1
|
Choudhary N, Patel B, Desai R, Dawane V, Luhana K, Vyas S, Chinedu Egbosiuba T, Kumar Sahoo D, Kumar Yadav V, Patel A. Adsorption of Brilliant Green Dye by Iron Oxide Nanoparticles Synthesized From the Leaf Extracts of Acacia jacquemontii. IEEE Trans Nanobioscience 2025; 24:234-248. [PMID: 40031223 DOI: 10.1109/tnb.2025.3528131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Phyto-mediated synthesis can be used for the sustainable fabrication of metallic nanoparticles (NPs). Ethanolic leaf extract of Acacia jacquemontii was used to phyto-fabricate iron oxide nanoparticles (FeO NPs). Synthesized FeO NPs were examined by various analytical techniques for their detailed chemical elemental and morphological features. High-performance thin-layer chromatography (HPTLC) was used for the analysis of the ethanolic extracts of the leaves, which ensured the presence of phenols and terpenoids in the extract. FeO NPs show a peak between 350-400nm when analyzed by UV-Vis spectroscopy, and the typical bands were found in the range of 745 cm-1 for Fe-O and 1595 cm-1, 3177 cm-1 for some other organic molecules by Fourier transform-infrared (FTIR). The spherical shape of FeO NPs was investigated with the help of a Field emission scanning electron microscope (FESEM) analysis which exhibited the size varied from 13.35 to 31.29 nm. Electron diffraction spectroscopy (EDS) confirmed the Fe, O, and C peaks, along with N, Cl, S, and K traces. The adsorption capacity of the FeO NPs for brilliant green (BG) dye was evaluated at different pH, dosages of adsorbent, and contact time. The highest adsorption parentage of 57.2% for 10 ppm BG dye was observed at 9 pH and 10 mg doses of FeO NPs. The highest absorption capacity of FeO NPs is 60 mg/g. The recyclability potential of the FeO NPs continuously decreased with the repletion of the cycle from first to fourth whose value reached 19.33% after the fourth cycle. Such phytofabricated FeO NPs and their application in the removal of organic could prove to be eco-friendly and economical.
Collapse
|
2
|
Bose S, Kumar M. Comparative evaluation of α-Bi 2O 3/CoFe 2O 4 and ZnO/CoFe 2O 4 heterojunction nanocomposites for microwave induced catalytic degradation of tetracycline. CHEMOSPHERE 2024; 364:143071. [PMID: 39128776 DOI: 10.1016/j.chemosphere.2024.143071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Two microwave (MW) responsive heterojunction nanocomposite catalysts, i.e., α-Bi2O3/CoFe2O4 (BO/CFO) and ZnO/CoFe2O4 (ZO/CFO), with weight% ratio of 70/30, 50/50, 30/70 were synthesized by sequential thermal decomposition and co-precipitation methods, and used for the degradation of tetracycline (TC) under MW irradiation. The formation of desired catalysts was confirmed through the characterization results of XRD, FT-IR, SEM, VSM, UV-DRS, XPS, BET, etc. Using batch MW experiments, the catalyst dose, pH, initial TC concentration, reaction temperature, and MW power were optimized for TC removal. Under the following reaction conditions: catalyst dose ∼1 g/L, initial TC concentration ∼1 mg/L, temperature ∼90 °C, MW ∼450 W, BO/CFO, and ZO/CFO showed ∼97.55% and 88.23% TC degradation, respectively, after 5 min. The difference in the catalytic response against TC degradation indicated the difference in reflective loss (RL) between these two catalysts. The presence of other competitive anions has affected the removal efficiency of TC due to the scavenging effect. The radical trapping study revealed the significant contribution of TC degradation by hydroxyl radicals in the case of ZO/CFO, whereas for BO/CFO, superoxide (●O2-) and hydroxyl radicals (●OH) both played influential roles. The Z-scheme heterojunction of BO/CFO allowed the formation of ●O2- but the same was inhibited in type-II heterojunction of ZO/CFO due to the valance band position. The dielectric loss, magnetic loss, interfacial polarization, and high electrical conductivity, 'hotspots' were produced over the catalyst surface alongside electron-hole separation at heterojunctions, which were responsible for the generation of reactive oxygen species. In addition, Co3+/Co2+ and Fe3+/Fe2+ redox cycles have promoted ●O2- and sulfate radical production during persulfate application. Among the two MW responsive catalysts, BO/CFO could be a potential material for rapidly destroying emerging organic pollutants from wastewater without applying other oxidative chemicals under MW irradiation.
Collapse
Affiliation(s)
- Saptarshi Bose
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Mathava Kumar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
3
|
Roy S, Mishra SR, Ahmaruzzaman M. Ultrasmall copper-metal organic framework (Cu-MOF) quantum dots decorated on waste derived biochar for enhanced removal of emerging contaminants: Synergistic effect and mechanistic insight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121802. [PMID: 39003907 DOI: 10.1016/j.jenvman.2024.121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
This study proposes a novel one-pot hydrothermal impregnation strategy for surface decoration of waste derived pisum sativum biochar with zero‒dimensional Cu‒MOF Quantum dots (PBC‒HK), with an average particle size of 5.67 nm, for synergistic removal of an emerging sulfur containing drug pantoprazole (PTZ) and Basic Blue 26 (VB) dye within 80 min and 50 min of visible-light exposure, respectively. The designed Integrated Photocatalytic Adsorbent (IPA) presented an enhanced PTZ removal efficiency of 95.23% with a catalyst loading of 0.24 g/L and initial PTZ conc. 30 mg/L at pH 7, within 80 min via synergistic adsorption and photodegradation under visible-light exposure. While, on the other hand, 96.31% VB removal efficiency was obtained in 50 min with a catalyst dosage of 0.20 g/L, initial VB conc. 60 mg/L at pH 7 under similar irradiation conditions. An in-depth analysis of the synergistic adsorption and photocatalysis mechanism resulting in the shortened time for the removal of contaminants in the synergistic integrated model has been performed by outlining the various advantageous attributes of this strategy. The first-order degradation rate constant for PTZ was found to be 0.04846 min-1 and 0.04370 min-1 for PTZ and VB, respectively. Adsorption of contaminant molecules on the biochar (PS‒BC) surface can facilitate photodegradation by accelerating the kinetics, and photodegradation promotes regeneration of adsorption sites, contributing to an overall reduction in operation time for removal of contaminants. Besides enhancing the adsorption of targeted pollutants, the carbon matrix of IPAs serves as a surface for adsorption of intermediates of degradation, thereby minimizing the risk of secondary pollution. The photogenerated holes present in the VB is responsible for the generation of •OH radicals. While, the photogenerated electrons present in the CB are captured by Cu2+ of the MOF metal center, reducing it to Cu+, which is subsequently oxidized to produce additional •OH species in the aqueous medium. This process leads to effective charge separation of the photogenerated charge carriers and minimizes the probability of charge recombination as evident from photoluminescence (PL) analysis. Meanwhile, PL studies, EPR and radical trapping experiments indicate the predominant role of •OH radicals in the removal mechanism of PTZ and VB. The investigation of the degradation reaction intermediates was confirmed by HR‒LCMS, on the basis of which the plausible degradation pathway was elucidated in detail. Moreover, effects of pH, inorganic salts, other organic compounds and humic acid concentration have been investigated in detail. The environmental impact of the proposed method was comprehensively evaluated by ICP-OES analysis and TOC and COD removal studies. Furthermore, the economic feasibility and the cost-effectiveness of the catalyst was assessed to address the potential for large scale commercialization. Notably, this research not only demonstrates a rational design strategy for the utilization of solid waste into treasure via the fabrication of IPAs based on MOF Quantum dots (QDs) and waste-derived biochar, but also provides a practical solution for real wastewater treatment systems for broader industrial applications.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| |
Collapse
|
4
|
Kanwal A, Rehman R, Imran M, Alakhras F, T Al-Thagafi Z, E Al-Hazemi M, Akram M, Dar A, Ali S. Mechanistic studies of phytoremediative eradication of brilliant green dye from water by acid-treated Acacia concinna lignocellulosic waste. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2034-2047. [PMID: 38963333 DOI: 10.1080/15226514.2024.2372848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A rapidly growing problem for life on earth is contamination of fresh water which is addressed in this article. By taking a glimpse on the causes of contaminations, persistent organic pollutants, especially synthetic dyes got prominent role. Here, out of commonly used techniques, adsorption using plant wastes was chosen for phytofiltration of such dyes. A natural adsorbent from plant source was selected and processed with acid, characterized with FTIR and SEM and then checked the efficacy on cationic dye brilliant green. Phytofiltration of dye was done to check the effectivity of both untreated (OA) and acid treated (OA-AC) form of Acacia concinna biowaste. Results were obtained, evaluated and presented here, giving maximum adsorption capacities (Qm) of AC and OA-AC 95.24 and 909.09 mg.g-1, respectively following Langmuir, pseudo second order kinetics and spontaneous exothermic nature, indicating their suitability to adopt on larger scale wastewater treatment effectively using green technology.
Collapse
Affiliation(s)
- Ayesha Kanwal
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Rabia Rehman
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Fadi Alakhras
- College of Pharmacy, Middle East University, Amman, Jordan
| | - Zahrah T Al-Thagafi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Maha E Al-Hazemi
- Department of Chemistry, College of Science and Art at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Mehwish Akram
- Institute of Geology, University of the Punjab, Lahore, Pakistan
| | - Amara Dar
- Centre for Analytical Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Saadat Ali
- Department of Engineering, University of Engineering and Technology, Pakistan
| |
Collapse
|
5
|
Chan YY, Pang YL, Lim S, Chong WC, Shuit SH. Plant-mediated synthesis of silver-doped ZnO nanoparticles with high sonocatalytic activity: Sonocatalytic behavior, kinetic and thermodynamic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40495-40510. [PMID: 36417069 DOI: 10.1007/s11356-022-24145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Together with the rapid growth of technology, the discharge of wastewater from industry into environment had become a hot topic among society nowadays. More attention had been given to the development of water treatment techniques. In this study, sonocatalysis was proposed to degrade the organic pollutants using silver-doped zinc oxide (Ag-ZnO) nanoparticles which were synthesized via green synthesis process using Clitoria ternatea Linn (Asian Pigeonwings flower). The characterization results revealed that the incorporation of Ag into the ZnO lattice decreased the crystallite size and increased the specific surface area of ZnO nanoparticles. It is noteworthy that about 98% of sonocatalytic degradation efficiency of malachite green (MG) was successfully achieved within 30 min in the presence of 5 wt.% Ag-ZnO with 1.0 g/L of catalyst loading under 500 mg/L of initial dye concentration, 80 W of ultrasonic power, 45 kHz of ultrasound frequency, and 2.0 mM of oxidant concentration. The kinetic study showed that the sonocatalytic degradation of organic dye was fitted well into second-order kinetic model with high R2 value (0.9531). In the thermodynamic study, negative value of standard Gibbs free energy and low value of activation energy (+ 24.43 kJ/mol) were obtained in the sonocatalytic degradation of MG using the green-synthesized Ag-ZnO sample. HIGHLIGHTS: • Facile synthesis of silver-doped zinc oxide nanoparticles using plant extract which act as reducing and stabilizing agents • Optical, physical, and chemical characterization of green-synthesized nanomaterials were performed • Evaluation of sonocatalytic degradation of organic dye using green-synthesized nanomaterials • Sonocatalytic behavior, kinetic and thermodynamic studies of sonocatalytic reaction.
Collapse
Affiliation(s)
- Yin Yin Chan
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, 43000, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, 43000, Malaysia.
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Malaysia.
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Malaysia
| | - Woon Chan Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Malaysia
| | - Siew Hoong Shuit
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Malaysia
| |
Collapse
|
6
|
Dey A, Gogate PR. Comparative study of different ultrasound based hybrid oxidation approaches for treatment of real effluent from coke oven plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120095. [PMID: 38266523 DOI: 10.1016/j.jenvman.2024.120095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
The present study investigates the treatment of real coke plant effluent utilising several ultrasound-based hybrid oxidation approaches including Ultrasound (US) alone, US + catalyst, US + H2O2, US + Fenton, US + Ozone, and US + Peroxone, with main objective as maximizing the reduction of chemical oxygen demand (COD). Ultrasonic horn at power of 130 W, frequency as 20 kHz and duty cycle as 70% was applied. Study with varying catalyst (TiO2) dose from 0.5 g/L - 2 g/L revealed 1 g/L as the optimum dose resulting in 65.15% reduction in COD. A 40 ml/L dose of H2O2 was shown to be optimal, giving an 81.96% reduction in COD, based on the study of varied doses of H2O2 from 20 ml/L to 60 ml/L. US + Fenton reagent combination at optimum Fe2+/H2O2 (w/v) ratio of 1:1 resulted in a COD reduction of 85.29% whereas reduction of COD as 81.75% was obtained at the optimum flow rate of ozone as 1 LPM for US + Ozone approach. US + Peroxone demonstrated the best efficiency (90.48%) for COD reduction. To find the toxicity effects, the treated (US + peroxone) and non-treated samples were tested for the growth of bacterial cultures. It was observed that the toxicity of the treated sample increased only marginally after treatment. High-resolution liquid chromatography mass spectrometry (HR-LCMS) analysis was also performed to establish intermediate compounds. Overall, the coupling of ultrasound with oxidation processes produced better results with US + Peroxone established as best treatment approach for coke plant effluent.
Collapse
Affiliation(s)
- Ananya Dey
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
| | - Parag R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India.
| |
Collapse
|
7
|
Gadore V, Singh AK, Mishra SR, Ahmaruzzaman M. RSM approach for process optimization of the photodegradation of congo red by a novel NiCo 2S 4/chitosan photocatalyst. Sci Rep 2024; 14:1118. [PMID: 38212420 PMCID: PMC10784554 DOI: 10.1038/s41598-024-51618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
The current study reported a facile co-precipitation technique for synthesizing novel NiCo2S4/chitosan nanocomposite. The photocatalytic activity of the prepared nanocomposite was evaluated using congo red (CR) dye as a target pollutant. The central composite design was employed to examine the impact of different reaction conditions on CR dye degradation. This study selected the pH, photocatalyst loading, initial CR concentration and reaction time as reaction parameters, while the degradation efficiency (%) was selected as the response. A desirability factor of 1 suggested the adequacy of the model. Maximum degradation of 93.46% of 35 ppm dye solution was observed after 60 min of visible light irradiation. The response to surface methodology (RSM) is a helpful technique to predict the optimum reaction conditions of the photodegradation of CR dye. Moreover, NiCo2S4/Ch displayed high recyclability and reusability up to four consecutive cycles. The present study suggests that the prepared NiCo2S4/chitosan nanocomposite could prove to be a viable photocatalyst for the treatment of dye-contaminated wastewater.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Ashish Kumar Singh
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India.
| |
Collapse
|
8
|
Balakrishnan A, Chinthala M, Polagani RK. 3D kaolinite/g-C 3N 4-alginate beads as an affordable and sustainable photocatalyst for wastewater remediation. Carbohydr Polym 2024; 323:121420. [PMID: 37940252 DOI: 10.1016/j.carbpol.2023.121420] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Graphitic carbon nitride (GCN) is an efficient visible-light-driven metal-free semiconductor with superior photocatalytic activity. However, the main drawbacks of GCN include lower adsorption capacity, poor reusability and recoverability. To address these drawbacks, kaolinite/g-C3N4-alginate beads were fabricated using a cross-linking method to remove brilliant green dye from wastewater via photocatalysis. The characterization studies proved the alginate's potential capability in altering photocatalyst bandgap (2.78 to 2.55 eV) and minimizing recombination of electron-hole pairs. Kaolinite/g-C3N4-alginate photocatalyst removed 97 % of brilliant green (10 mg/L) in 90 min under visible light irradiation. The superior performance of the kaolinite/g-C3N4-alginate beads was ascribed to its improved adsorption and effective utilization of visible light. The key advantages of kaolinite/g-C3N4-alginate beads were their quick recovery and extended reusability upto ten cycles. The sustainability metrics analysis of kaolinite/g-C3N4-alginate beads confirmed the environmental suitability and practicability in wastewater remediation. This study provides new insights into the low-cost and sustainable preparation of highly reusable g-C3N4-based photocatalysts for environmental remediation.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Mahendra Chinthala
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| | - Rajesh Kumar Polagani
- Centre for Fuel Cell Technology (CFCT), International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Chennai, Tamilnadu 600113, India
| |
Collapse
|
9
|
Rashid M, Rehman R, E Al-Hazemi M, Jahangir MM, T Al-Thagafi Z, I Alsantali R, Akram M. Process optimization of adsorptive phytoremediation of mutagenic brilliant green dye for health risk management using chemically activated Symplocos racemosa agro-waste. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:626-638. [PMID: 37735932 DOI: 10.1080/15226514.2023.2259987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Textile industries use large amounts of water as well as dyes. These dyes containing water are then discharged into the water bodies causing a significant role in water pollution. Brilliant Green dye contributes to many harmful diseases related to the respiratory and gastrointestinal tract. In this study, Symplocos racemosa (SR) agro-waste was chemically treated with acid (SR-HCl) and base (SR-NaOH) and then used for removing Brilliant Green Dye (BGD) on the batch scale. They were characterized by SEM, EDX, FTIR, XRD, TGA and DSC. Optimized conditions were 30 °C temperature, pH 6, adsorbent dose of 0.10 g/25 ml dye solution, shaking speed of 100 revolutions per minute, initial dye concentration of 50 ppm and 35 min time for shaking adsorbent and dye solution. Adsorption data obtained were analyzed using isotherms. The experimental data was found to fit well with the Langmuir model and the maximum adsorption capacity (qmax) of BGD on the SR, SR-HCl, and SR-NaOH was revealed to be 62.90, 65.40, and 71 mg/g respectively. Kinetic data (pseudo-first-order and pseudo-second-order) were evaluated and adsorption tends to follow the pseudo-2nd-order, which indicated the chemisorption mechanism. The results revealed that Symplocos racemosa agro-waste can be considered as the potential biosorbent.
Collapse
Affiliation(s)
- Muhammad Rashid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Rabia Rehman
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Maha E Al-Hazemi
- Department of Chemistry, College of Science and Art at khulis, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Zahrah T Al-Thagafi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mehwish Akram
- Institute of Geology, University of the Punjab, Lahore,- Pakistan
| |
Collapse
|
10
|
Khandelwal M, Choudhary S, Harish, Kumawat A, Misra KP, Rathore DS, Khangarot RK. Asterarcys quadricellulare algae-mediated copper oxide nanoparticles as a robust and recyclable catalyst for the degradation of noxious dyes from wastewater. RSC Adv 2023; 13:28179-28196. [PMID: 37753397 PMCID: PMC10518664 DOI: 10.1039/d3ra05254k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The present article explores the synthesis of copper oxide nanoparticles (CuO NPs) utilizing Asterarcys quadricellulare algal extract and examines the effect of various reaction parameters on the size and morphology of the nanoparticles. The samples were thoroughly characterized using XRD, FTIR, UV-vis, FE-SEM, and EDS techniques. The XRD analysis disclosed that the size of the synthesized nanoparticles could be controlled by adjusting the reaction parameters, ranging from 4.76 nm to 13.70 nm along the highest intensity plane (111). FTIR spectroscopy provided evidence that the phytochemicals are present in the algal extract. We have compared the photocatalytic activity of biologically and chemically synthesized CuO NPs and observed that biologically synthesized CuO NPs showed better photocatalytic activity than chemically synthesized CuO NPs. The biosynthesized CuO NPs (S8) demonstrated outstanding photodegradation activity towards four different organic dyes, namely BBY, BG, EBT, and MG, with degradation percentages of 95.78%, 98.02%, 94.15%, and 96.04%, respectively. The maximum degradation efficacy of 98.02% was observed for the BG dye at optimized reaction conditions and 60 min of visible light exposure. The kinetics of the photodegradation reaction followed the pseudo-first-order kinetic model, and the rate constant (k) was calculated using the Langmuir-Hinshelwood model for each dye. This study provides an efficient and sustainable approach for synthesizing CuO NPs with superior photocatalytic degradation efficiency towards organic dyes.
Collapse
Affiliation(s)
- Manisha Khandelwal
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University Udaipur-313001 Rajasthan India
| | - Sunita Choudhary
- Department of Botany, University College of Science, Mohanlal Sukhadia University Udaipur-313001 Rajasthan India
| | - Harish
- Department of Botany, University College of Science, Mohanlal Sukhadia University Udaipur-313001 Rajasthan India
| | - Ashok Kumawat
- Department of Physics, School of Basic Sciences, Manipal University Jaipur Jaipur-303007 Rajasthan India
| | - Kamakhya Prakash Misra
- Department of Physics, School of Basic Sciences, Manipal University Jaipur Jaipur-303007 Rajasthan India
| | - Devendra Singh Rathore
- Department of Environmental Sciences, Mohanlal Sukhadia University Udaipur-313001 Rajasthan India
| | - Rama Kanwar Khangarot
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University Udaipur-313001 Rajasthan India
| |
Collapse
|
11
|
Rada R, Vermesan H, Rada S, Leostean C, Manea DL, Culea E. Development of Iron-Silicate Composites by Waste Glass and Iron or Steel Powders. Molecules 2023; 28:6296. [PMID: 37687124 PMCID: PMC10488717 DOI: 10.3390/molecules28176296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
There is growing interest in the opportunities regarding construction and demolition wastes, such as glass and metal powders, for developing a circular economy and their transformation into new materials. This management and recycling of construction and demolition waste offers environmental benefits and conservation of natural resources. In this paper, new magnetic composite materials were prepared by wet chemical synthesis methods using crushed glasses and iron and steel waste powders as raw materials. The prepared iron-silicate composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis, infrared (IR), ultraviolet-visible, and electron paramagnetic resonance (EPR) spectroscopy, and magnetic measurements. The XRD data confirm the formation of varied crystalline phases of the iron ions. The presence of the Fe3O4 crystalline phase was detected in the composites containing the iron waste powders. The inspection of the SEM micrographs revealed slightly better homogeneity for the composite material containing larger amounts of iron waste and heterogeneous morphology with cracks and random crystallinity for the composite doped with steel waste. By doping with different contents of iron or steel waste powder, structural modifications in the silicate network and the formation of new bands in the IR spectra were evidenced. The UV-Vis spectra were characterized by the absorption peaks for both the tetrahedral and octahedral geometries of the Fe3+ ions and the octahedral coordination of the Fe2+ ions with oxygen anions. The EPR data show resonance lines with g ~2, 4.3, and 6.4, corresponding to the Fe3+ ions. Using hysteresis curves, the superparamagnetic properties of the iron-silicate composites were evidenced.
Collapse
Affiliation(s)
- Roxana Rada
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (R.R.); (H.V.); (D.L.M.); (E.C.)
| | - Horatiu Vermesan
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (R.R.); (H.V.); (D.L.M.); (E.C.)
| | - Simona Rada
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (R.R.); (H.V.); (D.L.M.); (E.C.)
- National Institute of Research and Development for Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania;
| | - Cristian Leostean
- National Institute of Research and Development for Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania;
| | - Daniela Lucia Manea
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (R.R.); (H.V.); (D.L.M.); (E.C.)
| | - Eugen Culea
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania; (R.R.); (H.V.); (D.L.M.); (E.C.)
| |
Collapse
|
12
|
Zhu W, Zuo X, Zhang X, Deng X, Ding D, Wang C, Yan J, Wang X, Wang G. MOFs-derived CuO-Fe 3O 4@C with abundant oxygen vacancies and strong Cu-Fe interaction for deep mineralization of bisphenol A. ENVIRONMENTAL RESEARCH 2023; 228:115847. [PMID: 37030409 DOI: 10.1016/j.envres.2023.115847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
A novel CuO-Fe3O4 encapsulated in the carbon framework with abundant oxygen vacancies (CuO-Fe3O4@C) was successfully prepared by thermal conversion of Cu(OAc)2/Fe-metal organic framework. The as-prepared catalyst exhibited excellent peroxymonosulfate (PMS) activation performance, good recyclability and fast magnetic separation. Under optimal conditions, the added BPA (60 mg/L) could be completely removed by CuO-Fe3O4@C/PMS system within 15 min with the degradation rate constant (k) of 0.32 min-1, being 10.3 and 246.2 times that in CuO/PMS (0.031min-1) and Fe3O4/PMS (0.0013 min-1) system. A deep mineralization rate of BPA (>80%) was achieved within 60 min. The results demonstrated the synergistic effect of bimetallic clusters, oxygen vacancies and carbon framework was a key benefit for the exposure of more active sites, the electron donor capacity and the mass transfer of substrates, thereby promoting the decomposition of BPA. Capture experiments and EPR indicated that 1O2 was the predominant reactive oxygen species (ROSs). The degradation routes of BPA and the activation mechanism of PMS were proposed. This study offers an opportunity to develop promising MOFs-derived hybrid catalysts with tailored structures and properties for the practical application of SR-AOPs.
Collapse
Affiliation(s)
- Wenjun Zhu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiaohua Zuo
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xiaofei Zhang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xiangyi Deng
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Deng Ding
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chunlei Wang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - JunTao Yan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaobo Wang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Guanghui Wang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| |
Collapse
|
13
|
Sonocatalytic Degradation of Chrysoidine R Dye Using Ultrasonically Synthesized NiFe2O4 Catalyst. Catalysts 2023. [DOI: 10.3390/catal13030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
The novel ultrasound-assisted co-precipitation method was successfully applied for the synthesis of the NiFe2O4 catalyst, which offered the advantages of lower particle size and better crystalline structure without affecting the phase planes. Furthermore, the efficacy of synthesized catalysts was evaluated using ultrasound-assisted catalytic degradation of Chrysoidine R dye. The study was designed to evaluate the effect of different parameters, such as pH, duty cycle, power output, and catalyst loading on Chrysoidine R dye degradation using a 5 wt% NiFe2O4 catalyst synthesized ultrasonically. At the optimized condition of 120 W ultrasonic power, 70% duty cycle, 3 pH, 0.5 g/L catalyst loading, and 160 min of reaction time, the best degradation of 45.01% was obtained. At similar conditions, the conventionally synthesized catalyst resulted in about 15% less degradation. Chrysoidine R dye degradation was observed to follow second-order kinetics. To accelerate the degradation, studies were performed using hydrogen peroxide at various loadings where it was elucidated that optimum use of 75 ppm loading showed the maximum degradation of 92.83%, signifying the important role of the co-oxidant in ultrasound-assisted catalytic degradation of Chrysoidine R dye. Overall, the present study clearly demonstrated the potential benefits of ultrasound in catalyst synthesis as well as in catalytic degradation.
Collapse
|
14
|
Mousavi SM, Meraji SH, Sanati AM, Ramavandi B. Phenol red dye removal from wastewater using TiO 2-FSM-16 and Ni-FSM-16 photocatalysts. Heliyon 2023; 9:e14488. [PMID: 36925530 PMCID: PMC10011056 DOI: 10.1016/j.heliyon.2023.e14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
In this study, the performance of Ni-FSM-16 and TiO2-FSM-16 photocatalysts in phenol red removal was explored. The XRD, FE-SEM, and BET tests were used to characterize the catalysts. All experiments were performed at ambient temperature and under UV (20 W). The parameters including dye concentration (20-80 mg/L), photocatalyst concentration (0-8 g/L), UV exposure duration, and contact time (0-160 min) were optimized using RSM software. BET values of Ni-FSM-16 and TiO2-FSM-16 were 718.63 m2/g and 844.93 m2/g, respectively. TiO2-FSM-16 showed better performance in dye removal than Ni-FSM-16. At pH 3, the maximum dye removal by TiO2-FSM-16/UV and Ni-FSM-16/UV was obtained 87% and 64%, respectively. The positive hole species had the main role in photocatalytic phenol red removal. The reusability study was done for up to 7 cycles, but the catalysts can be reused effectively for up to 3 cycles. The synergistic factor for the TiO2-FSM-16 and TiO2-FSM-16/UV processes were calculated to be 1.55 and 2.12, respectively. The dye removal efficiency by TiO2-carbon and Ni-carbon was slightly lower than those obtained by the FSM-16 ones. The TiO2-FSM-16 and Ni-FSM-16 catalysts had a suitable surface and acceptable efficiency in phenol red removal.
Collapse
Affiliation(s)
| | | | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
15
|
Rajesh G, Kumar PS, Akilandeswari S, Rangasamy G, Mandal A, Shankar VU, Ramya M, Nirmala K, Thirumalai K. A synergistic consequence of catalyst dosage, pH solution and reactive species of Fe-doped CdAl 2O 4 nanoparticles on the degradation of toxic environmental pollutants. CHEMOSPHERE 2023; 318:137919. [PMID: 36702418 DOI: 10.1016/j.chemosphere.2023.137919] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Industrial wastewater treatment techniques are one of the biggest challenges of the scientific community that necessitate an increased consciousness to address water scarcity worldwide. Herein, an eco-friendly and cost-effective process was demonstrated to cope with tannery, textile and pharmaceutical dye wastes through the co-precipitation of highly reusable Fe-doped CdAl2O4 samples. The XRD studies exposed the space group R 3‾ with no secondary phase step being found for all samples. The outcomes of optical absorbance spectra demonstrate that Fe doping diminished the energy gap from 3.66 to 1.67 eV. HR-TEM images of existing spherical particles and some of the particles' rod-like structures with little agglomeration were found for Fe (0.075 M) doped CdAl2O4 nanoparticles. The PL emission outcomes show that Fe doping effectively prevented the charge carrier's recombination in CdAl2O4 during photocatalysis. All Fe-doped CdAl2O4 samples demonstrated higher photodegradation behaviors towards the effectual degradation of both dye solutions as compared to pure CdAl2O4 samples. Particularly, Fe (0.075 M)-doped CdAl2O4 samples exhibited improved photodegradation performance of 93 and 95% for both dye solutions. The amount of photodegradation was noticed to rely on dye pH, irradiation time, catalyst dosage, initial dye amount, and reactive species. The recyclability of the Fe (0.075 M) doped CdAl2O4 nanoparticles denotes that 78 and 82% of BB and BG were removed up to the 6th run of usage. The outcomes of trapping tests,.OH- and h+ radicals were the major Scavenging in the photodegradation reaction. COD studies affirmed the whole mineralization of BB and BG dye molecules. It is expected that our present examination could offer to improve various spinal oxide materials for the photodegradation activity of pharmaceutical contaminants and environmental issues and can also resolve energy storage applications.
Collapse
Affiliation(s)
- G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India.
| | - S Akilandeswari
- PG & Research Department of Physics, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Aindrila Mandal
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - V Uma Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - K Nirmala
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - K Thirumalai
- Department of Chemistry, Government Arts College, Tiruvannamalai, Tamil Nadu, India
| |
Collapse
|
16
|
Fan H, Chen C, Huang Q, Lu J, Hu J, Wang P, Liang J, Hu H, Gan T. Zinc-doped and biochar support strategies to enhance the catalytic activity of CuFe 2O 4 to persulfate for crystal violet degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38775-38793. [PMID: 36585595 DOI: 10.1007/s11356-022-24929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Sulfate radicals-based Fenton-like technology has placed more emphasis on effectively dealing with the threat of dye wastewater. In this work, the Zn-doped CuFe2O4@biochar composite (Cu0.9Zn0.1Fe2O4@BC) was prepared through the convenient sol-gel pyrolysis process and applied as heterogeneous persulfate (PS) activator for crystal violet (CV) degradation. The crystal morphology and physicochemical properties of Cu0.9Zn0.1Fe2O4@BC were investigated by scanning electron microscope (SEM), X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller method (BET), and X-ray photoelectron spectroscopy (XPS). The morphology of the catalyst changed before and after Zn doping. The crystallite size, lattice constant, saturation magnetization, and oxygen vacancy content increased after doping Zn. Compared with CuFe2O4@BC, the CV degradation efficiency of Cu0.9Zn0.1Fe2O4@BC activating PS increased from 87.7 to 96.9%, and the corresponding reaction rate constant increased by about 3.69 times. The effect of experimental conditions was systematically studied on the degradation progress. The degradation efficiency of CV was 91% after five times cycle experiments. Multiple experiments indicated that SO4•-, •OH and O2•- predominated for CV degradation. The degradation mechanism of CV in the Cu0.9Zn0.1Fe2O4@BC/PS system involved both free radical (SO4•-, •OH and O2•-) and non-free radical pathways (electron transfer). The possible degradation pathways were investigated according to the ultra-performance liquid chromatography mass spectrometry (UPLC-MS) analysis of degradation intermediates. The result showed that Cu0.9Zn0.1Fe2O4@BC have an excellent catalyst performance, which provides a new strategy for improving catalytic activity.
Collapse
Affiliation(s)
- Hui Fan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Congjin Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Quanlong Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jingping Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jiaqi Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Peiwen Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
17
|
Vinayagam R, Hebbar A, Senthil Kumar P, Rangasamy G, Varadavenkatesan T, Murugesan G, Srivastava S, Concepta Goveas L, Manoj Kumar N, Selvaraj R. Green synthesized cobalt oxide nanoparticles with photocatalytic activity towards dye removal. ENVIRONMENTAL RESEARCH 2023; 216:114766. [PMID: 36370813 DOI: 10.1016/j.envres.2022.114766] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed at the synthesis of cobalt oxide nanoparticles (CONPs) mediated by leaf extract of Muntingia calabura using a rapid and simple method and evaluation of its photocatalytic activity against methylene blue (MB) dye. UV-vis absorption spectrum showed multiple peaks with an optical band gap of 2.05 eV, which was concordant with the literature. FESEM image signified the irregular-shaped, clusters of CONPs, and EDX confirmed the existence of the Co and O elements. The sharp peaks of XRD spectrum corroborated the crystalline nature with a mean crystallite size of 27.59 nm. Raman spectrum substantiated the purity and structural defects. XPS signified the presence of Co in different oxidation states. FTIR image revealed the presence of various phytochemicals present on the surface and the bands at 515 and 630 cm-1 designated the characteristic Co-O bonds. VSM studies confirmed the antiferromagnetic property with negligible hysteresis. The high BET specific surface area (10.31 m2/g) and the mesoporous nature of the pores of CONPs signified the presence of a large number of active sites, thus, indicating their suitability as photocatalysts. The CONPs degraded 88% of 10 mg/L MB dye within 300 min of exposure to sunlight. The degradation of MB dye occurred due to the formation of hydroxyl free radicals on exposure to sunlight, which followed first-order kinetics with rate constant of 0.0065 min-1. Hence, the CONPs synthesized herein could be applied to degrade other xenobiotics and the treatment of industrial wastewater and environmentally polluted samples.
Collapse
Affiliation(s)
- Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S.Ramaiah Institute of Technology, Bengaluru - 560054, Karnataka, India
| | - Shikhar Srivastava
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka, 574110, India
| | - N Manoj Kumar
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
18
|
Akdağ S, Sadeghi Rad T, Keyikoğlu R, Orooji Y, Yoon Y, Khataee A. Peroxydisulfate-assisted sonocatalytic degradation of metribuzin by La-doped ZnFe layered double hydroxide. ULTRASONICS SONOCHEMISTRY 2022; 91:106236. [PMID: 36442410 PMCID: PMC9709225 DOI: 10.1016/j.ultsonch.2022.106236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 05/12/2023]
Abstract
Metribuzin is an herbicide that easily contaminates ground and surface water. Herein, La-doped ZnFe layered double hydroxide (LDH) was synthesized for the first time and used for the degradation of metribuzin via ultrasonic (US) assisted peroxydisulfate (PDS) activation. The synthesized LDH had a lamellar structure, an average thickness of 26 nm, and showed mesoporous characteristics, including specific surface area 110.93 m2 g-1, pore volume 0.27 cm3 g-1, and pore diameter 9.67 nm. The degradation efficiency of the US/La-doped ZnFe LDH/PDS process (79.1 %) was much greater than those of the sole processes, and the synergy factor was calculated as 3.73. The impact of the reactive species on the sonocatalytic process was evaluated using different scavengers. After four consecutive cycles, 10.8 % loss occurred in the sonocatalytic activity of the La-doped LDH. Moreover, the efficiency of the US/La-doped LDH/PDS process was studied with respect to the degradation of metribuzin in a wastewater matrix. According to GC-MS analysis, six by-products were detected during the degradation of metribuzin. Our results indicate that the US/La-doped ZnFe LDH/PDS process has great potential for efficient degradation of metribuzin-contaminated water and wastewater.
Collapse
Affiliation(s)
- Sultan Akdağ
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Tannaz Sadeghi Rad
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Ramazan Keyikoğlu
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey; Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, South Korea.
| | - Alireza Khataee
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| |
Collapse
|
19
|
Ecer Ü, Şahan T, Zengin A, Gubbuk İH. Decolorization of Rhodamine B by silver nanoparticle-loaded magnetic sporopollenin: characterization and process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79375-79387. [PMID: 35710967 DOI: 10.1007/s11356-022-21416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Silver nanoparticles (Ag NPs) were reduced on the surface of magnetic sporopollenin (Fe3O4@SP) modified with poly-dopamine to enhance the degradation capability for Rhodamine B (RhB). The polydopamine-coated Fe3O4@SP (PDA@ Fe3O4@SP) acts as a self-reducing agent for Ag+ ions to Ag0. The structural properties of the synthesized nanocomposite were determined using Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), and vibrating sample magnetometer (VSM). The systematic study of the degradation process was performed using Response Surface Methodology (RSM) to determine the relationship between the four process variables, namely, initial RhB concentration, NaBH4 amount, catalyst amount, and time. Optimum points were determined for these four parameters using both matrix and numerical optimization methods. Under optimum conditions, RhB was decolorized with a yield of 98.11%. The apparent activation energy (Ea) and rate constant (k) for the degradation were 24.13 kJ/mol and 0.77 min-1, respectively. The reusability studies of the Ag@PDA@Fe3O4@SP exhibited more than 85% degradation ability of the dye even after five cycles. As a result, Ag@PDA@Fe3O4@SP possessed high catalytic activity, fast reduction rate, good reusability, easy separation, and simple preparation, endowing this catalyst to be used as a promising catalyst for the decolorization of dyes in aqueous solutions.
Collapse
Affiliation(s)
- Ümit Ecer
- Department of Chemical Engineering, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, Van, 65080, Turkey
| | - Tekin Şahan
- Faculty of Science, Department of Chemistry, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - Adem Zengin
- Faculty of Science, Department of Chemistry, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - İlkay Hilal Gubbuk
- Faculty of Science, Department of Chemistry, Selcuk University, 42075, Konya, Turkey
| |
Collapse
|
20
|
Saha B, Debnath A, Saha B. Fabrication of PANI@Fe–Mn–Zr hybrid material and assessments in sono-assisted adsorption of methyl red dye: Uptake performance and response surface optimization. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Miyah Y, Benjelloun M, Salim R, Nahali L, Mejbar F, Lahrichi A, Iaich S, Zerrouq F. Experimental and DFT theoretical study for understanding the adsorption mechanism of toxic dye onto innovative material Fb-HAp based on fishbone powder. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Das P, Debnath A. Fabrication of MgFe 2O 4/polyaniline nanocomposite for amputation of methyl red dye from water: Isotherm modeling, kinetic and cost analysis. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Payel Das
- Department of Civil Engineering, National Institute of Technology Agartala, Jirania, West Tripura, India
| | - Animesh Debnath
- Department of Civil Engineering, National Institute of Technology Agartala, Jirania, West Tripura, India
| |
Collapse
|
23
|
Li W, Liang Y, Li B, Feng J. Sonoprocessing of wetting of SiC by liquid Al: A thermodynamic and kinetic study. ULTRASONICS SONOCHEMISTRY 2022; 88:106092. [PMID: 35878510 PMCID: PMC9310135 DOI: 10.1016/j.ultsonch.2022.106092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The sonoprocessing of droplet spreading during the wetting process of molten aluminum droplets on SiC ceramic substrates at 700 °C is investigated in this paper. When wetting is assisted by a 20 kHz frequency ultrasonic field, the wettability of liquid metal gets enhanced, which has been determined by the variations in thermodynamic energy and wetting kinetics. Wetting kinetic characteristics are divided into two stages according to pinning and depinning states of substrate/droplet contact lines. The droplet is static when the contact line is pinning, while it is forced to move when the contact line is depinning. When analyzing the pinning stage, high-speed photography reveals the evidence of oxide films being rapidly crushed outside the aluminum droplet. In this work, atomic models of spherical Al core being wrapped by alumina shell are tentatively built, whose dioxide microstructures are being transformed from face-centered cubic into liquid at the atomic scale. At the same time, the wetting experiment reveals that the oxide films show changes in the period of sonoprocessing from 3rd to 5th second. During the ultrasonic spreading behavior in the late stage, there is a trend of evident expansion of the base contact area. The entire ultrasonic process lasts for no longer than 10 s. With the aid of ultrasonic sinusoidal waves, the wettability of metal Al gets a rapid improvement. Both molecular dynamic (MD) investigations and the experiments results reveal that the precursor film phenomenon is never found unless wetting is assisted by ultrasonic treatments. However, the precursor film appears near the triple line after using ultrasonics in the droplet wetting process, whose formation is driven by ultrasonic oscillations. Due to the precursor film, the ultrasonic wetting contact angle is lower than the non-ultrasonic contact angle. In addition, the time-variant effective ultrasonic energy has been quantitatively evaluated. The numerical expressions of thermodynamic variables are well verified by former ultrasonic spreading test results, which altogether provide an intrinsic explanation of the fast-decreasing contact angle of Al/SiC.
Collapse
Affiliation(s)
- Wendi Li
- School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, 150001, China.
| | - Yuxin Liang
- School of Materials Science and Engineering, Harbin Institute of Technology, 150001, China.
| | - Bangsheng Li
- School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, 150001, China
| | - Jicai Feng
- School of Materials Science and Engineering, State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, 150001, China.
| |
Collapse
|
24
|
Naciri Y, Hsini A, Ahdour A, Akhsassi B, Fritah K, Ajmal Z, Djellabi R, Bouziani A, Taoufyq A, Bakiz B, Benlhachemi A, Sillanpää M, Li H. Recent advances of bismuth titanate based photocatalysts engineering for enhanced organic contaminates oxidation in water: A review. CHEMOSPHERE 2022; 300:134622. [PMID: 35439491 DOI: 10.1016/j.chemosphere.2022.134622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Over more than three decades, the scientific community has been contentiously interested in structuring varying photocatalytic materials with unique properties for appropriate technology transfer. Most of the existing reported photocatalysts in the literature show pros and cons by considering the type of application and working conditions. Bismuth titanate oxides (BTO) are novel photocatalysts that raised recently towards energy and environmental-related applications. Most recent advances to developing bismuth titanate-based photocatalysts for the oxidation of organic pollutants in the water phase were reviewed in this report. To counter the potential drawbacks of BTO materials, i.e., rapid recombination of photoproduced charges, and further promote the photoactivity, most reported approaches were discussed, including creating direct Z-scheme junctions, conventional heterojunctions, metal/non-metal doping, coupling with carbon materials, surface modification and construction of oxygen vacancies. In the end, the review addresses the future trends for better engineering and application of BTO based photocatalysts towards the photodegradation of organic pollutants in water under controlled lab and large scales conditions.
Collapse
Affiliation(s)
- Yassine Naciri
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Laboratoire Materiaux et Environnement LME, Faculte des Sciences, Universite Ibn Zohr, Agadir, Morocco.
| | - Abdelghani Hsini
- National Higher School of Chemistry (NHSC), University Ibn Tofail, BP. 133-14000, Kenitra, Morocco; Laboratory of Advanced Materials and Process Engineering (LAMPE), Faculty of Science, Ibn Tofail University, BP 133, 14000, Kenitra, Morocco
| | - Ayoub Ahdour
- Laboratoire Materiaux et Environnement LME, Faculte des Sciences, Universite Ibn Zohr, Agadir, Morocco
| | - Brahim Akhsassi
- Laboratoire Materiaux et Environnement LME, Faculte des Sciences, Universite Ibn Zohr, Agadir, Morocco
| | - Kamal Fritah
- Laboratoire Materiaux et Environnement LME, Faculte des Sciences, Universite Ibn Zohr, Agadir, Morocco
| | - Zeeshan Ajmal
- College of Engineering, China Agricultural University, Beijing, China
| | - Ridha Djellabi
- Department of Chemistry, Universita degli Studi di Milano, Milano, Italy
| | - Asmae Bouziani
- Chemical Engineering Department, Middle East Technical University, Ankara, Turkey
| | - Aziz Taoufyq
- Laboratoire Materiaux et Environnement LME, Faculte des Sciences, Universite Ibn Zohr, Agadir, Morocco
| | - Bahcine Bakiz
- Laboratoire Materiaux et Environnement LME, Faculte des Sciences, Universite Ibn Zohr, Agadir, Morocco
| | - Abdeljalil Benlhachemi
- Laboratoire Materiaux et Environnement LME, Faculte des Sciences, Universite Ibn Zohr, Agadir, Morocco
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark
| | - Haitao Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
25
|
Photocatalytic Dye Degradation and Bio-Insights of Honey-Produced α-Fe2O3 Nanoparticles. WATER 2022. [DOI: 10.3390/w14152301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron oxide nanoparticles are produced using simple auto combustion methods with honey as a metal-stabilizing and -reducing agent. Herein, α-Fe2O3 nanoparticles are produced using an iron nitrate precursor. These prepared samples are analyzed by an X-ray diffractometer (XRD), FTIR spectroscopy, UV-DRS, and a field-emission scanning electron microscope (FESEM) combined with energy-dispersive spectroscopy and a vibrating sample magnetometer (VSM). The XRD results confirm a rhombohedral structure with an R3c¯ space group single-phase formation of α-Fe2O3 in all samples. FESEM images reveal the different morphologies for the entire three samples. TEM analysis exhibits spherical shapes and their distribution on the surfaces. XPS spectroscopy confirms the Fe-2p and O-1s state and their valency. The VSM study shows strong ferromagnetic behavior. The prepared α-Fe2O3 nanoparticles exhibit exceptional charge carriers and radical production. The prepared sample retains excellent photocatalytic, antifungal and antibacterial activity.
Collapse
|
26
|
Novel Magnetic Polymeric Filters with Laccase-Based Nanoparticles for Improving Congo Red Decolorization in Bioreactors. Polymers (Basel) 2022; 14:polym14122328. [PMID: 35745904 PMCID: PMC9229661 DOI: 10.3390/polym14122328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 01/12/2023] Open
Abstract
In this work, five different magnetic biofilters, containing magnetic nanoparticles (142 nm), immobilized laccase on nanoparticles (190 nm) and permanent magnetic elements, such as neodymium magnets and metallic meshes, were designed, manufactured and tested. The five types of filters were compared by measuring the decolorization of Congo Red dye inside bioreactors, the half-life of the filters and the amount of magnetic nanoparticle and enzyme lost during multiple cycles of operation. Filters containing laccase immobilized on magnetite (Laccase-magnetite), permanent magnets and metallic mesh presented the highest Congo Red decolorization (27%) and the largest half-life among all types of filters (seven cycles). The overall dye decolorization efficiencies were 5%, 13%, 17%, 23%, and 27% for the paper filter, paper filter with magnetite, paper filter with Laccase-magnetite, paper filter with Laccase-magnetite with magnets and paper filter with Laccase-magnetite with magnets and metallic mesh, respectively. Although the highest losses of magnetite occurred when using the filters containing magnets (57 mg), the use of permanent magnetic elements in the filters increased the half-life of the filter three-fold compared to the filters without enzymatic properties and two-fold compared to the filters with Laccase-magnetite. Results indicate that the novel use of permanent magnetic elements improved the nanoparticle retention in the filters and promoted the mass transfer between the dye and the biocatalyst to enhance wastewater treatment.
Collapse
|
27
|
Fu C, Sun G, Wang C, Wei B, Ran G, Song Q. Fabrication of nitrogen-doped graphene nanosheets anchored with carbon nanotubes for the degradation of tetracycline in saline water. ENVIRONMENTAL RESEARCH 2022; 206:112242. [PMID: 34695435 DOI: 10.1016/j.envres.2021.112242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The treatment of wastewater with high salinity is still a challenge because of the quenching effect of various anions on radical processes. The nonradical process may be a more promising pathway. Herein, a 3D structured nitrogen-doped graphene nanosheet anchored with carbon nanotubes (N-GS-CNTs) was prepared by direct pyrolysis of K3Fe(CN)6. The as-prepared catalyst can effectively activate peroxymonosulfate (PMS) for mineralization of tetracycline (TC) over a wide pH range (from 3 to 11) and even in high saline water (500 mM Cl-, HCO3-, etc.). The degradation mechanism was elucidated by both experimental characterizations and DFT calculations. The high catalytic efficiency was attributed to accelerated electron transfer from donor (TC) to acceptor (PMS) in the presence of the catalyst, which acts as electron shuttle mediators to promote a nonradical process. At the same time, the catalyst also enhances the production of singlet oxygen (1O2), hence further increasing the degradation rate. This study not only provides a simple method for synthesizing N-GS-CNT catalysts but also provides new insights into the electron transfer pathway for the removal of organic pollutants under high salinity conditions.
Collapse
Affiliation(s)
- Cheng Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China
| | - Guowei Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China
| | - Bangqi Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, PR China.
| |
Collapse
|
28
|
Tripathy BK, Kumar M. Leachate treatment using sequential microwave and algal photo-bioreactor: Effect of pretreatment on reactor performance and biomass productivity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114830. [PMID: 35279493 DOI: 10.1016/j.jenvman.2022.114830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The present study aims to design a lab-scale hybrid reactor, primarily focused on the removal of organics, nutrients, heavy metal and other toxic compounds, thereby, minimizing risk associated with the disposal of landfill leachate. The potential of a designed hybrid treatment system (i.e., sequential microwave (MW) with algal bioreactor) with and without pretreatment, i.e., coagulation-flocculation (CF), was evaluated based on several parameters. The CF pretreatment under optimized conditions has resulted in 90% turbidity and 76% COD removals from leachate; furthermore, the MW treatment achieved 91% ammonia removal from raw leachate. As a result, substantial algal growth was observed in the preliminary algal batch experiment conducted with MW and MW-CF treated samples. Subsequently, leachate treatment was carried out using sequencing batch reactor (SBR) systems, i.e., MW-algal SBR and CF-MW-algal SBR. Algal biomass growth and increment in DO level were observed in algal-SBR experiments. Under the optimized reactor conditions, TN and TP removal rates in the algal-SBR were found to be 1.67-20 mg/L/d and 0.6-9.6 mg/L/d, respectively. The majority of heavy metals present in the leachate were removed due to algal-uptake (mainly Zn2+) and bio-sorption (total-Fe, Cu2+ and Pb2+). Meanwhile, some amount of energy can be recovered from algal biomass as inferred from the cost benefit analysis. Overall, the hybrid treatment combining MW and algal-SBR has shown immense potential for sustainable leachate treatment.
Collapse
Affiliation(s)
- Binay Kumar Tripathy
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu, 600036, India
| | - Mathava Kumar
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu, 600036, India.
| |
Collapse
|
29
|
Sun S, Ren J, Liu J, Rong L, Wang H, Xiao Y, Sun F, Mei R, Chen C, Su X. Pyrite-activated persulfate oxidation and biological denitrification for effluent of biological landfill leachate treatment system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114290. [PMID: 34915384 DOI: 10.1016/j.jenvman.2021.114290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The feasibility of pyrite as catalysts in the persulfate oxidation and electron donor for subsequent bacterial denitrification was investigated. The results demonstrated that pyrite-activated persulfate oxidation could efficiently degrade the organic matter in the effluent of biological landfill leachate treatment system, and COD removal efficiency of about 45% was achieved at the optimum parameters: pH = 6, pyrite dosage = 9.28 mM, dimensionless oxidant dose = 0.25. Among the dissolved organic matter, hydrophobic dissolved organic carbon (HO DOC), humic acids and building blocks were the main components. After the pyrite-activated persulfate oxidation, humic acids and HO DOC were primarily degraded, followed by building blocks, while low molecular weight neutrals were probably the degradation products. In the subsequent biological process, nitrate reduction was satisfactorily accomplished with autotrophic denitrification as the main pathway. When the influent nitrate concentration was about 180 mg L-1, the effluent nitrate concentration was stable below 20 mg L-1 with the nitrogen removal rate of about 108 mg L-1 d-1. To sum up, the pyrite-activated persulfate oxidation and the following biological denitrification was a feasible application in the effluent of biological landfill leachate treatment system.
Collapse
Affiliation(s)
- Siying Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiabao Ren
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiale Liu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Liang Rong
- China Wuzhou Engineering Group Co. Ltd, Beijing, 100053, China
| | - Hangli Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou, 515063, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Rongwei Mei
- Eco-Environmental Science Design & Research Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Chongjun Chen
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|