1
|
Yang Q, Chen M, Pei C, Liu B, Zhao M, Wang X, Lin Z, Li L. Experimental and Eulerian-Lagrangian numerical investigation on cavitation erosion characteristics in Venturi pipes with different divergent angles. ULTRASONICS SONOCHEMISTRY 2025; 114:107278. [PMID: 39970487 PMCID: PMC11880768 DOI: 10.1016/j.ultsonch.2025.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Hydrodynamic cavitation (HC) is widely found in fluid machinery and has emerged as a significant technology in several engineering fields. To investigate the erosion characteristics caused by HC, experimental tests under varying conditions are conducted in this study using a Venturi test section with different divergent angles. The qualitative erosion risk distributions under different conditions are represented through paint experiments, showing that the erosion risk increases as the divergent angle decreases. Subsequently, a Eulerian-Lagrangian multiscale cavitation model is adopted to simulate HC in the test section. This model directly resolves large-scale cavities using the volume of fluid (VOF) method and simultaneously tracks sub-scale discrete bubbles using a discrete bubble model (DBM). A modified aggressive indicator [Li et al., Int. J. Mech. Sci. 262, 108,735 (2024)] is incorporated into the multiscale cavitation model to account for the erosion power produced by multiscale cavitation behaviors, thereby reproducing the distribution of cavitation erosion risks. Simulations corresponding to the experimental conditions are conducted, and the results show that the simulated cavitation features align well with the experimental observations. Furthermore, the cavitation erosion risk distributions predicted by the present model agree well with the paint tests, confirming the reliability of our model.
Collapse
Affiliation(s)
- Qing Yang
- Zhejiang Key Laboratory of Multiflow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mingming Chen
- Zhejiang Key Laboratory of Multiflow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengqian Pei
- Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310030, China
| | - Bo Liu
- Zhijian Laboratory, Rocket Force University of Engineering, Xi'an 710025, China.
| | - Meng Zhao
- Zhijian Laboratory, Rocket Force University of Engineering, Xi'an 710025, China
| | - Xuanjun Wang
- Zhijian Laboratory, Rocket Force University of Engineering, Xi'an 710025, China
| | - Zhe Lin
- Zhejiang Key Laboratory of Multiflow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou 310018, China; Innovation Center for Key Basic Components of General Machinery, Hefei General Machinery Research Institute Co., Ltd., Hefei 230031, China.
| | - Linmin Li
- Zhejiang Key Laboratory of Multiflow and Fluid Machinery, Zhejiang Sci-Tech University, Hangzhou 310018, China; Innovation Center for Key Basic Components of General Machinery, Hefei General Machinery Research Institute Co., Ltd., Hefei 230031, China.
| |
Collapse
|
2
|
Fleite S, Cassanello M, Buera MDP. Modifications of biological membranes, fat globules and liposomes promoted by cavitation processes. Consequences and applications. Chem Phys Lipids 2025; 267:105462. [PMID: 39622431 DOI: 10.1016/j.chemphyslip.2024.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Cavitation-based technologies, such as ultrasound (or acoustic cavitation, AC) and hydrodynamic cavitation (HC), are gaining interest among green processing technologies due to their cost effectiveness in operation, toxic solvent use reduction, and ability to obtain superior processed products, compared to conventional methods. Both AC and HC generate bubbles, but their effects may differ and it is difficult to make comparisons as both are based on different phenomena and are subject to different operational variables. AC is one of the most used techniques in extraction and homogenization processes at the laboratory level. However, upscaling to an industrial level is hard. On the other hand, HC is based on the passage of the liquid through a constriction (orifice plate, Venturi, throttling valve), which causes an increase in liquid velocity at the expense of local pressure, forcing the pressure around the contraction below the threshold pressure that induces the formation of cavities. Some applications of cavitation technologies, such as the production of liposomes or lipid nanoparticles (LNPs) allow the generation of delivery systems for biomedical applications.Many others (inactivation of pathogenic viruses, bacteria and algae for water purification, extraction procedures, third generation of biofuel production, green extractions) are based on the disruption of lipid membranes. There are also applications aimed at the modification of membranes (like the milk fat globule) for the development of innovative products. Process parameters, such as cavitation intensity, duration and temperature define the impact of the process on the physical, chemical, and biological characteristics of the membranes. Thus, the adequate implementation of cavitation processes requires understanding of interactions and synergistic mechanisms in complex systems and of their effects on membranes at the microscopic or molecular level. In the present work, the use of cavitation technologies for the generation of LNPs or nanostructured lipid carriers, and the effects of AC and HC treatments on several types of membrane systems (liposomes, solid lipid nanoparticles, milk fat globules, algae and bacterial membranes) are discussed, focusing on the structural and chemical modifications of lipidic structures under cavitation.
Collapse
Affiliation(s)
- Santiago Fleite
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Química Inorgánica y Analítica, Argentina
| | - Miryan Cassanello
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina
| | - María Del Pilar Buera
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
3
|
Xia G, You W, Manickam S, Yoon JY, Xuan X, Sun X. Numerical simulation of cavitation-vortex interaction mechanism in an advanced rotational hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2024; 105:106849. [PMID: 38513544 PMCID: PMC11636836 DOI: 10.1016/j.ultsonch.2024.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/24/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Hydrodynamic cavitation (HC), a promising technology for enhancing processes, has shown distinct effectiveness and versatility in various chemical and environmental applications. The recently developed advanced rotational hydrodynamic cavitation reactors (ARHCRs), employing cavitation generation units (CGUs) to induce cavitation, have demonstrated greater suitability for industrial-scale applications than conventional devices. However, the intricate interplay between vortex and cavitation, along with its spatial-temporal evolution in the complex flow field of ARHCRs, remains inadequately elucidated. This study investigated the interaction mechanism between cavitation and vortex in a representative interaction-type ARHCR for the first time using the "simplified flow field strategy" and the Q-criterion. The findings reveal that the flow instability caused by CGUs leads to intricate helical and vortex flows, subsequently giving rise to both sheet and vortex cavitation. Subsequently, utilizing the Q-criterion, the vortex structures are identified to be concentrated inside and at CGU edges with evolution process of mergence and separation. These vortex structures directly influence the shape and dimensions of cavities, establishing a complex interaction with cavitation. Lastly, the vorticity transport equation analysis uncovered that the stretching and dilatation terms dominate the vorticity transport process. Simultaneously, the baroclinic term focuses on the vapor-liquid interface, characterized by significant alterations in density and pressure gradients. These findings contribute to a better comprehension of the cavitation-vortex interaction in ARHCRs.
Collapse
Affiliation(s)
- Gaoju Xia
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Weibin You
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE 1410, Brunei Darussalam
| | - Joon Yong Yoon
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
4
|
Sun X, Xia G, You W, Jia X, Manickam S, Tao Y, Zhao S, Yoon JY, Xuan X. Effect of the arrangement of cavitation generation unit on the performance of an advanced rotational hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2023; 99:106544. [PMID: 37544171 PMCID: PMC10432248 DOI: 10.1016/j.ultsonch.2023.106544] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Hydrodynamic cavitation (HC) is widely considered a promising process intensification technology. The novel advanced rotational hydrodynamic cavitation reactors (ARHCRs), with considerably higher performance compared with traditional devices, have gained increasing attention of academic and industrial communities. The cavitation generation unit (CGU), located on the rotor and/or stator of an ARHCR, is utilized to generate cavitation and consequently, its geometrical structure is vital for the performance. The present work studied, for the first time, the effect of the arrangement of CGU on the performance of a representative ARHCR by employing computational fluid dynamics based on the "simplified flow field" strategy. The effect of CGU arrangement, which was neglected in the past, was evaluated: radial offset distance (c), intersection angle (ω), number of rows (N), circumferential offset angle (γ), and radial spacing (r). The results indicate that the CGU, with an arrangement of a low ω and moderate c, N, γ, and r, performed the highest cavitation efficiency. The corresponding reasons were analyzed by combining the flow field and cavitation pattern. Moreover, the results also exposed a weakness of the "simplified flow field" strategy which may induce the unfavorable "sidewall effect" and cause false high-pressure region. The findings of this work may provide a reference value to the design of ARHCRs.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Gaoju Xia
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Weibin You
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Xiaoqi Jia
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Joon Yong Yoon
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| |
Collapse
|
5
|
Arya SS, More PR, Ladole MR, Pegu K, Pandit AB. Non-thermal, energy efficient hydrodynamic cavitation for food processing, process intensification and extraction of natural bioactives: A review. ULTRASONICS SONOCHEMISTRY 2023; 98:106504. [PMID: 37406541 PMCID: PMC10339045 DOI: 10.1016/j.ultsonch.2023.106504] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
Hydrodynamic cavitation (HC) is the process of bubbles formation, expansion, and violent collapse, which results in the generation of high pressures in the order of 100-5000 bar and temperatures in the range of 727-9727 °C for just a fraction of seconds. Increasing consumer demand for high-quality foods with higher nutritive values and fresh-like sensory attributes, food processors, scientists, and process engineers are pushed to develop innovative and effective non-thermal methods as an alternative to conventional heat treatments. Hydrodynamic cavitation can play a significant role in non-thermal food processing as it has the potential to destroy microbes and reduce enzyme activity while retaining essential nutritional and physicochemical properties. As hydrodynamic cavitation occurs in a flowing liquid, there is a decrease in local pressure followed by its recovery; hence it can be used for liquid foods. It can also be used to create stable emulsions and homogenize food constituents. Moreover, this technology can extract food constituents such as polyphenols, essential oils, pigments, etc., via biomass pretreatment, cell disruption for selective enzyme release, waste valorization, and beer brewing. Other applications related to food production include water treatment, biodiesel, and biogas production. The present review discusses the application of HC in the preservation, processing, and quality improvement of food and other related applications. The reviewed examples in this paper demonstrate the potential of hydrodynamic cavitation with further expansion toward the scaling up, which looks at commercialization as a driving force.
Collapse
Affiliation(s)
- Shalini S Arya
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India.
| | - Pavankumar R More
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| | - Mayur R Ladole
- School of Chemical and Bioprocess Engineering, University College Dublin, Ireland
| | - Kakoli Pegu
- Food Engineering and Technology Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| | - Aniruddha B Pandit
- Chemical Engineering Department, Institute of Chemical Technology, NM Parekh Marg, Matunga, Mumbai, India
| |
Collapse
|
6
|
Patil Y, Sonawane SH, Shyam P, Sun X, Manickam S. Hybrid hydrodynamic cavitation (HC) technique for the treatment and disinfection of lake water. ULTRASONICS SONOCHEMISTRY 2023; 97:106454. [PMID: 37271031 DOI: 10.1016/j.ultsonch.2023.106454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Water reclamation from lakes needs to be accomplished efficiently and affordably to ensure the availability of clean, disinfected water for society. Previous treatment techniques, such as coagulation, adsorption, photolysis, ultraviolet light, and ozonation, are not economically feasible on a large scale. This study investigated the effectiveness of standalone HC and hybrid HC + H2O2 treatment techniques for treating lake water. The effect of pH (3 to 9), inlet pressure (4 to 6 bar), and H2O2 loading (1 to 5 g/L) were examined. At pH = 3, inlet pressure of 5 bar and H2O2 loadings of 3 g/L, maximum COD and BOD removal were achieved·H2O2 was observed to significantly improve the performance of the HC when used as a chemical oxidant. In an optimal operating condition, a COD removal of 54.5 % and a BOD removal of 51.5 % using HC alone for 1 h is observed. HC combined with H2O2 removed 64 % of both COD and BOD. The hybrid HC + H2O2 treatment technique resulted in a nearly 100% removal of pathogens. The results of this study indicate that the HC-based technique is an effective method for removing contaminants and disinfection of the lake water.
Collapse
Affiliation(s)
- Yogesh Patil
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana 506004, India
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana 506004, India.
| | - Perugu Shyam
- Department of Biotechnology, National Institute of Technology Warangal, Telangana 506004, India
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| |
Collapse
|
7
|
Li L, Niu Y, Wei G, Manickam S, Sun X, Zhu Z. Investigation of cavitation noise using Eulerian-Lagrangian multiscale modeling. ULTRASONICS SONOCHEMISTRY 2023; 97:106446. [PMID: 37224639 DOI: 10.1016/j.ultsonch.2023.106446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
We have employed the large eddy simulation (LES) approach to investigate the cavitation noise characteristics of an unsteady cavitating flow around a NACA66 (National Advisory Committee for Aeronautics) hydrofoil by employing an Eulerian-Lagrangian based multiscale cavitation model. A volume of fluid (VOF) method simulates the large cavity, whereas a Lagrangian discrete bubble model (DBM) tracks the small bubbles. Meanwhile, noise is determined using the Ffowcs Williams-Hawkings equation (FW-H). Eulerian-Lagrangian analysis has shown that, in comparison to VOF, it is more effective in revealing microscopic characteristics of unsteady cavitating flows, including microscale bubbles, that are unresolvable around the cloud cavity, and their impact on the flow field. It is also evident that its evolution of cavitation features on the hydrofoil is more consistent with the experimental observations. The frequency of the maximum sound pressure level corresponds to the frequency of the main cavity shedding for the noise characteristics. Using the Eulerian-Lagrangian method to predict the noise signal, results show that the cavitation noise, generated by discrete bubbles due to their collapse, is mainly composed of high-frequency signals. In addition, the frequency of cavitation noise induced by discrete microbubbles is around 10 kHz. A typical characteristic of cavitation noise, including two intense pulses during the collapsing of the cloud cavity, is described, as well as the mechanisms that underlie these phenomena. The findings of this work provide for a fundamental understanding of cavitation and serve as a valuable reference for the design and intensification of hydrodynamic cavitation reactors.
Collapse
Affiliation(s)
- Linmin Li
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yabiao Niu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guolai Wei
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Zuchao Zhu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Castro-Muñoz R, Boczkaj G, Jafari SM. The role of hydrodynamic cavitation in tuning physicochemical properties of food items: A comprehensive review. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
9
|
A Review on Rotary Generators of Hydrodynamic Cavitation for Wastewater Treatment and Enhancement of Anaerobic Digestion Process. Processes (Basel) 2023. [DOI: 10.3390/pr11020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The issue of ever-increasing amounts of waste activated sludge (WAS) produced from biological wastewater treatment plants (WWTPs) is pointed out. WAS can be effectively reduced in the anaerobic digestion (AD) process, where methanogens break down organic matter and simultaneously produce biogas in the absence of oxygen, mainly methane and CO2. Biomethane can then be effectively used in gas turbines to produce electricity and power a part of WWTPs. Hydrodynamic cavitation (HC) has been identified as a potential technique that can improve the AD process and enhance biogas yield. Rotary generators of hydrodynamic cavitation (RGHCs) that have gained considerable popularity due to their promising results and scalability are presented. Operation, their underlying mechanisms, parameters for performance evaluation, and their division based on geometry of cavitation generation units (CGUs) are presented. Their current use in the field of wastewater treatment is presented, with the focus on WAS pre/treatment. In addition, comparison of achieved results with RGHCs relevant to the enhancement of AD process is presented.
Collapse
|
10
|
Manna M, Sen S. Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25477-25505. [PMID: 35287196 DOI: 10.1007/s11356-022-19435-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The world faces tremendous challenges and environmental crises due to the rising strength of wastewater. The conventional technologies fail to achieve the quality water that can be reused after treatment means "zero effluent" discharge of the industrial effluent. Therefore, now the key challenge is to develop improved technologies which will have no contribution to secondary pollution and at the same time more efficient for the socio-economic growth of the environment. Sustainable technologies are needed for wastewater treatment, reducing footprint by recycling, reusing, and recovering resources. Advanced oxidation process (AOP) is one of the sustainable emerging technologies for treating refractory organic contaminants present in different industrial wastewaters like textile, paper and pulp, pharmaceuticals, petrochemicals, and refineries. This critical review emerges details of advanced oxidation processes (AOPs), mentioning all possible permutations and combinations of components like ozone, UV, the catalyst used in the process. Non-conventional AOP systems, microwave, ultrasound, and plasma pulse assisted are the future of the oxidation process. This review aims to enlighten the role of AOPs for the mineralization of refractory organic contaminants (ROC) to readily biodegradable organics that cannot be either possible by conventional treatment. The integrated AOPs can improve the biodegradability of recalcitrant organic compounds and reduce the toxicity of wastewater, making them suitable for further biological treatment.
Collapse
Affiliation(s)
- Madhumita Manna
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India
| | - Sujit Sen
- Catalysis Research Laboratory, Department of Chemical Engineering, NIT Rourkela, Rourkela, Odisha, India.
| |
Collapse
|
11
|
Moftakhari Anasori Movahed S, Calgaro L, Marcomini A. Trends and characteristics of employing cavitation technology for water and wastewater treatment with a focus on hydrodynamic and ultrasonic cavitation over the past two decades: A Scientometric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159802. [PMID: 36411670 DOI: 10.1016/j.scitotenv.2022.159802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Cavitation-based technologies have emerged as a sustainable and effective way to treat natural waters and wastewater, considering their increasing scarcity due to pollution and climate change. For this reason, this work aimed to conduct a scientometric analysis on the topic of cavitation for water and wastewater treatment during the last 20 years, from 2001 to August 2022. We focused on hydrodynamic and ultrasonic cavitation as the prevalent methods of inducing cavitation. Furthermore, an in-depth study on the main trends regarding the number of publications and citations, keywords co-occurrence and evolution, and countries' publication trends was carried out to investigate the future direction of this research topic. The data was gathered from the Web of Science database and analyzed by the Visualization Of Similarities software. This work focused on: i) publication and citation trends, ii) scientific categories, iii) countries' contribution to the topic of cavitation, iv) prominent journals, v) keyword co-occurrence and cluster analysis, and vi) keyword evolution analysis. Results showed a significant increase in publications during the past 5 years. The scientific categories with the highest number of publications were "environmental sciences" and "environmental engineering," with a combined share of 19.4 % of publications. Keywords evolution analysis showed that limited focus was given to topics related to "energy" and "energy efficiency" in the field of cavitation, but with the rising importance of each process's sustainability, the attention given to these concepts will increase in the future. Future directions for the topic of cavitation-related water and wastewater treatments will shift towards more environmentally friendly applications of hydrodynamic and ultrasonic cavitation as well as towards more green and sustainable approaches to address the increasing water pollution problems and shortage. Moreover, it will include other uses besides water treatment such as manufacturing nanomaterials food production and medicine.
Collapse
Affiliation(s)
- Saman Moftakhari Anasori Movahed
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice, Mestre, Italy
| | - Loris Calgaro
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice, Mestre, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice, Mestre, Italy.
| |
Collapse
|
12
|
Kochadai N, Hema V, Vadakkepulppara Ramachandran Nair S. Investigation of the effect of hydrodynamic cavitation treatment on the aging of tender coconut–palmyra wine. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nitthya Kochadai
- Biotechnology National Institute of Food Technology, Entrepreneurship and Management Thanjavur Tamil Nadu India
- Affiliated to Bharathidasan University Tiruchirappalli Tamil Nadu India
| | - Vincent Hema
- Food Processing and Business Incubation Centre National Institute of Food Technology, Entrepreneurship and Management Thanjavur Tamil Nadu India
| | | |
Collapse
|
13
|
Continuous Cultivation of Microalgae in Cattle Slaughterhouse Wastewater Treated with Hydrodynamic Cavitation. WATER 2022. [DOI: 10.3390/w14081288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cattle slaughtering produce large amounts of wastewater containing high concentrations of organic matter and nutrients and requires significant treatment before disposal or reutilization. However, the nutrients contained can be valued as a medium for microalgal biomass generation. In this work, hydrodynamic cavitation (HC) followed by membrane filtration or biological (microalgae cultivation) treatment in continuous mode were performed. From cattle slaughterhouse wastewater (CSW), by the effect of HC treatment with air injection in batch mode, more than 20% of the chemical oxygen demand (COD) was removed. In a continuous HC process, the COD content in output was 324 mg O2/L, which is 68% lower than the supplied CSW. After that, 76% of residual COD was removed by filtration through a tubular alumina membrane (600 nm). Finally, 85% of residual COD after HC treatment in 24 h in a batch mode was removed by microalgae. On the other hand, the COD concentration in the output was around 59 mg O2/L in continuous mode, which represents 85–93% COD removal. The process involving HC and microalgae growing looks promising since in addition to water treatment, the microalgae produced could be valued in a biorefinery concept.
Collapse
|
14
|
Hansen MS, Gregersen SB, Rasmussen JT. Bovine milk processing impacts characteristics of extracellular vesicle isolates obtained by size-exclusion chromatography. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Sun X, You W, Wu Y, Tao Y, Yoon JY, Zhang X, Xuan X. Hydrodynamic Cavitation: A Novel Non-Thermal Liquid Food Processing Technology. Front Nutr 2022; 9:843808. [PMID: 35308268 PMCID: PMC8931495 DOI: 10.3389/fnut.2022.843808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
Hydrodynamic cavitation (HC), as a novel non-thermal processing technology, has recently shown unique effects on the properties of various liquid foods. The extreme conditions of pressure at ~500 bar, local hotspots with ~5,000 K, and oxidation created by HC can help obtain characteristic products with high quality and special taste. Moreover, compared with other emerging non-thermal approaches, the feature of the HC phenomenon and its generation mechanism helps determine that HC is more suitable for industrial-scale processing. This mini-review summarizes the current knowledge of the recent advances in HC-based liquid food processing. The principle of HC is briefly introduced. The effectiveness of HC on the various physical (e.g., particle size, viscosity, temperature, and stability), chemical (nutrition loss), and biological characteristics (microorganism inactivation) of various liquid foods are evaluated. Finally, several recommendations for future research on the HC technique are provided.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, China
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Weibin You
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, China
| | - Yue Wu
- School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Joon Yong Yoon
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, South Korea
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions From Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan, China
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, China
| |
Collapse
|
16
|
Can ultrasound treatment replace conventional high temperature short time pasteurization of milk? A critical review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Matman N, Min Oo Y, Amnuaikit T, Somnuk K. Continuous production of nanoemulsion for skincare product using a 3D-printed rotor-stator hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2022; 83:105926. [PMID: 35091233 PMCID: PMC8800138 DOI: 10.1016/j.ultsonch.2022.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
In this study, nanoemulsions for skincare products were continuously produced using a hydrodynamic cavitation reactor (HCR) designed with a rotor and stator. The key component of this research is the utilization of a 3D-printed rotor in a HCR for the production of an oil-in-water nanoemulsion. Response surface methodology was used to determine the process conditions, such as speed of the rotor, flow rate, as well as, Span60, Tween60, and mineral oil concentrations, for generating the optimal droplet size in the nanoemulsion. The results showed that a droplet size of 366.4 nm was achieved under the recommended conditions of rotor speed of 3500 rpm, flow rate of 3.3 L/h, Span60 concentration of 2.36 wt%, Tween60 concentration of 3.00 wt%, and mineral oil concentration of 1.76 wt%. Moreover, the important characteristics for consideration in skincare products, such as polydispersity index, pH, zeta potential, viscosity, stability, and niacin released from formulations, were also assessed. For the niacin release profile of emulsion and nanoemulsion formulations, different methods, such as magnetic stirring, ultrasound, and hydrodynamic cavitation, were compared. The nanoemulsion formulations provided a greater cumulative release from the formulation than the emulsion. Particularly, the nanoemulsion generated using the HCR provided the largest cumulative release from the formulation after 12 h. Therefore, the present study suggests that nanoemulsions can be created by means of hydrodynamic cavitation, which reduces the droplet size, as compared to that generated using other techniques. The satisfactory results of this study indicate that the rotor-stator-type HCR is a potentially cost-effective technology for nanoemulsion production.
Collapse
Affiliation(s)
- Nichagan Matman
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ye Min Oo
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Thanaporn Amnuaikit
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Krit Somnuk
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Energy Technology Research Center, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
18
|
Sun X, Liu S, Zhang X, Tao Y, Boczkaj G, Yoon JY, Xuan X. Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization. BIORESOURCE TECHNOLOGY 2022; 345:126251. [PMID: 34728352 DOI: 10.1016/j.biortech.2021.126251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Recently, the hydrodynamic cavitation (HC)-based pretreatment has shown high effectiveness in laboratories and even in industrial productions for conversion of lignocellulosic biomass (LCB) into value-added products. The pretreatment capability derives from the extraordinary conditions of pressures at ∼500 bar, local hotspots with ∼5000 K, and oxidation (hydroxyl radicals) created by HC at room conditions. To promote this emerging technology, the present review summarizes the recent advances in the HC-based pretreatment of LCB. The principle of HC including the sonochemical effect and hydrodynamic cavitation reactor is introduced. The effectiveness of HC on the delignification of LCB as well as subsequent fermentation, paper production, and other applications is evaluated. Several key operational factors (i.e., reaction environment, duration, and feedstock characteristics) in HC pretreatments are discussed. The enhancement mechanism of HC including physical and chemical effects is analyzed. Finally, the perspectives on future research on the HC-based pretreatment technology are highlighted.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Shuai Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan 250061, PR China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| |
Collapse
|
19
|
Masotti F, Cattaneo S, Stuknytė M, De Noni I. Current insights into non-thermal preservation technologies alternative to conventional high-temperature short-time pasteurization of drinking milk. Crit Rev Food Sci Nutr 2021; 63:5643-5660. [PMID: 34969340 DOI: 10.1080/10408398.2021.2022596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Milk is an important nutritional food source characterized by a perishable nature and conventionally thermally treated to guarantee its safety. In recent years, an increasing focus on competing non-thermal food processing technologies has been driven mainly by consumers' expectations for minimally processed products. Due to the heat sensitivity of milk, much research interest has been addressed to mild non-thermal pasteurization processing to keep safety, 'fresh-like' taste and to maintain the organoleptic qualities of raw milk. This review provides an overview of the current literature on non-thermal treatments as standalone alternative technologies to high-temperature short-time (HTST) pasteurization of drinking milk. Results of lab-scale experimentations suggest the feasibility of most emerging non-thermal processing technologies, including high hydrostatic pressure, pulsed electric field, cold plasma, cavitation and light-based technologies, as alternative to thermal treatment of drinking milk with premium in shelf life duration. Nevertheless, a series of regulatory, technological and economical hurdles hinder the industrial scaling-up for most of these substitutes. To date, only high hydrostatic pressure treatments are applied as alone alternative to HTSH pasteurization for processing of "cold pasteurized" drinking milk. Milk submitted to HTST treatment combined to ultraviolet light is currently accepted in EU countries as novel food.
Collapse
Affiliation(s)
- Fabio Masotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Stefano Cattaneo
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Milda Stuknytė
- Unitech COSPECT - University Technological Platforms Office, Università degli Studi di Milano, Milan, Italy
| | - Ivano De Noni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Sun X, Yang Z, Wei X, Tao Y, Boczkaj G, Yoon JY, Xuan X, Chen S. Multi-objective optimization of the cavitation generation unit structure of an advanced rotational hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2021; 80:105771. [PMID: 34689065 PMCID: PMC8551246 DOI: 10.1016/j.ultsonch.2021.105771] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 05/12/2023]
Abstract
Hydrodynamic cavitation (HC) has been widely considered a promising technique for industrial-scale process intensifications. The effectiveness of HC is determined by the performance of hydrodynamic cavitation reactors (HCRs). The advanced rotational HCRs (ARHCRs) proposed recently have shown superior performance in various applications, while the research on the structural optimization is still absent. The present study, for the first time, identifies optimal structures of the cavitation generation units of a representative ARHCR by combining genetic algorithm (GA) and computational fluid dynamics, with the objectives of maximizing the total vapor volume, Vvapor , and minimizing the total torque of the rotor wall, M→z . Four important geometrical factors, namely, diameter (D), interaction distance (s), height (h), and inclination angle (θ), were specified as the design variables. Two high-performance fitness functions for Vvapor and M→z were established from a central composite design with 25 cases. After performing 10,001 simulations of GA, a Pareto front with 1630 non-dominated points was obtained. The results reveal that the values of s and θ of the Pareto front concentrated on their lower (i.e., 1.5 mm) and upper limits (i.e., 18.75°), respectively, while the values of D and h were scattered in their variation regions. In comparison to the original model, a representative global optimal point increased the Vvapor by 156% and decreased the M→z by 14%. The corresponding improved mechanism was revealed by analyzing the flow field. The findings of this work can strongly support the fundamental understanding, design, and application of ARHCRs for process intensifications.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Ze Yang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Xuesong Wei
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland.
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Songying Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
21
|
Eisner MD. Direct and indirect heating of milk – A technological perspective beyond time–temperature profiles. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Sun X, Wang Z, Xuan X, Ji L, Li X, Tao Y, Boczkaj G, Zhao S, Yoon JY, Chen S. Disinfection characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale. ULTRASONICS SONOCHEMISTRY 2021; 73:105543. [PMID: 33845245 PMCID: PMC8059091 DOI: 10.1016/j.ultsonch.2021.105543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Hydrodynamic cavitation is a promising technique for water disinfection. In the present paper, the disinfection characteristics of an advanced hydrodynamic cavitation reactor (ARHCR) in pilot scale were studied. The effects of various flow rates (1.4-2.6 m3/h) and rotational speeds (2600-4200 rpm) on the removal of Escherichia coli (E. coli) were revealed and analyzed. The variation regularities of the log reduction and reaction rate constant at various cavitation numbers were established. A disinfection rate of 100% was achieved in only 4 min for 15 L of simulated effluent under 4200 rpm and 1.4 m3/h, with energy efficiency at 0.0499 kWh/L. A comprehensive comparison with previously introduced HCRs demonstrates the superior performance of the presented ARHCR system. The morphological changes in E. coli were studied by scanning electron microscopy. The results indicate that the ARHCR can lead to serious cleavage and surface damages to E. coli, which cannot be obtained by conventional HCRs. Finally, a possible damage mechanism of the ARHCR, including both the hydrodynamical and sonochemical effects, was proposed. The findings of the present study can provide strong support to the fundamental understanding and applications of ARHCRs for water disinfection.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Zhengquan Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Li Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Xuewen Li
- School of Public Health, Shandong University, Jinan 250061, China.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland.
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Songying Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|