1
|
Yu W, Tang J, Gao C, Zheng X, Zhu P. Green Synthesis of Copper Nanoparticles from the Aqueous Extract of Lonicera japonica Thunb and Evaluation of Its Catalytic Property and Cytotoxicity and Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:91. [PMID: 39852706 PMCID: PMC11767692 DOI: 10.3390/nano15020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025]
Abstract
In this study, copper nanoparticles with an average particle size of 2-4 nm were synthesized using the green extract of Lonicera japonica Thunb. The catalytic activity and dye degradation efficiency of Cu NPs were evaluated using ultraviolet spectroscopy. To confirm that Cu NPs can continuously remove organic dyes, this study used Cu/Lj-C composite material adsorbed on cotton balls as a simulated bed to study the cyclic catalytic activity of Cu NPs for the reduction of methylene blue by sodium borohydride (NaBH4). The experiment showed that after multiple cycles, it can also quickly and effectively reduce methylene blue. To evaluate the toxicity of Cu NPs, experiments were conducted using HUVEC and MC3T3-E1 cells. The median lethal doses (LD50) were 37.64 µg/mL and 7.50 µg/mL. The synthesized Cu NPs also exhibited antibacterial efficacy against Aspergillus niger (fungus), Staphylococcus aureus (Gram-positive bacteria), Escherichia coli (Gram-negative bacteria), and Candida albicans (yeast).
Collapse
Affiliation(s)
- Weijie Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (W.Y.); (J.T.); (C.G.)
| | - Jingyi Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (W.Y.); (J.T.); (C.G.)
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (W.Y.); (J.T.); (C.G.)
| | - Xuesong Zheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China; (W.Y.); (J.T.); (C.G.)
| |
Collapse
|
2
|
Guo Q, Yan C, Huang Z, Liu Y, Cheng D, Lu C, Ran J, Yang Y. g-C 3N 4 nanosheet supported NiCo 2O 4 nanoparticles for boosting degradation of tetracycline under visible light and ultrasonic irradiation. NANOSCALE 2024; 16:12957-12966. [PMID: 38898817 DOI: 10.1039/d4nr01611d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The doping of semiconductor materials through some facile and appropriate methods holds significant promise in enhancing the catalytic performance of catalysts. Herein, NiCo2O4/g-C3N4 composite catalysts were synthesized via a high-energy ball milling method. The microstructure and physicochemical characterization of the as-prepared composites confirmed the successful loading of NiCo2O4 nanoparticles onto the g-C3N4 nanosheets. The NiCo2O4/g-C3N4 composites showed excellent catalytic effect under visible light/ultrasonic irradiation, and the efficiency of tetracycline hydrochloride (TCH) degradation reached 90% within 15 min. The optical properties of g-C3N4 nanosheets were improved by doping, and the diffusion of active materials and carrier migration rate were improved by ultrasonic assistance. Possible catalytic mechanisms and potential pathways of the NiCo2O4/g-C3N4 composites for the degradation of TCH triggered by visible light/ultrasonic irradiation were proposed. This study provides a new strategy for energy-assisted photocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Qingfeng Guo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Changwang Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Zhenqian Huang
- Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing, Wuhan Textile University, Wuhan 430020, China.
| | - Yujie Liu
- Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing, Wuhan Textile University, Wuhan 430020, China.
| | - Deshan Cheng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Chaoyang Lu
- Qianshui (Hubei) Environmental Technology Co., Ltd, Tianmen 431700, China
| | - Jianhua Ran
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
- Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing, Wuhan Textile University, Wuhan 430020, China.
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
3
|
Hassan AF, El-Naggar GA, Braish AG, Abd El-Latif MM, Shaltout WA, Elsayed MS. Fabrication of titania/calcium alginate nanocomposite matrix for efficient adsorption and photocatalytic degradation of malachite green. Int J Biol Macromol 2023; 249:126075. [PMID: 37536406 DOI: 10.1016/j.ijbiomac.2023.126075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
This work aims to examine the two techniques' efficiency for the elimination of malachite green (MG) by photocatalytic degradation and adsorption onto synthesized solid nanomaterials. Three solid samples were prepared as calcium alginate (AG), nanotitania (NT), and nanotitania/calcium alginate composite (TG). The morphological and physicochemical characteristics of the solid nanomaterials were investigated by XRD, TGA, DRS, FTIR, pHPZC, nitrogen adsorption/desorption isotherm, SEM, and TEM. The main experimental conditions were determined for sample dose, shaking time, pH, initial malachite green concentration, temperature, ionic strength, and UV lamp power. The resulting data proved that TG attained the higher adsorption capacity (252.52 mg/g) at 40 °C. The adsorption of MG was well fitted by Langmuir, Temkin, Dubinin-Radushkevich, pseudo-second order, intra-particle diffusion, and Elovich models onto all the prepared samples, confirming the endothermic, spontaneous, and favorable adsorption process. The maximum degradation percent (99.6 %) of MG was achieved by using 1.0 g/L as a catalyst dose, 10 mg/L of initial MG concentration, and 33 W for TG. The photodegradation of MG was well fitted by Eyring-Polanyi and Arrhenius models onto the surface of catalyst. The TG reusability resulted in a decrease in the degradation efficiency by 9.8 %, indicating its great capacity as the first nanotitania/calcium alginate nanocomposite used in removing MG from wastewater by two technologies in the same article.
Collapse
Affiliation(s)
- Asaad F Hassan
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Gehan A El-Naggar
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Amany G Braish
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Mona M Abd El-Latif
- Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Walaa A Shaltout
- Survey of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Egypt.
| | - Maha S Elsayed
- Central Laboratory of Date Palm Research and Development, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
4
|
Ahmad I, Muneer M, Khder AS, Ahmed SA. Novel Type-II Heterojunction Binary Composite (CdS/AgI) with Outstanding Visible Light-Driven Photocatalytic Performances toward Methyl Orange and Tetracycline Hydrochloride. ACS OMEGA 2023; 8:22708-22720. [PMID: 37396286 PMCID: PMC10308551 DOI: 10.1021/acsomega.3c01517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
In this study, an effective type-II heterojunction CdS/AgI binary composite was constructed by an in situ precipitation approach. To validate the successful formation of heterojunction between AgI and CdS photocatalysts, the synthesized binary composites were characterized by various analytical techniques. UV-vis diffuse-reflectance spectroscopy (UV-vis DRS) revealed that heterojunction formation led to a red shift in the absorbance spectra of the CdS/AgI binary composite. The optimized 20AgI/CdS binary composite showed a least intense photoluminescence (PL) peak indicating highly improved charge carrier (e-/h+ pairs) separation efficiency. The photocatalytic efficiency of the synthesized materials was assessed based on the degradation of methyl orange (MO) and tetracycline hydrochloride (TCH) in the presence of visible light. Compared to bare photocatalysts and other binary composites, the 20AgI/CdS binary composite showed the highest photocatalytic degradation performances. Additionally, the trapping studies showed that superoxide radical anion (O2•-) was the most dominant active species involved in photodegradation processes. Based on the results of active species trapping studies, a mechanism was proposed to describe the formation of type-II heterojunctions for CdS/AgI binary composite. Overall, the synthesized binary composite has tremendous promise for environmental remediation due to its straightforward synthesis approach and excellent photocatalytic efficacy.
Collapse
Affiliation(s)
- Iftekhar Ahmad
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Muneer
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Abdelrahman S. Khder
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
5
|
Velusamy P, Liu X, Sathiya M, Alsaiari NS, Alzahrani FM, Nazir MT, Elamurugu E, Pandian MS, Zhang F. Investigate the suitability of g-C 3N 4 nanosheets ornamented with BiOI nanoflowers for photocatalytic dye degradation and PEC water splitting. CHEMOSPHERE 2023; 321:138007. [PMID: 36754306 DOI: 10.1016/j.chemosphere.2023.138007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The two-step thermal polymerization and solvothermal approach is used to construct nano heterostructures of FCN and BiOI (bismuth oxeye iodide), both of which are Nobel metal-free materials. This work reports the effect nano-heterostructure on the micro-structural, light absorption capability, PEC properties and pollutant degradation efficiency of the synthesised heterostructures. The addition to that formation of FCN/BiOI nano-heterostructure enhances the solar light absorption. The FCN/BiOI nano heterostructure shows 10 times higher photocurrent density than the BCN nanostructure and 3.8 time higher that FCN. The FCN/BiOI has a high induced photo-current density (20.17 mA/cm2) and H2 evolution rate (3762 μmol h-1 cm-2) under solar light illumination (λ ≥ 420 nm) in comparison with the other. Furthermore, the photocatalytic performance of this material for the breakdown of methyl red dyes was much greater. Under solar light irradiation, the azo dyes were degraded in 90 min. The FCN/BiOI nano-heterostructure has a higher dye degradation efficiency of 97.91%. The rapid transport of photo-induced electrons in the FCN/BiOI nanocomposite is responsible for the improvement in PEC and PC performances. These impressive findings suggest that this nanocomposite might be used to facilitate the PEC water splitting and the PC degradation of MR in the presence of light. The current research provides insight on how to best tailor composition and structure for efficient FCN photo-electrocatalysis water splitting and Methyl red dye degradation.
Collapse
Affiliation(s)
- P Velusamy
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Physics, Thiagarajar College of Engineering, Thiruparankundram, Madurai, Tamil Nadu, 625015, India
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai, 602105, Tamilnadu, India.
| | - M Sathiya
- Department of Chemistry, Thiagarajar College, Madurai Kamaraj University, Madurai-625009, Tamil Nadu, India
| | - Norah Salem Alsaiari
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Fatimah Mohammed Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - M Tariq Nazir
- School of Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Elangovan Elamurugu
- iDARE Laboratory, Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
| | - M Senthil Pandian
- Research Center, SSN College of Engineering, Kalavakkam, 603110, Chennai, Tamil Nadu, India
| | - Fuchun Zhang
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
6
|
Mousavi SM, Meraji SH, Sanati AM, Ramavandi B. Phenol red dye removal from wastewater using TiO 2-FSM-16 and Ni-FSM-16 photocatalysts. Heliyon 2023; 9:e14488. [PMID: 36925530 PMCID: PMC10011056 DOI: 10.1016/j.heliyon.2023.e14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
In this study, the performance of Ni-FSM-16 and TiO2-FSM-16 photocatalysts in phenol red removal was explored. The XRD, FE-SEM, and BET tests were used to characterize the catalysts. All experiments were performed at ambient temperature and under UV (20 W). The parameters including dye concentration (20-80 mg/L), photocatalyst concentration (0-8 g/L), UV exposure duration, and contact time (0-160 min) were optimized using RSM software. BET values of Ni-FSM-16 and TiO2-FSM-16 were 718.63 m2/g and 844.93 m2/g, respectively. TiO2-FSM-16 showed better performance in dye removal than Ni-FSM-16. At pH 3, the maximum dye removal by TiO2-FSM-16/UV and Ni-FSM-16/UV was obtained 87% and 64%, respectively. The positive hole species had the main role in photocatalytic phenol red removal. The reusability study was done for up to 7 cycles, but the catalysts can be reused effectively for up to 3 cycles. The synergistic factor for the TiO2-FSM-16 and TiO2-FSM-16/UV processes were calculated to be 1.55 and 2.12, respectively. The dye removal efficiency by TiO2-carbon and Ni-carbon was slightly lower than those obtained by the FSM-16 ones. The TiO2-FSM-16 and Ni-FSM-16 catalysts had a suitable surface and acceptable efficiency in phenol red removal.
Collapse
Affiliation(s)
| | | | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
7
|
Choudhry A, Sharma A, Siddiqui SI, Ahamad I, Sajid M, Khan TA, Chaudhry SA. Origanum vulgare manganese ferrite nanocomposite: An advanced multifunctional hybrid material for dye remediation. ENVIRONMENTAL RESEARCH 2023; 220:115193. [PMID: 36587717 DOI: 10.1016/j.envres.2022.115193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The purpose of the study was to fabricate sustainable and cost-effective material for the thorough cleansing of polluted water. In this context, an economical, phytogenic and multifunctional Origanum vulgare plant-based nanocomposite material, MnFe2O4/OV, was prepared via one-pot synthetic technique. The synthesized nanocomposite with a band gap of 2.02 eV behaved as an efficient nano-photocatalyst for the degradation of both cationic (crystal violet) and anionic (congo red) dyes under direct sunlight irradiation. The material also inhibited the growth of E. coli and S. aureus bacteria and simultaneously adsorbed both cationic and anionic dyes from water through adsorption. A variety of techniques have been used to characterize the nanocomposite, including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). Additionally, the kinetics of photodegradation of the aforementioned organic dyes has also been investigated. The MnFe2O4/OV exhibited excellent photocatalytic performance, leading to 43% and 72% degradation within 3 h at rate constants of 2.0 × 10-3 min-1 and 6.0 × 10-3 min-1 for crystal violet and congo red, respectively. The crystal violet and congo red were used to testify to the composite's potential for adsorption under the influence of several process variables, including initial solution pH, contact time, temperature, initial dye concentration, and amount of MnFe2O4/OV. The Langmuir maximum adsorption capacity Qmax as in the range 14.06-14.59 mgg-1 for crystal violet and 34.45-23.93 mgg-1 for congo red at pH 7 within 90 min contact time in the temperature range of 30-50 °C. The phenomenon of adsorption was found feasible and endothermic at all the investigated temperatures. Also, E. coli and S. Aureus bacteria have shown growth suppression activity when exposed to MnFe2O4/OV.As a result, the synthesized nanocomposite, MnFe2O4/OV, proved to be an antimicrobial, multifunctional novel nanocomposite, which is in high demand, and could serve as an affordable, and sustainable material for comprehensive water filtration.
Collapse
Affiliation(s)
- Arshi Choudhry
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Atul Sharma
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | | | - Irshad Ahamad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Md Sajid
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | | | | |
Collapse
|
8
|
Zinatloo-Ajabshir S, Emsaki M, Hosseinzadeh G. Innovative construction of a novel lanthanide cerate nanostructured photocatalyst for efficient treatment of contaminated water under sunlight. J Colloid Interface Sci 2022; 619:1-13. [DOI: 10.1016/j.jcis.2022.03.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 01/09/2023]
|
9
|
Sedghi M, Hosseini-Kharat M, Rahimi R, Rabbani M. New composites based on aluminum alloy 5083 (TiO 2(x)/AA): investigation of plasmonic effect, semiconductor thickness, and calcination temperature on photodegradation process. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2087678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mahdi Sedghi
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - M Hosseini-Kharat
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|