthoxylum bungeanum Maxim) on the taste perception of stewed sheep tail fat. Liquid chromatography-tandem quadrupole time of flight mass spectrometry (LC-QTOF-MS) was applied to analyze the taste-related compounds. A total of 99 compounds in different sheep tail fat samples were identified. The semi-quantitative results showed that there were differences between the samples. The partial least squares discriminant analysis (PLS-DA) model without overfitting was used to investigate the effect of prickly ash. Eleven marker compounds were predicted with a variable importance for projection > 1, fold change > 2 and p < 0.05. An additional experiment showed that guanosine 5'-monophosphate, malic acid, inosine and adenosine 5'-monophosphate could improve the umami and saltiness taste of stewed sheep tail fat.
Collapse
|
19
|
Ultrasonic-assisted extraction, calcium alginate encapsulation and storage stability of mulberry pomace phenolics. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Ultrasonic treatment: A cohort review on bioactive compounds, allergens and physico-chemical properties of food. Curr Res Food Sci 2021; 4:470-477. [PMID: 34286286 PMCID: PMC8280479 DOI: 10.1016/j.crfs.2021.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
Implementation of ultrasonic for the extraction of bioactive compounds and retention of physico-chemical properties is an important technology. This technology applies physical and chemical phenomena for the extraction of compounds. Ultrasonic assisted extraction causes less damaging effect on quality properties of food as compared to the conventional extraction technique. The present review article focuses on the degradation of various bioactive compounds as a result of ultra-sonication which include vitamins, carotenoids and phenolic compounds. This review article also discusses the influence of ultrasonic extraction on the physico-chemical properties of extracted food products. In addition, the paper explores the effect of ultrasonication on food allergenicity through changes in solubility, hydrophobicity, molecular weight as well as conformational changes of the allergens, a direct result of increase in temperature and pressure during cavitation process.
Collapse
|
21
|
Idowu S, Adekoya AE, Igiehon OO, Idowu AT. Clove (Syzygium aromaticum) spices: a review on their bioactivities, current use, and potential application in dairy products. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00915-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Wang F, Xue Y, Fu L, Wang Y, He M, Zhao L, Liao X. Extraction, purification, bioactivity and pharmacological effects of capsaicin: a review. Crit Rev Food Sci Nutr 2021; 62:5322-5348. [PMID: 33591238 DOI: 10.1080/10408398.2021.1884840] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide), a well-known vanilloid, which is the main spicy component in chili peppers, showing several biological activities and the potential applications range from food flavorings to therapeutics. Traditional extraction of capsaicin by organic solvents was time-consuming, some new methods such as aqueous two-phase method and ionic liquid extraction method have been developed. During past few decades, an ample variety of biological effects of capsaicin have been evaluated. Capsaicin can be used in biofilms and antifouling coatings due to its antimicrobial activity, allowing it has a promising application in food packaging, food preservation, marine environment and dental therapy. Capsaicin also play a crucial role in metabolic disorders, including weight loss, pressure lowing and insulin reduction effects. In addition, capsaicin was identified effective on preventing human cancers, such as lung cancer, stomach cancer, colon cancer and breast cancer by inducing apoptosis and inhibiting cell proliferation of tumor cells. Previous research also suggest the positive effects of capsaicin on pain relief and cognitive impairment. Capsaicin, the agonist of transient receptor potential vanilloid type 1 (TRPV1), could selectively activate TRPV1, inducing Ca2+ influx and related signaling pathways. Recently, gut microbiota was also involved in some diseases therapeutics, but its influence on the effects of capsaicin still need to be deeply studied. In this review, different extraction and purification methods of capsaicin, its biological activities and pharmacological effects were systematically summarized, as well as the possible mechanisms were also deeply discussed. This article will give an updated and better understanding of capsaicin-related biological effects and provide theoretical basis for its further research and applications in human health and manufacture development.
Collapse
Affiliation(s)
- Fengzhang Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Yong Xue
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Lin Fu
- ACK Company, Urumqi, Xinjiang, China
| | - Yongtao Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| | - Minxia He
- ACK Company, Urumqi, Xinjiang, China
| | - Liang Zhao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu, China
| | - Xiaojun Liao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Modupalli N, Naik M, Sunil C, Natarajan V. Emerging non-destructive methods for quality and safety monitoring of spices. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:1715-1735. [PMID: 33192209 PMCID: PMC7651826 DOI: 10.1007/s10311-020-01126-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/17/2020] [Indexed: 05/02/2023]
Abstract
Food wastage is a major issue impacting public health, the environment and the economy in the context of rising population and decreasing natural resources. Wastage occurs at all stages from harvesting to the consumer, calling for advanced techniques of food preservation. Wastage is mainly due to presence of moisture and microbial organisms present in food. Microbes can be killed or deactivated, and cross-contamination by microbes such as the coronavirus disease 2019 (COVID-19) should be avoided. Moisture removal may not be feasible in all cases. Preservation methods include thermal, electrical, chemical and radiation techniques. Here, we review the advanced food preservation techniques, with focus on fruits, vegetables, beverages and spices. We emphasize electrothermal, freezing and pulse electric field methods because they allow both pathogen reduction and improvement of nutritional and physicochemical properties. Ultrasound technology and ozone treatment are suitable to preserve heat sensitive foods. Finally, nanotechnology in food preservation is discussed.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110 India
| | - Ashish Kapoor
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| |
Collapse
|
25
|
de Lima Alves L, Donadel JZ, Athayde DR, da Silva MS, Klein B, Fagundes MB, de Menezes CR, Barin JS, Campagnol PCB, Wagner R, Cichoski AJ. Effect of ultrasound on proteolysis and the formation of volatile compounds in dry fermented sausages. ULTRASONICS SONOCHEMISTRY 2020; 67:105161. [PMID: 32388311 DOI: 10.1016/j.ultsonch.2020.105161] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 05/11/2023]
Abstract
Ultrasound (US) is an emerging technology capable of affecting enzymes and microorganisms, leading to the release of amino acids and the formation of volatile compounds. The effect of different exposure times (0, 3, 6, and 9 min) of US (25 kHz, 128 W) on the proteolysis and volatile compounds of dry fermented sausages during processing (day 0 and 28) and storage (day 1 and 120) was investigated. Lower alanine, glycine, valine, leucine, proline, methionine, and tyrosine levels were observed at the beginning of manufacture for the sample subjected to 9 min of US (p < 0.05) when compared to the control. During the storage period, the samples subjected to US exposure for 3 and 6 min exhibited higher free amino acid levels. A greater formation of hexanal, pentanal, and hexanol was observed in the US-treated samples when compared to the control (p < 0.05), as well as other derivatives from the oxidation reactions during the storage. The use of US (25 kHz and 128 W) in the manufacture of dry fermented sausages can affect the proteolysis and the formation of compounds derived from lipid oxidation during the storage.
Collapse
Affiliation(s)
- Larissa de Lima Alves
- Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Jossiê Zamperetti Donadel
- Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Dirceu Rodrigues Athayde
- Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Marianna Stefanello da Silva
- Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Bruna Klein
- Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Mariane Bittencourt Fagundes
- Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Cristiano Ragagnin de Menezes
- Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Juliano Smanioto Barin
- Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Paulo Cezar Bastianello Campagnol
- Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Roger Wagner
- Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, CEP 97105-900 Santa Maria, RS, Brazil
| | - Alexandre José Cichoski
- Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, CEP 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
26
|
Yu Y, Hu S, Fu D, Zhang X, Liu H, Xu B, Huang M. Surfactant-assisted enzymatic extraction of piperine from Piper nigrum L. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2019.1707221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yang Yu
- School of Light Industry Science and Technology, Beijing Key Laboratory of Flavor Chemistry, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing, China
| | - Siqi Hu
- School of Light Industry Science and Technology, Beijing Key Laboratory of Flavor Chemistry, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing, China
| | - Duojiao Fu
- School of Light Industry Science and Technology, Beijing Key Laboratory of Flavor Chemistry, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing, China
| | - Xiaoxu Zhang
- School of Light Industry Science and Technology, Beijing Key Laboratory of Flavor Chemistry, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing, China
| | - Hongqin Liu
- School of Light Industry Science and Technology, Beijing Key Laboratory of Flavor Chemistry, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing, China
| | - Baocai Xu
- School of Light Industry Science and Technology, Beijing Key Laboratory of Flavor Chemistry, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing, China
| | - Mingquan Huang
- School of Light Industry Science and Technology, Beijing Key Laboratory of Flavor Chemistry, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing, China
| |
Collapse
|