1
|
Qin L, Wang Y, Wan T, Fan W, Jiang H, Zhang B, Wu Y, Yu X, Wang C. Preparation of waste toner-derived magnetic adsorbent for analysis of lead in aqueous and oil-based foods. Food Chem 2024; 467:142324. [PMID: 39644668 DOI: 10.1016/j.foodchem.2024.142324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Waste toner powder contains carbon and ferrosoferric oxide, meaning it has potential as a magnetic adsorbent. Previous efforts have tried to improve its hydrophilicity for aqueous samples, but not non-aqueous food matrices such as edible oils. In this work, we proposed a one-step hydrothermal carbonization method using 50 % (v/v) acetic acid to prepare carboxyl-functionalised magnetic adsorbent for aqueous and oil-based food samples. Owing to the complexation of carboxyl groups and electrostatic attraction, the adsorption capacity for Pb(II) was 50.3 ± 0.4 mg g-1. Combined with GFAAS, the developed method demonstrated a high enhancement factor (91.0), a low detection limit (0.013 μg L-1) and was also validated by the certified standard reference material, including environmental water, rice flour and tea. Furthermore, successful applications were demonstrated in tap and lake water, orange juice, edible oil and mushrooms with recoveries ranging from 84.4 to 108 %.
Collapse
Affiliation(s)
- Long Qin
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yue Wang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Tingjiang Wan
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Weian Fan
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Han Jiang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Bin Zhang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu 610061, China.
| |
Collapse
|
2
|
Han H, Chen M, Sun C, Han Y, Xu L, Zhao Y. Synergistic enhancement in hydrodynamic cavitation combined with peroxymonosulfate fenton-like process for bpa degradation: New insights into the role of cavitation bubbles in regulation reaction pathway. WATER RESEARCH 2024; 268:122666. [PMID: 39486149 DOI: 10.1016/j.watres.2024.122666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
The combination of hydrodynamic cavitation (HC) and Fenton-like oxidation technology can dramatically enhance the pollutant removal capacity, however, the synergistic effect of cavitation and catalysts on reactive oxygen species (ROS) generation remained enigmatic. In this study, we established a combined system based on HC and Ce-MnFe2O4 activated peroxymonosulfate (PMS) for BPA removal, and attentions were paid on the role of cavitation bubbles. The results show that the combination of HC in Ce-MnFe2O4 activated PMS could mediate the degradation of BPA from the non-radical pathway dominated by 1O2 to •O2- dominated radical pathway. Both controlled experiments and theoretical calculations revealed that the cavitation bubbles with different sizes play the dominant role in ROS generation. The microjets produced by the collapse of cavitation bubbles could create a large number of oxygen vacancy defects on Ce-MnFe2O4 surface, which modify the activation barrier of PMS and facilitate the generation of •O2- thermodynamically. The stable existing cavitation bubbles with the size of 100∼400 nm could create considerable gas-liquid interface. The molecular dynamics simulations show that the nano bubbles can concentrate the BPA and increase the probability of contacts between BPA and Ce-MnFe2O4, hence effectively solve the issues of short lifetime of •O2- radicals and limited mass transfer distance to strengthen the reaction. In addition, the PMS/Ce-MnFe2O4/HC system not only achieves the satisfied COD (95 %) and TOC (65 %) removal efficiency but also enabled the BPA-contaminated water with a low energy cost of 0.065 kWh·m-3 and oxidant cost, highlighting the application potential of the HC technology for contaminated water.
Collapse
Affiliation(s)
- Hongkun Han
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Mengfan Chen
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Congting Sun
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China.
| | - Yuying Han
- School of Environment, Liaoning University, Liaoning Province, Shenyang 110036, PR China
| | - Lanlan Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin Province, Changchun 130022, PR China
| | - Yingming Zhao
- Department of Biological Sciences, University of Windsor, Ontario, Windsor, Canada
| |
Collapse
|
3
|
Jia X, Zhang S, Tang Z, Xue K, Chen J, Manickam S, Lin Z, Sun X, Zhu Z. Investigations on cavitation flow and vorticity transport in a jet pump cavitation reactor with variable area ratios. ULTRASONICS SONOCHEMISTRY 2024; 108:106964. [PMID: 38943849 PMCID: PMC11260583 DOI: 10.1016/j.ultsonch.2024.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Hydrodynamic cavitation (HC) has emerged as a promising technology for water disinfection. Interestingly, when subjected to specific cavitation pressures, jet pump cavitation reactors (JPCRs) exhibit effective water treatment capabilities. This study investigated the cavitation flow and vorticty transport in a JPCR with various area ratios by utilizing computational fluid dynamics. The results reveal that cavitation is more likely to occur within the JPCR as the area ratio becomes smaller. While as the area ratio decreases, the limit flow ratio also decreases, leading to a reduced operational range for the JPCR. During the cavitation inception stage, only a few bubbles with limited travel distances are generated at the throat inlet. A stable cavitation layer developed between the throat and downstream wall during the limited cavitation stage. In this phase, the primary flow carried the bubbles towards the outlet. In addition, it was found that the vortex stretching, compression expansion, and baroclinic torque terms primarily influence the vorticity transport equation in this context. This work may provide a reference value to the design of JPCRs for water treatment.
Collapse
Affiliation(s)
- Xiaoqi Jia
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuaikang Zhang
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenhe Tang
- Hangzhou Chinen Turbomachinery Co., Ltd., Hangzhou 310018, China
| | - Kuanrong Xue
- Shanghai Zonepic Chemical Technology Co., Ltd., Shanghai 200000, China
| | - Jingjing Chen
- Hangzhou Chinen Turbomachinery Co., Ltd., Hangzhou 310018, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE 1410, Brunei Darussalam
| | - Zhe Lin
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Zuchao Zhu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Xia G, You W, Manickam S, Yoon JY, Xuan X, Sun X. Numerical simulation of cavitation-vortex interaction mechanism in an advanced rotational hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2024; 105:106849. [PMID: 38513544 PMCID: PMC11636836 DOI: 10.1016/j.ultsonch.2024.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/24/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Hydrodynamic cavitation (HC), a promising technology for enhancing processes, has shown distinct effectiveness and versatility in various chemical and environmental applications. The recently developed advanced rotational hydrodynamic cavitation reactors (ARHCRs), employing cavitation generation units (CGUs) to induce cavitation, have demonstrated greater suitability for industrial-scale applications than conventional devices. However, the intricate interplay between vortex and cavitation, along with its spatial-temporal evolution in the complex flow field of ARHCRs, remains inadequately elucidated. This study investigated the interaction mechanism between cavitation and vortex in a representative interaction-type ARHCR for the first time using the "simplified flow field strategy" and the Q-criterion. The findings reveal that the flow instability caused by CGUs leads to intricate helical and vortex flows, subsequently giving rise to both sheet and vortex cavitation. Subsequently, utilizing the Q-criterion, the vortex structures are identified to be concentrated inside and at CGU edges with evolution process of mergence and separation. These vortex structures directly influence the shape and dimensions of cavities, establishing a complex interaction with cavitation. Lastly, the vorticity transport equation analysis uncovered that the stretching and dilatation terms dominate the vorticity transport process. Simultaneously, the baroclinic term focuses on the vapor-liquid interface, characterized by significant alterations in density and pressure gradients. These findings contribute to a better comprehension of the cavitation-vortex interaction in ARHCRs.
Collapse
Affiliation(s)
- Gaoju Xia
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Weibin You
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE 1410, Brunei Darussalam
| | - Joon Yong Yoon
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
5
|
Yang Z, Wang X, Zhao X, Cheng H, Ji B. LES investigation of the wavy leading edge effect on cavitation noise. ULTRASONICS SONOCHEMISTRY 2024; 103:106780. [PMID: 38286041 PMCID: PMC10839620 DOI: 10.1016/j.ultsonch.2024.106780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
This paper investigates the noise reduction performance of biomimetic hydrofoils with wavy leading edge and the corresponding mechanisms. We employ Large Eddy Simulation (LES) approach and permeable Ffowcs Williams-Hawkings (PFW-H) method to predict cavitation noise around the baseline and biomimetic hydrofoils. The results show that the wavy leading edge can effectively reduce the high-frequency noise, but has little effect on the low-frequency noise. Further analyses and discussions deal with the noise reduction mechanisms. The main source for the low-frequency noise is the cavity volume acceleration, while the wavy leading edge has little effect on it. The high-frequency noise sources, related to the surface pressure fluctuations and the turbulence characteristics, are significantly suppressed by the wavy leading edge, thus decreasing the high-frequency noise intensity. Our investigation indicates that the wavy leading edge has great prospects for cavitation noise reduction technique.
Collapse
Affiliation(s)
- Zhongpo Yang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xincheng Wang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiaotao Zhao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, People's Republic of China
| | - Huaiyu Cheng
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, People's Republic of China
| | - Bin Ji
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
6
|
Tao Y, Sun X, Wu X, Wu P, He R, Kiani H. Special issue on "Ultrasonic and hydrodynamic intensifications of food and environmental processes: Fundamentals and applications". ULTRASONICS SONOCHEMISTRY 2023; 100:106599. [PMID: 37734968 PMCID: PMC10653953 DOI: 10.1016/j.ultsonch.2023.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Affiliation(s)
- Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Xiaoge Wu
- Environment Science and Engineering College, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Pengfei Wu
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hossein Kiani
- College of Agriculture and Natural resources, University of Tehran, Karaj, Iran
| |
Collapse
|
7
|
Sun X, Xia G, You W, Jia X, Manickam S, Tao Y, Zhao S, Yoon JY, Xuan X. Effect of the arrangement of cavitation generation unit on the performance of an advanced rotational hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2023; 99:106544. [PMID: 37544171 PMCID: PMC10432248 DOI: 10.1016/j.ultsonch.2023.106544] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Hydrodynamic cavitation (HC) is widely considered a promising process intensification technology. The novel advanced rotational hydrodynamic cavitation reactors (ARHCRs), with considerably higher performance compared with traditional devices, have gained increasing attention of academic and industrial communities. The cavitation generation unit (CGU), located on the rotor and/or stator of an ARHCR, is utilized to generate cavitation and consequently, its geometrical structure is vital for the performance. The present work studied, for the first time, the effect of the arrangement of CGU on the performance of a representative ARHCR by employing computational fluid dynamics based on the "simplified flow field" strategy. The effect of CGU arrangement, which was neglected in the past, was evaluated: radial offset distance (c), intersection angle (ω), number of rows (N), circumferential offset angle (γ), and radial spacing (r). The results indicate that the CGU, with an arrangement of a low ω and moderate c, N, γ, and r, performed the highest cavitation efficiency. The corresponding reasons were analyzed by combining the flow field and cavitation pattern. Moreover, the results also exposed a weakness of the "simplified flow field" strategy which may induce the unfavorable "sidewall effect" and cause false high-pressure region. The findings of this work may provide a reference value to the design of ARHCRs.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Gaoju Xia
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Weibin You
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Xiaoqi Jia
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Joon Yong Yoon
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| |
Collapse
|
8
|
Liu P, Wu Z, Fang Z, Cravotto G. Sonolytic degradation kinetics and mechanisms of antibiotics in water and cow milk. ULTRASONICS SONOCHEMISTRY 2023; 99:106518. [PMID: 37572426 PMCID: PMC10433014 DOI: 10.1016/j.ultsonch.2023.106518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 08/14/2023]
Abstract
Antibiotics (ABX) residues frequently occurred in water and cow milk. This work aims to understand the kinetics and mechanisms of sonolytic degradation of four ABX, i.e. ceftiofur hydrochloride (CEF), sulfamonomethoxine sodium (SMM), marbofloxacin (MAR), and oxytetracycline (OTC) in water and milk. In both water and milk, the sonolytic degradation of ABX follows pseudo-first order (PFO) kinetics well (R2: 0.951-0.999), with significantly faster ABX degradation in water (PFO kinetics constants (k1): 1.5 × 10-3-1.2 × 10-1 min-1) than in milk (k1: 3.5 × 10-4-5.6 × 10-2 min-1). The k1 values for SMM degradation in water increased by 118% with ultrasonic frequency (40-120 kHz), 174% with ultrasonic frequency (80-500 kHz), 649% with ultrasonic power (73-259 W), 22% with bulk temperature (12-40℃), and by 68% with reaction volume (50-250 mL), respectively, in other things being equal. The relevant k1 values in milk increased by 326%, 231%, 122%, 10% as well as 82% with the above same effective factors, respectively. The oxidation by free radicals generated in situ dominates ABX degradation, and the hydrophobic CEF (54.0-971.7 nM min-1) and SMM (39.2-798.4 nM min-1) underwent faster degradation than the hydrophilic MAR (33.9-751.9 nM min-1) and OTC (33.8-545.3 nM min-1) in both water and milk. Adding an extra 0.5 mM H2O2 accelerated SMM degradation by 19% in water and 33% in milk. After 130-150 min sonication of 100 mL of 2.0 mg L-1 (6.62 μM) SMM in various milk with 500 kHz and 259 W, the residue concentrations (52.9-96.3 μg L-1) can meet the relevant maximum residue limit (100 μg L-1).
Collapse
Affiliation(s)
- Pengyun Liu
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy
| | - Zhilin Wu
- College of Chemistry and Chemical Engineering of Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, 515063 Shantou, China.
| | - Zhen Fang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing 210031, China
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, via P. Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
9
|
Chen J, Wang Q, Wu Y, Wu Y, Sun Y, Ding Y, Wei Z, Manickam S, Pan S, Yang J, Tao Y. Ultrasound-assisted fermentation of ginkgo kernel juice by Lactiplantibacillus plantarum: Microbial response and juice composition development. ULTRASONICS SONOCHEMISTRY 2023; 99:106587. [PMID: 37683418 PMCID: PMC10495669 DOI: 10.1016/j.ultsonch.2023.106587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
This study is aimed to explore the feasibility of ultrasound on enhancing the fermentation properties of ginkgo kernel juice by Lactiplantibacillus plantarum Y2. Specifically, ultrasound at 20 kHz and different intensities (mild ultrasound intensity-84.42 W/L, moderate ultrasound intensity-115.50 W/L, high ultrasound intensity-173.88 W/L) with a pulse mode were applied to facilitate the fermentation process. The number of viable cells of Lactiplantibacillus plantarum Y2 increased by 5.06, 5.05 and 2.19% in the sonicated groups at 173.88, 115.50 and 84.42 W/L, compared with the non-sonicated juice after 24-h fermentation. Furthermore, mild intensity ultrasonication improved the permeability of the cell membrane, which is beneficial for the metabolism of phenolics, amino acids and organic acids. Ultrasonication increased in-vitro antioxidant activity of fermented ginkgo kernel juice by promoting the metabolism of phenolic acids, such as ferulic acid, chlorogenic and caffeic acids. At the end of fermentation, the sonicated group at 84.42 W/L has the maximum consumptions of total sugars and proteins (increased by 12.52 and 18.73%). Moreover, the reduction rate of the poison material 4'-O-methylpyridoxine (MPN) in ginkgo kernel juice increased by more than 16.40% with ultrasound treatment at 173.88 W/L after the fermentation for 48 h. Overall, ultrasound can improve the metabolizations of Lactobacillus plantarum and reduce the toxic substances, which promoted the nutritional value and flavors of ginkgo kernel juice.
Collapse
Affiliation(s)
- Jinling Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiqi Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuting Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yue Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yunfei Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Sivakumar Manickam
- Department of Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Patil Y, Sonawane SH, Shyam P, Sun X, Manickam S. Hybrid hydrodynamic cavitation (HC) technique for the treatment and disinfection of lake water. ULTRASONICS SONOCHEMISTRY 2023; 97:106454. [PMID: 37271031 DOI: 10.1016/j.ultsonch.2023.106454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Water reclamation from lakes needs to be accomplished efficiently and affordably to ensure the availability of clean, disinfected water for society. Previous treatment techniques, such as coagulation, adsorption, photolysis, ultraviolet light, and ozonation, are not economically feasible on a large scale. This study investigated the effectiveness of standalone HC and hybrid HC + H2O2 treatment techniques for treating lake water. The effect of pH (3 to 9), inlet pressure (4 to 6 bar), and H2O2 loading (1 to 5 g/L) were examined. At pH = 3, inlet pressure of 5 bar and H2O2 loadings of 3 g/L, maximum COD and BOD removal were achieved·H2O2 was observed to significantly improve the performance of the HC when used as a chemical oxidant. In an optimal operating condition, a COD removal of 54.5 % and a BOD removal of 51.5 % using HC alone for 1 h is observed. HC combined with H2O2 removed 64 % of both COD and BOD. The hybrid HC + H2O2 treatment technique resulted in a nearly 100% removal of pathogens. The results of this study indicate that the HC-based technique is an effective method for removing contaminants and disinfection of the lake water.
Collapse
Affiliation(s)
- Yogesh Patil
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana 506004, India
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana 506004, India.
| | - Perugu Shyam
- Department of Biotechnology, National Institute of Technology Warangal, Telangana 506004, India
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| |
Collapse
|
11
|
Li L, Niu Y, Wei G, Manickam S, Sun X, Zhu Z. Investigation of cavitation noise using Eulerian-Lagrangian multiscale modeling. ULTRASONICS SONOCHEMISTRY 2023; 97:106446. [PMID: 37224639 DOI: 10.1016/j.ultsonch.2023.106446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
We have employed the large eddy simulation (LES) approach to investigate the cavitation noise characteristics of an unsteady cavitating flow around a NACA66 (National Advisory Committee for Aeronautics) hydrofoil by employing an Eulerian-Lagrangian based multiscale cavitation model. A volume of fluid (VOF) method simulates the large cavity, whereas a Lagrangian discrete bubble model (DBM) tracks the small bubbles. Meanwhile, noise is determined using the Ffowcs Williams-Hawkings equation (FW-H). Eulerian-Lagrangian analysis has shown that, in comparison to VOF, it is more effective in revealing microscopic characteristics of unsteady cavitating flows, including microscale bubbles, that are unresolvable around the cloud cavity, and their impact on the flow field. It is also evident that its evolution of cavitation features on the hydrofoil is more consistent with the experimental observations. The frequency of the maximum sound pressure level corresponds to the frequency of the main cavity shedding for the noise characteristics. Using the Eulerian-Lagrangian method to predict the noise signal, results show that the cavitation noise, generated by discrete bubbles due to their collapse, is mainly composed of high-frequency signals. In addition, the frequency of cavitation noise induced by discrete microbubbles is around 10 kHz. A typical characteristic of cavitation noise, including two intense pulses during the collapsing of the cloud cavity, is described, as well as the mechanisms that underlie these phenomena. The findings of this work provide for a fundamental understanding of cavitation and serve as a valuable reference for the design and intensification of hydrodynamic cavitation reactors.
Collapse
Affiliation(s)
- Linmin Li
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yabiao Niu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guolai Wei
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Zuchao Zhu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
12
|
Song L, Wei Y, Deng C, Yang J, Sui H, Guo F, Meng L, Zhao X, Wei S, Sun D, Han Z, Xu M, Pan X. A Novel Method Based on Hydrodynamic Cavitation for Improving Nitric Oxide Removal Performance of NaClO 2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3684. [PMID: 36834379 PMCID: PMC9959747 DOI: 10.3390/ijerph20043684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 05/24/2023]
Abstract
In the removal of nitric oxide (NO) by sodium chlorite (NaClO2), the NaClO2 concentration is usually increased, and an alkaline absorbent is added to improve the NO removal efficiency. However, this increases the cost of denitrification. This study is the first to use hydrodynamic cavitation (HC) combined with NaClO2 for wet denitrification. Under optimal experimental conditions, when 3.0 L of NaClO2 with a concentration of 1.00 mmol/L was used to treat NO (concentration: 1000 ppmv and flow rate: 1.0 L/min), 100% of nitrogen oxides (NOx) could be removed in 8.22 min. Furthermore, the NO removal efficiency remained at 100% over the next 6.92 min. Furthermore, the formation of ClO2 by NaClO2 is affected by pH. The initial NOx removal efficiency was 84.8-54.8% for initial pH = 4.00-7.00. The initial NOx removal efficiency increases as the initial pH decreases. When the initial pH was 3.50, the initial NOx removal efficiency reached 100% under the synergistic effect of HC. Therefore, this method enhances the oxidation capacity of NaClO2 through HC, realizes high-efficiency denitrification with low NaClO2 concentration (1.00 mmol/L), and has better practicability for the treatment of NOx from ships.
Collapse
Affiliation(s)
- Liguo Song
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian 116026, China
| | - Yuhang Wei
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Chengqi Deng
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Jingang Yang
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Hao Sui
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Feng Guo
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Lingrun Meng
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Xingda Zhao
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Shiping Wei
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Deping Sun
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Zhitao Han
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian 116026, China
| | - Minyi Xu
- Marine Engineering College, Dalian Maritime University, Dalian 116026, China
- Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving, Dalian 116026, China
| | - Xinxiang Pan
- School of Electronics and Information Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|