1
|
Zhang J, Zhang B, Duan F, Xuan Z, Sun T, Lu L. Metagenomic exploration of novel β-galactosidases for glycosylation engineering. BIORESOURCE TECHNOLOGY 2025; 430:132546. [PMID: 40245993 DOI: 10.1016/j.biortech.2025.132546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/25/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
β-Galactosidases are important enzymatic tools for glycosylation, but their properties vary greatly with the source. Here, ten putative β-galactosidase genes, designated as bga1 to bga10, encoding proteins Bga1 to Bga10, were mined from an environmental metagenomic dataset comprising 119,152 sequences. Five of the encoded enzyme proteins exhibited less than 80% sequence similarity to known enzymes, but displayed conserved catalytic sites in their predicted three-dimensional models. After heterologous expression and characterization, two recombinant enzymes showed specific hydrolysis activity toward o-nitrophenyl-β-d-galactopyranoside. One of them, Bga4R, exhibited remarkable activity at pH 7.4 and 50℃, with excellent alkaline stability. Notably, Bga4R tolerated a wide range of acceptors for transglycosylation. It catalyzed galactosyl transfer to various monosaccharides and sugar alcohols, and enabling the synthesis of diverse glycosylated derivatives. This study identifies a novel GH 1 β-galactosidase as a powerful tool for glycosylation engineering, with promising potential for synthesizing galactosides valuable to food and pharmaceutical industries.
Collapse
Affiliation(s)
- Jingwen Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Binge Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zehui Xuan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Tong Sun
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
2
|
Gautam S, Singh SM, Rao PS. Exploring the impact of ultrasound treatment on millet grain: a review of nutritional and processing enhancements. Crit Rev Food Sci Nutr 2025:1-14. [PMID: 40515725 DOI: 10.1080/10408398.2025.2517830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Millets are nutrient-dense grains with significant potential to address food security and nutritional challenges. However, their utilization in the processing of different products is limited due to certain inherent characteristics such as hard outer hulls and complex biochemical compositions, which affect their functional properties, nutrient retention, and shelf life. Ultrasound, a non-thermal technique, has emerged as a green approach to overcome these challenges. It generates energy-intensive bubbles that physically disrupt the cellular structure of millet, leading to improved hydration, better nutrient retention, and functionality modification. This review explores the impact of ultrasound treatment (UST) on the physical and chemical properties of millets, emphasizing its role in enhancing their quality and functionality. Key aspects discussed include the effect of UST on functional properties, nutrients & antioxidant profiles, and anti-nutritional factors. The review also examines how surface modification induced by UST influences the texture and properties of millet-based products. Additionally, the potential of UST to extend the shelf life of millets is highlighted, offering insights into its application in improving millet processing and storage.
Collapse
Affiliation(s)
- Sanjana Gautam
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Shagolshem Mukta Singh
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India
| | - P Srinivasa Rao
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India
| |
Collapse
|
3
|
Charles APR, Rajasekaran B, Awasti N, Choudhary P, Khanashyam AC, Majumder K, Wu Y, Pandiselvam R, Jin TZ. Emerging chitosan systems incorporated with polyphenols: Their applications in intelligent packaging, active packaging, and nutraceutical systems - A comprehensive review. Int J Biol Macromol 2025; 308:142714. [PMID: 40174836 DOI: 10.1016/j.ijbiomac.2025.142714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/20/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Chitosan, a biodegradable anionic polysaccharide, has been increasingly investigated for food packaging and nutraceutical applications. In recent years, chitosan has been combined with polyphenols, a group of health promoting bioactive compounds, to enhance their physicochemical, functional, and biological properties. The synergistic functional attributes of chitosan and polyphenols have led to the development of several novel food packaging materials and nutraceuticals. Despite, several investigations being conducted on chitosan-polyphenol materials (e.g., films, coating, nanoparticles, complexes, emulsion gels), currently there is a lack of studies that comprehensively evaluate the combined effect of chitosan and polyphenol in development of both food packaging materials and nutraceuticals. Therefore, in this review, novel packaging materials and nutraceuticals developed employing chitosan-polyphenol in recent years (2018-2024) are thoroughly investigated. This review initiates with the source, production strategies, and techniques employed to improve the functionality of chitosan. Secondly, the findings associated with important intelligent packaging materials, including pH indicator, time-temperature indicator, and freshness indicator, developed using chitosan-polyphenol is investigated. Following that, the applications of chitosan-polyphenol materials in active food packaging (i.e., antimicrobial, antioxidant, oxygen scavenger, ethylene scavenger, and moisture scavenger) are explored. Notably, chitosan-based delivery systems that are employed to improve the chemical stability, bioaccessibility, and biological properties of polyphenols for nutraceutical applications are summarized. Finally, the challenges associated with the industrial application of chitosan-polyphenol materials are addressed. Overall, this review would benefit a wide range of scientists from food packaging to ingredient sectors by providing the current knowledge associated with chitosan-polyphenol materials.
Collapse
Affiliation(s)
- Anto Pradeep Raja Charles
- Department of Food Science and Technology, University of Nebraska-Lincoln, Food Innovation Center, Lincoln, NE 68588, United States
| | - Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Nancy Awasti
- Sensory Scientist, Lactalis USA, Buffalo, New York 14220, United States
| | - Pintu Choudhary
- Department of Food Technology, Chaudhary Bansi Lal Government Polytechnic, Sector 13, 127021, India
| | - Anandu Chandra Khanashyam
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, United States
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Food Innovation Center, Lincoln, NE 68588, United States
| | - Ying Wu
- Department of Food Science, Tennessee State University, Nashville, TN 37209, United States.
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India.
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States.
| |
Collapse
|
4
|
Zhao S, Wang S, Lu Q, Liu Y. Effect of calcium chloride blanching combined with acetic acid soaking pretreatment on oil absorption of fried potato chips. Food Chem 2024; 460:140661. [PMID: 39089019 DOI: 10.1016/j.foodchem.2024.140661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
This study investigated the effect of calcium chloride (CaCl2) combined with acetic acid (AA) pretreatment on the oil absorption of potato chips and explored the possible mechanisms influencing oil absorption. Results indicated that compared with hot water blanching, the combination of 0.3% CaCl2 blanching and AA soaking for 2-8 h pretreatment was found to reduce oil content by 10.52%-12.68% and significantly improve the crispness and color of fried potato chips. Microstructural and textural analyses revealed that the main reason for the reduction in oil content was the promotion of pectin gelation in the cell wall by CaCl2 and AA. However, it was observed that prolonged AA soaking time and high-concentration CaCl2 blanching led to an increase in total oil content and decrease in brittleness. Based on the results of surface roughness and moisture content analyses, it was suggested that the CaCl2 and AA pretreatments affected surface roughness and moisture content, thereby increasing oil absorption and reducing brittleness during frying.
Collapse
Affiliation(s)
- Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China; School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China; School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Qianru Lu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China; School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China; School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
5
|
Brito IPC, Silva EK. Pulsed electric field technology in vegetable and fruit juice processing: A review. Food Res Int 2024; 184:114207. [PMID: 38609209 DOI: 10.1016/j.foodres.2024.114207] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
The worldwide market for vegetable and fruit juices stands as a thriving sector with projected revenues reaching to $81.4 billion by 2024 and an anticipated annual growth rate of 5.27% until 2028. Juices offer a convenient means of consuming bioactive compounds and essential nutrients crucial for human health. However, conventional thermal treatments employed in the juice and beverage industry to inactivate spoilage and pathogenic microorganisms, as well as endogenous enzymes, can lead to the degradation of bioactive compounds and vitamins. In response, non-thermal technologies have emerged as promising alternatives to traditional heat processing, with pulsed electric field (PEF) technology standing out as an innovative and sustainable choice. In this context, this comprehensive review investigated the impact of PEF on the microbiological, physicochemical, functional, nutritional, and sensory qualities of vegetable and fruit juices. PEF induces electroporation phenomena in cell membranes, resulting in reversible or irreversible changes. Consequently, a detailed examination of the effects of PEF process variables on juice properties is essential. Monitoring factors such as electric field strength, frequency, pulse width, total treatment time, and specific energy is important to ensure the production of a safe and chemically/kinetically stable product. PEF technology proves effective in microbial and enzymatic inactivation within vegetable and fruit juices, mitigating factors contributing to deterioration while maintaining the physicochemical characteristics of these products. Furthermore, PEF treatment does not compromise the content of substances with functional, nutritional, and sensory properties, such as phenolic compounds and vitamins. When compared to alternative processing methods, such as mild thermal treatments and other non-thermal technologies, PEF treatment consistently demonstrates comparable outcomes in terms of physicochemical attributes, functional properties, nutritional quality, and overall safety.
Collapse
Affiliation(s)
- Iuri Procopio Castro Brito
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas-SP CEP:13083-862, Brazil
| | - Eric Keven Silva
- Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas-SP CEP:13083-862, Brazil.
| |
Collapse
|
6
|
Bariya AR, Rathod NB, Patel AS, Nayak JKB, Ranveer RC, Hashem A, Abd Allah EF, Ozogul F, Jambrak AR, Rocha JM. Recent developments in ultrasound approach for preservation of animal origin foods. ULTRASONICS SONOCHEMISTRY 2023; 101:106676. [PMID: 37939526 PMCID: PMC10656273 DOI: 10.1016/j.ultsonch.2023.106676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Ultrasound is a contemporary non-thermal technology that is currently being extensively evaluated for its potential to preserve highly perishable foods, while also contributing positively to the economy and environment. There has been a rise in the demand for food products that have undergone minimal processing or have been subjected to non-thermal techniques. Livestock-derived food products, such as meat, milk, eggs, and seafood, are widely recognized for their high nutritional value. These products are notably rich in proteins and quality fats, rendering them particularly vulnerable to oxidative and microbial spoilage. Ultrasound has exhibited significant antimicrobial properties, as well as the ability to deactivate enzymes and enhance mass transfer. The present review centers on the production and classification of ultrasound, as well as its recent implementation in the context of livestock-derived food products. The commercial applications, advantages, and limitations of the subject matter are also subject to scrutiny. The review indicated that ultrasound technology can be effectively utilized in food products derived from livestock, leading to favorable outcomes in terms of prolonging the shelf life of food while preserving its nutritional, functional, and sensory attributes. It is recommended that additional research be conducted to investigate the effects of ultrasound processing on nutrient bioavailability and extraction. The implementation of hurdle technology can effectively identify and mitigate the lower inactivation of certain microorganisms or vegetative cells.
Collapse
Affiliation(s)
- Akshay Rajendrabhai Bariya
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India.
| | - Nikheel Bhojraj Rathod
- Post Graduate Institute of Post-Harvest Technology & Management, Roha, Raigad, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Maharashtra State, India.
| | - Ajay Sureshbhai Patel
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India
| | - Jitendra Kumar Bhogilal Nayak
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, Gujarat, India
| | - Rahul Chudaman Ranveer
- Post Graduate Institute of Post-Harvest Technology & Management, Roha, Raigad, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Maharashtra State, India.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia.
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey.
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia.
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
7
|
Qian J, Chen D, Zhang Y, Gao X, Xu L, Guan G, Wang F. Ultrasound-Assisted Enzymatic Protein Hydrolysis in Food Processing: Mechanism and Parameters. Foods 2023; 12:4027. [PMID: 37959146 PMCID: PMC10647539 DOI: 10.3390/foods12214027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Ultrasound has been widely used as a green and efficient non-thermal processing technique to assist with enzymatic hydrolysis. Compared with traditional enzymatic hydrolysis, ultrasonic-pretreatment-assisted enzymatic hydrolysis can significantly improve the efficiency of enzymatic hydrolysis and enhance the biological activity of substrates. At present, this technology is mainly used for the extraction of bioactive substances and the degradation of biological macromolecules. This review is focused on the mechanism of enzymatic hydrolysis assisted by ultrasonic pretreatment, including the effects of ultrasonic pretreatment on the enzyme structure, substrate structure, enzymatic hydrolysis kinetics, and thermodynamics and the effects of the ultrasonic conditions on the enzymatic hydrolysis results. The development status of ultrasonic devices and the application of ultrasonic-assisted enzymatic hydrolysis in the food industry are briefly described in this study. In the future, more attention should be paid to research on ultrasound-assisted enzymatic hydrolysis devices to promote the expansion of production and improve production efficiency.
Collapse
Affiliation(s)
- Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
| | - Di Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
| | - Yizhong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guoqiang Guan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Q.); (D.C.); (Y.Z.); (X.G.); (L.X.); (G.G.)
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Zadeike D, Degutyte R. Recent Advances in Acoustic Technology in Food Processing. Foods 2023; 12:3365. [PMID: 37761074 PMCID: PMC10530031 DOI: 10.3390/foods12183365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of food industry technologies and increasing the sustainability and effectiveness of processing comprise some of the relevant objectives of EU policy. Furthermore, advances in the development of innovative non-thermal technologies can meet consumers' demand for high-quality, safe, nutritious, and minimally processed foods. Acoustic technology is characterized as environmentally friendly and is considered an alternative method due to its sustainability and economic efficiency. This technology provides advantages such as the intensification of processes, increasing the efficiency of processes and eliminating inefficient ones, improving product quality, maintaining the product's texture, organoleptic properties, and nutritional value, and ensuring the microbiological safety of the product. This review summarizes some important applications of acoustic technology in food processing, from monitoring the safety of raw materials and products, intensifying bioprocesses, increasing the effectiveness of the extraction of valuable food components, modifying food polymers' texture and technological properties, to developing biodegradable biopolymer-based composites and materials for food packaging, along with the advantages and challenges of this technology.
Collapse
Affiliation(s)
- Daiva Zadeike
- Department of Food Science and Technology, Faculty of Chemical Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania;
| | | |
Collapse
|