1
|
Khalil ASE, Lukasiewicz M. The Optimization of the Hot Water Extraction of the Polysaccharide-Rich Fraction from Agaricus bisporus. Molecules 2024; 29:4783. [PMID: 39407711 PMCID: PMC11478120 DOI: 10.3390/molecules29194783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The optimization of extraction parameters, including the process time, temperature, and liquid-to-solid ratio, was conducted in order to obtain the polysaccharide-rich fraction from the lyophilized Agaricus bisporus fruiting body. The efficiency of extraction for polysaccharides and antioxidant activity was determined by analyzing the extracts for total carbohydrate content, the reducing sugars content, and the antioxidant activity employing DPPH, ABTS, and hydroxyl radical scavenging assays. The results showed that all parameters, except for the extraction time, impacted differently on the extraction efficiency of polysaccharides and antioxidant activity. The highest total carbohydrate content was observed at the longest process time, highest temperature, and a liquid-to-solid ratio of 118 mL/g. To minimize the reducing sugar level, a lower temperature is required, while the highest antioxidant activity requires a moderate temperature and the lowest liquid-to-solid ratio. The optimization of antioxidant activity by means of the DPPH and H2O2 method failed, which shows that the specific mechanism of polysaccharides as antioxidants needs further investigation. The aqueous extraction method demonstrated to be an efficient and simple approach to recover the potentially bioactive polysaccharide fractions from Agaricus bisporus that are also active as antioxidants.
Collapse
Affiliation(s)
- Aya Samy Ewesys Khalil
- Department of Food Engineering and Machinery for Food Industry, Faculty of Food Science, Agricultural University in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland;
- Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Marcin Lukasiewicz
- Department of Food Engineering and Machinery for Food Industry, Faculty of Food Science, Agricultural University in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland;
| |
Collapse
|
2
|
Yoshizaki M, Kuriya Y, Yamamoto M, Watanabe N, Araki M. Development of method using language processing techniques for extracting information on drug-health food product interactions. Br J Clin Pharmacol 2024; 90:1514-1524. [PMID: 38504605 DOI: 10.1111/bcp.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
AIMS Health food products (HFPs) are foods and products related to maintaining and promoting health. HFPs may sometimes cause unforeseen adverse health effects by interacting with drugs. Considering the importance of information on the interactions between HFPs and drugs, this study aimed to establish a workflow to extract information on Drug-HFP Interactions (DHIs) from open resources. METHODS First, Information on drugs, enzymes, their interactions, and known DHIs was collected from multiple public databases and literature sources. Next, a network consisted of enzymes, HFP, and drugs was constructed, assuming enzymes as candidates for hubs in Drug-HFP interactions (Method 1). Furthermore, we developed methods to analyze the biomedical context of each drug and HFP to predict potential DHIs out of the DHIs obtained in Method 1 by applying BioWordVec, a widely used biomedical terminology quantifier (Method 2-1 and 2-2). RESULTS 44,965 DHIs (30% known) were identified in Method 1, including 38 metabolic enzymes, 157 HFPs, and 1256 drugs. Method 2-1 selected 7401 DHIs (17% known) from the DHIs of Method 1, while Method 2-2 chose 2819 DHIs (30% known). Based on the different assumptions in these methods where Method 2-1 specifically selects HFPs interacting with specific enzymes and Method 2-2 specifically selects HFPs with similar function with drugs, the propsed methods resulted in extracting a wide variety of DHIs. CONCLUSIONS By integrating the results of language processing techniques with those of the network analysis, a workflow to efficiently extract unknown and known DHIs was constructed.
Collapse
Affiliation(s)
- Mari Yoshizaki
- Biological Science and Technology, Life and Materials Systems Engineering, Graduate School of Advanced Technology and Science, Tokushima University, Tokushima City, Tokushima Prefecture, Japan
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu City, Osaka Prefecture, Japan
| | - Yuki Kuriya
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu City, Osaka Prefecture, Japan
| | - Masaki Yamamoto
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu City, Osaka Prefecture, Japan
| | - Naoki Watanabe
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu City, Osaka Prefecture, Japan
| | - Michihiro Araki
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu City, Osaka Prefecture, Japan
| |
Collapse
|
3
|
Pulparambil A, Rasane P, Singh J, Kaur S, Bakshi M, Mahato DK, Kaur J, Gunjal M, Bhadariya V. Bioactive Compounds from Kinnow Processing Waste and their Associated Benefits: A Review. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:103-114. [PMID: 38305311 DOI: 10.2174/012772574x271785231230174607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 02/03/2024]
Abstract
We have explored the expansive possibilities of kinnow peel, a frequently ignored by-product of the fruit processing industry, in this thorough analysis. The production of kinnow generates a significant amount of waste, including peel, seeds, and pulp. The disposal of this waste is a major environmental issue, as it can lead to pollution and greenhouse gas emissions. Due to the presence of bioactive substances that may be used in a variety of sectors, kinnow processing waste has the potential to provide a number of advantages. In the culinary, pharmaceutical, and cosmetic industries, the peel, seeds, and pulp from kinnow can be used as natural sources of antioxidants, aromatics, pectin, and dietary fibre. Utilizing kinnow waste promotes eco-innovation, increases sustainability, and aids in waste reduction. The development of a circular economy can be sped up with more study and commercialization of kinnow waste products. This analysis emphasises how important it is to understand and utilise the unrealized potential of agricultural byproducts, like kinnow peel.
Collapse
Affiliation(s)
- Adethi Pulparambil
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Manish Bakshi
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Science, Deakin University, Burwood VIC 3125, Australia
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Mahendra Gunjal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK-74078, USA
| |
Collapse
|
4
|
Bains A, Sridhar K, Singh BN, Kuhad RC, Chawla P, Sharma M. Valorization of onion peel waste: From trash to treasure. CHEMOSPHERE 2023; 343:140178. [PMID: 37714483 DOI: 10.1016/j.chemosphere.2023.140178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Globally, fruits and vegetables are consumed as raw, processed, or as an additive, accounting for approximately 50% of total food wastage. Among the fruits and vegetables, onion is well known for its potential bioactive components; however, peels of onion are a major concern for the environmental health and food industries. Effective utilization methods for valorizing the onion peel should be needed to develop value-added products, which are more eco-friendly, cost-effective, and sustainable. Therefore, this review attempts to emphasize the conventional and emerging valorization techniques for onion peel waste to generate value-added products. Several vital applications including anticancerous, antiobesity, antimicrobial, and anti-inflammatory activities are thoroughly discussed. The findings showed that the use of advanced technologies like ultrasound-assisted extraction, microwave-assisted extraction, and enzymatic extraction, demonstrated improved extraction efficiency and higher yield of bioactive compounds, which showed the anticancerous, antiobesity, antimicrobial, and anti-inflammatory properties. However, in-depth studies are recommended to elucidate the mechanisms of action and potential synergistic effects of the bioactive compounds derived from onion peel waste, and to promote the sustainable utilization of onion peel waste in the long-term.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, 641021, India
| | - Brahma Nand Singh
- Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Ramesh Chander Kuhad
- Sharda School of Basic Sciences and Research, Sharda University, Greater Noida - 201310, Uttar Pradesh, India; DPG Institute of Management and Technology, Sector-34, Gurugram - 122004, Haryana, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Minaxi Sharma
- CARAH ASBL, Rue Paul Pastur, 11, Ath, 7800, Belgium.
| |
Collapse
|
5
|
Ahmed H, Rashed MMA, Almoiliqy M, Abdalla M, Bashari M, Zaky MY, Hailin Z, Naji TAA, Eibaid A, Wang J, Jiang L. Antioxidant activity and total phenolic compounds of Commiphora gileadensis extracts obtained by ultrasonic-assisted extraction, with monitoring antiaging and cytotoxicity activities. Food Sci Nutr 2023; 11:3506-3515. [PMID: 37324860 PMCID: PMC10261767 DOI: 10.1002/fsn3.3339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Commiphora gileadensis (C. gileadensis) has been identified and linked with various health benefits and pharmaceutical potential for its phytochemical activities and chemical constituents. This study aimed to evaluate ultrasonic-assisted extraction (USE) technique for total phenols content from C. gileadensis leaf compared to the hydrodistillation extraction (HDE). Our results showed that the USE operating conditions were identified as: MeOH·H2O solvent-to-fresh sample ratio of 80:20 (v/v); ultrasonic power/frequency at 150 W/20 kHz; and a temperature of 40 ± 1°C; subjected to acoustic waves intermittently for a calculated time (5 min) during the total programmed time of 12 min. The USE exhibited (118.71 ± 0.009 mg GAE/g DM) more amounts of all phenols than HDE (101.47 ± 0.005 mg GAE/g DM), and antioxidant (77.78 ± 0.73%, 75.27 ± 0.59% scavenging inhibition of DPPH), respectively. Anti-aging and Cytotoxicity activities were investigated. The results of biological evaluations showed that the crude extracts of C. gileadensis significantly extended the replicative lifespan of K6001 yeast. In addition, in vitro cytotoxicity against the HepG2 cell line showed significant anticancer activity, and approximately 100 μg/mL is required to decrease viability compared with that of the control. This study is proven for a larger scale to extract and isolate compounds of C. gileadensis for potential utilization in the pharmaceutical industry. In conclusion, advanced methods afford an extract with high activity in the biological properties of the extract.
Collapse
Affiliation(s)
- Hani Ahmed
- School of Pharmaceutical ScienceNanchang UniversityNanchang330006JiangxiChina
| | - Marwan M. A. Rashed
- School of Biological and Food EngineeringSuzhou UniversitySuzhou234000AnhuiChina
| | - Marwan Almoiliqy
- Department of Medicine and Health Science, College of Medicine and Health ScienceUniversity of Science and TechnologyAdenYemen
- Department of Translational Molecular PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexas77030USA
| | - Mohammed Abdalla
- Department of Food Processing, Faculty of EngineeringUniversity of El Imam El MahadiKostiWhite Nile209Sudan
| | - Mohanad Bashari
- Department of Food Science and Human NutritionCollege of Applied and Health Sciences, A'Sharqiyah UniversityIbraOman
| | - Mohamed Y. Zaky
- Molecular Physiology Division, Faculty of ScienceBeni‐Suef UniversityEgypt
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of MedicineUniversity of PittsburghPittsburghPennsylvania15213USA
| | - Zhu Hailin
- School of Pharmaceutical ScienceNanchang UniversityNanchang330006JiangxiChina
| | - Taha A. A. Naji
- Department of Medicine and Health Science, College of Medicine and Health ScienceUniversity of Science and TechnologyAdenYemen
| | - Ahmed Eibaid
- Department of Food Science and Technology, Faculty of Engineering and TechnologyUniversity of GeziraWad MadaniSudan
| | - Jinpeng Wang
- School of Food and HealthBeijing Technology and Business UniversityBeijingChina
| | - Li‐Ping Jiang
- School of Pharmaceutical ScienceNanchang UniversityNanchang330006JiangxiChina
| |
Collapse
|
6
|
Li X, Zhu J, Wang T, Sun J, Guo T, Zhang L, Yu G, Xia X. Antidiabetic activity of Armillaria mellea polysaccharides: Joint ultrasonic and enzyme assisted extraction. ULTRASONICS SONOCHEMISTRY 2023; 95:106370. [PMID: 36965312 PMCID: PMC10060363 DOI: 10.1016/j.ultsonch.2023.106370] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Armillaria mellea polysaccharides (AMPs) were obtained by ultrasonic assisted extraction (U), enzyme assisted extraction (E) and ultrasonic-enzyme assisted extraction (UE), respectively. The yield of UE-AMPs (6.32 ± 0.14%) was 1.64 times higher than that of U-AMPs (3.86 ± 0.11%) and 1.21 times higher than that of E-AMPs (5.21 ± 0.09%); meanwhile, the highest total sugar content and the lowest protein content were found in UE-AMPs. AMPs obtained from the three extraction methods had the same monosaccharide composition but in different proportions, allowing UE-AMPs to have the most potent antioxidant activity. The antidiabetic activity of UE-AMPs was investigated in streptozotocin (STZ)-induced diabetic mice. UE-AMPs, when given by gavage, greatly prevented weight loss, increased water intake, and considerably decreased blood glucose levels in diabetic mice, which were dose-dependent (P < 0.05). In addition, UE-AMPs also had a positive effect on the reduction of lipid levels in the blood, oxidative damage and liver function impairment. The pathological observation by hematoxylin-eosin staining (HE) revealed that UE-AMPs protected the organs of mice from diabetic complications (liver disease and nephropathy). Hence, our findings demonstrate that UE-AMPs are a suitable choice for improving diabetes and its complications and have great application prospects in the fields of natural medicine and functional food.
Collapse
Affiliation(s)
- Xiaoyi Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingshu Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tengyu Wang
- School of Grain Engineering, Heilongjiang Communications Polytechnic, Harbin 150025, China
| | - Jiapeng Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianhao Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lijuan Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guoping Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Besford QA, Cavalieri F. Special issue on "Ultrasound-assisted engineering of materials for biomedical uses". ULTRASONICS SONOCHEMISTRY 2022; 90:106216. [PMID: 36371392 PMCID: PMC9678490 DOI: 10.1016/j.ultsonch.2022.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Quinn A Besford
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Francesca Cavalieri
- RMIT University, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|