1
|
Zhao Y, Hu X, Ren J, Song C, Sun Y. Ultrasound-assisted preparation of wax-based composite gelator: Structural characterisation, in vitro antioxidant activity and application in oleogels. ULTRASONICS SONOCHEMISTRY 2025; 114:107253. [PMID: 39965293 DOI: 10.1016/j.ultsonch.2025.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
In recent years, the development of zero-trans fatty acid products instead of traditional hydrogenated and high-unsaturated fatty acid animal and vegetable oils has been an increasing interest in the field of food. This paper focused on the ultrasound-assisted preparation of a novel wax-based composite gelator loaded with natural antioxidant to prepare oleogels with good storage oxidation stability. The preparation of the wax-based composite gelator was to first form the anthocyanin (ACNs) and soyabean lecithin (SL) complex, and then homogenized with beeswax (BW). A complex maximum association efficiency of 86.43 % was achieved when the combination was performed for 50 min at 40 °C and 270 W ultrasonic power, and exhibited higher lipophilicity. Moreover, structural analysis results revealed that ultrasonic-assisted treatment accelerated the formation of ACNs and SL ultrasonic complexes (ASUC) by the hydrogen bonding. The results of gelators indicated the ASUC-BW composite gelator showed the highest ACNs embedding rate of 72.91 % and better antioxidant activity. XRD analysis and thermogravimetric analysis demonstrated that ASUC-BW composite gelator maintained β' crystal structure and had higher thermal stability due to physical interactions between ASUC and beeswax. Accelerated storage tests at 60 °C revealed that oleogels prepared by ASUC-BW composite gelator (ALO) had significantly lower peroxide values (PV) (14.0 mmol/kg) and thiobarbituric acid reactive substances (TBARS) (1.8 mg/kg). Overall, this paper demonstrates ultrasonic-assisted treatment is an effective way to improve dispersion and availability of ANCs in food rich in oil and can be further applied to developing novel high stability fatty food systems.
Collapse
Affiliation(s)
- Yue Zhao
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006 China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar University, Qiqihar 161006 China; Key Laboratory of Agricultural Products Processing of Heilongjiang Province Ordinary University, Qiqihar University, Qiqihar 161006 China
| | - Xiaoqian Hu
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006 China
| | - Jian Ren
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006 China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar University, Qiqihar 161006 China; Key Laboratory of Agricultural Products Processing of Heilongjiang Province Ordinary University, Qiqihar University, Qiqihar 161006 China
| | - Chunli Song
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006 China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar University, Qiqihar 161006 China; Key Laboratory of Agricultural Products Processing of Heilongjiang Province Ordinary University, Qiqihar University, Qiqihar 161006 China
| | - Yang Sun
- College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006 China; Engineering Research Center of Plant Food Processing Technology, Ministry of Education, Qiqihar University, Qiqihar 161006 China; Key Laboratory of Agricultural Products Processing of Heilongjiang Province Ordinary University, Qiqihar University, Qiqihar 161006 China.
| |
Collapse
|
2
|
Fan H, Huang W, Sun L, Chen Z, Wen Y, Li H, Wang J, Sun B. Modulation of starch-polyphenol complex thermal stability and antioxidant activity: The role of polyphenol structure. Int J Biol Macromol 2025; 306:141434. [PMID: 40010464 DOI: 10.1016/j.ijbiomac.2025.141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/07/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Polyphenols are closely related to human health, but thermal treatment causes the loss of polyphenol activity. Complexation between amylose and polyphenol prevents oxidation and degradation of polyphenols during thermal treatment. And the functional properties of the complex are affected by the polyphenol backbone. Therefore, this study compared the complexation between pre-formed V-amylose (V6a) and polyphenols with different backbones (C6-C1, C6-C3, and C6-C3-C6). Specifically, a non-inclusion complex was formed between V6a and PHBA through intermolecular hydrogen bonding, whereas p-coumaric acid (PCA, C6-C3 backbone) and 6-hydroxyflavone (HF, C6-C3-C6 backbone) formed V-type inclusion complexes with V6a. In addition, V6a-PCA possessed greater relative crystallinity (42.70 %), higher thermal stability (136.2 °C), higher encapsulation efficiency (22.8 %), and stronger antioxidant activity (2, 2-diphenyl-1-picrylhydrazyl radical scavenging activity = 62.80 %). Finally, the molecular dynamic simulation corroborated the effect of the polyphenol backbone on the complex type. This study suggested that C6-C3 backbone polyphenols facilitated the formation of inclusion complexes with V-amylose compared to hydrophilic C6-C1 backbone polyphenols and C6-C3-C6 backbone polyphenols. V-type inclusion complexes are effective encapsulation carriers, which can be used in the future to enhance the bioactivity of polyphenols in food processing.
Collapse
Affiliation(s)
- Haoran Fan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Wei Huang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Lin Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Zhijun Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
3
|
Li Y, Zhang C, Li S, Zhu Z, Wang X, Cravotto G. Improving complexation of puerarin with kudzu starch by various ultrasonic pretreatment: Interaction mechanism analysis. ULTRASONICS SONOCHEMISTRY 2024; 111:107095. [PMID: 39388850 PMCID: PMC11490904 DOI: 10.1016/j.ultsonch.2024.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
The industrial preparation of kudzu starch (KS) significantly reduces the remaining of flavonoids like puerarin (PU) in the product, weakening its biological activity and making pre-treatments on kudzu crucial. Ultrasonic technique, widely used for modifying biomolecules, can enhance nutrient interactions like those between starch and polyphenols in foods. Thus, a puerarin-kudzu starch (PKS) complex was prepared with the introduction of ultrasonic pretreatment. The results indicated that sonication increased the binding of PU to KS from 0.399 ± 0.01 to 0.609 ± 0.05 mg/g. Particle size analysis and SEM revealed that the particles of the ultrasonic puerarin-kudzu starch complex (UPKS) were larger than those of the untreated complexes. XRD, UV-vis, and FT-IR spectroscopic analyses indicated that hydrogen bonding primarily governs the interaction between PU and KS. Additionally, incorporating PU decreased the starch structure's orderliness, while ultrasonic treatment altered the helical configuration of straight-chain starch, leading to the formation of a new, ordered structure through the creation of new hydrogen bonds. Additionally, gels formed from UPKS exhibited higher viscosity, elasticity, and shear stress, suggesting that ultrasound significantly altered the intermolecular interactions between PKS. In conclusion, the use of ultrasound under optimal conditions has demonstrated its effectiveness in preparing PKS complexes, highlighting its significant potential to produce high value-added kudzu-based products.
Collapse
Affiliation(s)
- Yuheng Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Wuhan 430048, China
| | - Chao Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Wuhan 430048, China
| | - Shuyi Li
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Wuhan 430048, China.
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Wuhan 430048, China.
| | - Xuehua Wang
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Wuhan 430048, China
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| |
Collapse
|
4
|
Wu Y, Liu Y, Jia Y, Feng CH, Ren F, Liu H. Research progress on the regulation of starch-polyphenol interactions in food processing. Int J Biol Macromol 2024; 279:135257. [PMID: 39233167 DOI: 10.1016/j.ijbiomac.2024.135257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Starch is a fundamental material in the food industry. However, the inherent structural constraints of starch impose limitations on its physicochemical properties, including thermal instability, viscosity, and retrogradation. To address these obstacles, polyphenols are extensively employed for starch modification owing to their distinctive structural characteristics and potent antioxidant capabilities. Interaction between the hydroxyl groups of polyphenols and starch results in the formation of inclusion or non-inclusion complexes, thereby inducing alterations in the multiscale structure of starch. These modifications lead to changes in the physicochemical properties of starch, while simultaneously enhancing its nutritional value. Recent studies have demonstrated that both thermal and non-thermal processing exert a significant influence on the formation of starch-polyphenol complexes. This review meticulously analyzes the techniques facilitating complex formation, elucidating the critical factors that dictate this process. Of noteworthy importance is the observation that thermal processing significantly boosts these interactions, whereas non-thermal processing enables more precise modifications. Thus, a profound comprehension and precise regulation of the production of starch-polyphenol complexes are imperative for optimizing their application in various starch-based food products. This in-depth study is dedicated to providing a valuable pathway for enhancing the quality of starchy foods through the strategic integration of suitable processing technologies.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chao-Hui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
5
|
Wu Y, Liu Y, Jia Y, Zhang H, Ren F. Formation and Application of Starch-Polyphenol Complexes: Influencing Factors and Rapid Screening Based on Chemometrics. Foods 2024; 13:1557. [PMID: 38790857 PMCID: PMC11121577 DOI: 10.3390/foods13101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the nuanced interplay between plant polyphenols and starch could have significant implications. For example, it could lead to the development of tailor-made starches for specific applications, from bakinag and brewing to pharmaceuticals and bioplastics. In addition, this knowledge could contribute to the formulation of functional foods with lower glycemic indexes or improved nutrient delivery. Variations in the complexes can be attributed to differences in molecular weight, structure, and even the content of the polyphenols. In addition, the unique structural characteristics of starches, such as amylose/amylopectin ratio and crystalline density, also contribute to the observed effects. Processing conditions and methods will always alter the formation of complexes. As the type of starch/polyphenol can have a significant impact on the formation of the complex, the selection of suitable botanical sources of starch/polyphenols has become a focus. Spectroscopy coupled with chemometrics is a convenient and accurate method for rapidly identifying starches/polyphenols and screening for the desired botanical source. Understanding these relationships is crucial for optimizing starch-based systems in various applications, from food technology to pharmaceutical formulations.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
6
|
Zhao S, Cai S, Ding L, Yi J, Zhou L, Liu Z, Chu C. Exploring the Blood Glucose-Lowering Potential of the Umami Peptides LADW and EEAEGT Derived from Tuna Skeletal Myosin: Perspectives from α-Glucosidase Inhibition and Starch Interaction. Foods 2024; 13:294. [PMID: 38254595 PMCID: PMC10815170 DOI: 10.3390/foods13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to explore the potential of umami peptides for lowering blood glucose. Molecular docking results showed that the peptides LADW and EEAEGT bound to the active amino acid residues of α-glucosidase via hydrogen bonds and Van der Waals forces, a finding supported by an independent gradient model (IGM). Molecular dynamics (MD) simulations demonstrated that the peptides LADW and EEAEGT can decelerate the outward expansion of α-glucosidase and reduce amino acid fluctuations at the active site. In vitro findings indicated that the peptides LADW and EEAEGT showed potent inhibitory activity against α-glucosidase, with IC50 values of 4.40 ± 0.04 and 6.46 ± 0.22 mM, respectively. Furthermore, MD simulation and morphological observation results also revealed that LADW and EEAEGT alter starch structure and form weak interactions with starch through intermolecular hydrogen bonding, leading to the inhibition of starch hydrolysis. Peptides inhibit the ability of starch to produce reducing sugars after simulated gastrointestinal digestion, providing additional evidence of the inhibition of starch hydrolysis by the added peptides. Taken together, these findings suggest that consuming the umami peptides LADW and EEAEGT may alleviate postprandial blood glucose elevations via inhibiting α-glucosidase and starch hydrolysis.
Collapse
Affiliation(s)
- Shuai Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| |
Collapse
|
7
|
Liu W, Xu J, Shuai X, Geng Q, Guo X, Chen J, Li T, Liu C, Dai T. The interaction and physicochemical properties of the starch-polyphenol complex: Polymeric proanthocyanidins and maize starch with different amylose/amylopectin ratios. Int J Biol Macromol 2023; 253:126617. [PMID: 37652319 DOI: 10.1016/j.ijbiomac.2023.126617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
This study investigated the impact of polymeric proanthocyanidins (PPC) on the physicochemical characteristics of maize starch with varying amylose content, and their potential interaction mechanism. PPC with a lower content (1 %) reduced the viscoelasticity of the high amylose maize starch (HAM) system, inhibited amylose rearrangement, and enhanced its fluidity. However, excessive PPC restrained the interaction between PPC and amylose. In contrast to HAM, PPC improved the gelation ability of waxy maize starch (WAM) as PPC concentration was raised. PPC suppressed the recrystallization of starch during storage, and PPC had a superior inhibition influence on the retrogradation of WAM in comparison to HAM. This indicated that amylopectin was more likely to interact with PPC than amylose. Hydrogen bonds were the main driving force between PPC and starch chains, which was clarified by Fourier transform-infrared, nuclear magnetic resonance, X-ray diffraction, iodine bonding reaction, and dynamic light scattering data. Additionally, the mechanism of interaction between PPC and the two starch components may be similar, and variance in physicochemical attributes can be primarily credited to the percentage of amylose to amylopectin in starch.
Collapse
Affiliation(s)
- Wuzhen Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiahui Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaojuan Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Ur Rehman H, Shuaib M, Ismail EAA, Li S. Enhancing medical ultrasound imaging through fractional mathematical modeling of ultrasound bubble dynamics. ULTRASONICS SONOCHEMISTRY 2023; 100:106603. [PMID: 37741023 PMCID: PMC10523275 DOI: 10.1016/j.ultsonch.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
The classical mathematical modeling of ultrasound acoustic bubble is so far using to improve the medical imaging quality. A clear and visible medical ultrasound image relies on bubble's diameter, wavelength and intensity of the scattered sound. A bubble with diameter much smaller than the sound wavelength is regarded as highly efficient source of sound scattering. The dynamical equation for a medical ultrasound bubble is primarily modeled in classical integer-order differential equation. Then a reduction of order technique is used to convert the modeled dynamic equation for the bubble surface into a system of incommensurate fractional-orders. The incommensurate fractional-order values are calculated directly, by using Riemann stability region. On the basis of stability the convergence and accuracy of the numerical scheme is also discussed in detail. It has been found that the system will remain stable and chaotic for the incommensurate values α1<0.737 and α2<2.80, respectively.
Collapse
Affiliation(s)
- Hijab Ur Rehman
- City University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Shuaib
- City University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Emad A A Ismail
- Department of Quantitative Analysis, College of Business Administration, King Saud University, P. O. Box 71115, Riyadh 11587, Saudi Arabia.
| | - Shuo Li
- School of Mathematics and Data Sciences, Changji University, Changji, Xinjiang 831100, PR China.
| |
Collapse
|
9
|
Šárka E, Sinica A, Smrčková P, Sluková M. Non-Traditional Starches, Their Properties, and Applications. Foods 2023; 12:3794. [PMID: 37893687 PMCID: PMC10606120 DOI: 10.3390/foods12203794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This review paper focuses on the recent advancements in the large-scale and laboratory-scale isolation, modification, and characterization of novel starches from accessible botanical sources and food wastes. When creating a new starch product, one should consider the different physicochemical changes that may occur. These changes include the course of gelatinization, the formation of starch-lipids and starch-protein complexes, and the origin of resistant starch (RS). This paper informs about the properties of individual starches, including their chemical structure, the size and crystallinity of starch granules, their thermal and pasting properties, their swelling power, and their digestibility; in particular, small starch granules showed unique properties. They can be utilized as fat substitutes in frozen desserts or mayonnaises, in custard due to their smooth texture, in non-food applications in biodegradable plastics, or as adsorbents. The low onset temperature of gelatinization (detected by DSC in acorn starch) is associated with the costs of the industrial processes in terms of energy and time. Starch plays a crucial role in the food industry as a thickening agent. Starches obtained from ulluco, winter squash, bean, pumpkin, quinoa, and sweet potato demonstrate a high peak viscosity (PV), while waxy rice and ginger starches have a low PV. The other analytical methods in the paper include laser diffraction, X-ray diffraction, FTIR, Raman, and NMR spectroscopies. Native, "clean-label" starches from new sources could replace chemically modified starches due to their properties being similar to common commercially modified ones. Human populations, especially in developed countries, suffer from obesity and civilization diseases, a reduction in which would be possible with the help of low-digestible starches. Starch with a high RS content was discovered in gelatinized lily (>50%) and unripe plantains (>25%), while cooked lily starch retained low levels of rapidly digestible starch (20%). Starch from gorgon nut processed at high temperatures has a high proportion of slowly digestible starch. Therefore, one can include these types of starches in a nutritious diet. Interesting industrial materials based on non-traditional starches include biodegradable composites, edible films, and nanomaterials.
Collapse
Affiliation(s)
- Evžen Šárka
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Prague, Technicka 5, 166 28 Prague, Czech Republic; (A.S.); (P.S.); (M.S.)
| | | | | | | |
Collapse
|
10
|
Hou X, Li X, Li J, Cong J, Jiang L, Shen G, Chen A, Zhang Z. Changes in the structural and physicochemical characteristics of sonicated potato flour. ULTRASONICS SONOCHEMISTRY 2023; 99:106573. [PMID: 37666069 PMCID: PMC10482878 DOI: 10.1016/j.ultsonch.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Ultrasound has been widely used for physical modifications of starch because of its effectiveness and environment friendliness; however, only a few reports have focused on the effect of varying ultrasonic treatments on the physicochemical properties of potato flour. In the present study, ultrasound at varying power levels (200, 300, 400, 500, and 600 W) and time intervals (20, 40, 60, 80, and 100 min) were used to obtain sonicated flour. Sonicated potato flour exhibited a significant (P < 0.05) decrease in blue value and oil holding capacity but an increase in swelling power, water solubility, syneresis rate, and transparency. Moreover, ultrasound decreased the RDS content while increasing RS and SDS contents. Thermal properties demonstrated significant (P < 0.05) increases in T0 (64.39℃-83.52℃) and TC (144.29℃-146.87℃) but a decrease in ΔH of the sonicated flour. SEM revealed wrinkles, less debris, and larger particle size at the surface of the sonicated flour. FTIR profiles of all samples exhibited similar characteristics peaks, but the sonicated flour had a higher R1047/1022 value. Additionally, ultrasound did not affect crystalline patterns, but it increased the crystallinity of the sonicated flour. Our study contributes to the understanding of physicochemical property changes of sonicated potato flour, which could have industrial applications.
Collapse
Affiliation(s)
- Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Xiaowan Li
- School of Light Industry and Materials, Chengdu Textile College, Chengdu, Sichuan, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jun Cong
- Chongqing Academy of Animal Science, China
| | - Lingyan Jiang
- Pingwu Food and Drug Inspection and Testing Center, Sichuan, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China.
| |
Collapse
|