1
|
Sudrajat H, Wella SA, Phanthuwongpakdee J, Lisovytskiy D, Sobczak K, Colmenares JC. Atomistic understanding of enhanced selectivity in photocatalytic oxidation of benzyl alcohol to benzaldehyde using graphitic carbon nitride loaded with single copper atoms. NANOSCALE 2024; 16:14813-14830. [PMID: 39034643 DOI: 10.1039/d4nr01610f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The loading of graphitic carbon nitride (gCN) with transition metals has received significant attention for efficient light-driven catalysis. However, the contribution of the loaded metals to enhanced performance remains unclear. In this study, Cu is loaded onto gCN to understand how photocatalytic activity is regulated by the loaded metals. Loading gCN with 3 wt% of Cu increases the electron population by 8.1 and 4.6 times under UV (λ < 370 nm) and visible light (390 < λ < 740 nm), respectively. This sample shows nearly 100% selectivity for oxidizing benzyl alcohol to benzaldehyde and a high yield-to-power ratio, reaching 0.35 mmol g-1 h-1 W-1. The loaded Cu species exist as single atoms with a +1-oxidation state. Each Cu+ cation is coordinated to two (at 3 wt% Cu) or four (at 6 wt% Cu) N atoms within the cavity of the gCN framework. Doubling the Cu loading results in a smaller electron population and coordinatively more saturated Cu+ cations, making it catalytically less reactive. Ab initio molecular dynamics simulations show that Cu+ cations produce filled mid-gap states above the valence band, which function as hole traps and hence oxidation centers. The Cu+ cation and the neighboring N atoms are electron-depletion and electron-accumulation sites due to Cu → N electron transfer, making it highly reactive for oxidative transformations via the hole transfer pathway. The role of Cu as a hole-transfer site updates the received understanding that surface-loaded Cu serves as an electron-accumulation site. A strong correlation is observed between the electron population at steady-state and the product yield, indicating that it could serve as a promising performance indicator for the design of future photocatalysts.
Collapse
Affiliation(s)
- Hanggara Sudrajat
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
- Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia
- Collaboration Research Center for Advanced Energy Materials, BRIN - Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Sasfan Arman Wella
- Research Center for Quantum Physics, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia
- Collaboration Research Center for Advanced Energy Materials, BRIN - Institut Teknologi Bandung, Bandung 40132, Indonesia
| | | | - Dmytro Lisovytskiy
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Kamil Sobczak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
2
|
Qayyum A, Giannakoudakis DA, Łomot D, Fernando Colmenares-Quintero R, Nikiforow K, LaGrow AP, Carlos Colmenares J. Selective (sono)photocatalytic cleavage of lignin-inspired β-O-4 linkages to phenolics by ultrasound derived 1-D titania nanomaterials. ULTRASONICS SONOCHEMISTRY 2024; 104:106829. [PMID: 38457941 PMCID: PMC10937310 DOI: 10.1016/j.ultsonch.2024.106829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Catalytic conversion of lignin to value-added aromatic compounds is still an open challenge, since the selective cleavage of the linkages interconnecting the aromatic molecules, especially the β-O-4 ones, is not efficiently achieved yet. Herein, novel titania-based nanostructured materials were synthesized using low-power-low-frequency ultrasound that demonstrated high efficiency for the selective cleavage of Cα-Cβ bond of β-O-4 linkages of lignin-inspired model compounds. Going a step ahead, experiments of sonophotocatalytic valorization of 2-phenoxy-1-phenylethanol were contacted for the first time, where the exposure to ultrasound leading to better conversion and selectivity towards the desired products in the case of the novel ultrasound-synthesized nano-photocatalyst. Mechanistic insights showcased that photogenerated holes are the main active species in the catalytic process. In general, this research work provides a green, effective, and cost-effective approach for the selective and efficient catalytic lignin valorization.
Collapse
Affiliation(s)
- Abdul Qayyum
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Dimitrios A Giannakoudakis
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Laboratory of Chemical and Environmental Technology, Division of Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece.
| | - Dariusz Łomot
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Kostiantyn Nikiforow
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Alec P LaGrow
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0412, Japan
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Engineering Research Institute (In(3)), Universidad Cooperativa de Colombia, Medellín 50031, Colombia.
| |
Collapse
|