1
|
Ghatak S, Satapathy SR, Sjölander A. DNA Methylation and Gene Expression of the Cysteinyl Leukotriene Receptors as a Prognostic and Metastatic Factor for Colorectal Cancer Patients. Int J Mol Sci 2023; 24:ijms24043409. [PMID: 36834820 PMCID: PMC9963074 DOI: 10.3390/ijms24043409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Colorectal cancer (CRC), one of the leading causes of cancer-related deaths in the western world, is the third most common cancer for both men and women. As a heterogeneous disease, colon cancer (CC) is caused by both genetic and epigenetic changes. The prognosis for CRC is affected by a variety of features, including late diagnosis, lymph node and distant metastasis. The cysteinyl leukotrienes (CysLT), as leukotriene D4 and C4 (LTD4 and LTC4), are synthesized from arachidonic acid via the 5-lipoxygenase pathway, and play an important role in several types of diseases such as inflammation and cancer. Their effects are mediated via the two main G-protein-coupled receptors, CysLT1R and CysLT2R. Multiple studies from our group observed a significant increase in CysLT1R expression in the poor prognosis group, whereas CysLT2R expression was higher in the good prognosis group of CRC patients. Here, we systematically explored and established the role of the CysLTRs, cysteinyl leukotriene receptor 1(CYSLTR1) and cysteinyl leukotriene receptor 2 (CYSLTR2) gene expression and methylation in the progression and metastasis of CRC using three unique in silico cohorts and one clinical CRC cohort. Primary tumor tissues showed significant CYSLTR1 upregulation compared with matched normal tissues, whereas it was the opposite for the CYSLTR2. Univariate Cox proportional-hazards (CoxPH) analysis yielded a high expression of CYSLTR1 and accurately predicted high-risk patients in terms of overall survival (OS; hazard ratio (HR) = 1.87, p = 0.03) and disease-free survival [DFS] Hazard ratio [HR] = 1.54, p = 0.05). Hypomethylation of the CYSLTR1 gene and hypermethylation of the CYSLTR2 gene were found in CRC patients. The M values of the CpG probes for CYSLTR1 are significantly lower in primary tumor and metastasis samples than in matched normal samples, but those for CYSLTR2 are significantly higher. The differentially upregulated genes between tumor and metastatic samples were uniformly expressed in the high-CYSLTR1 group. Two epithelial-mesenchymal transition (EMT) markers, E-cadherin (CDH1) and vimentin (VIM) were significantly downregulated and upregulated in the high-CYSLTR1 group, respectively, but the result was opposite to that of CYSLTR2 expression in CRC. CDH1 expression was high in patients with less methylated CYSLTR1 but low in those with more methylated CYSLTR2. The EMT-associated observations were also validated in CC SW620 cell-derived colonospheres, which showed decreased E-cadherin expression in the LTD4 stimulated cells, but not in the CysLT1R knockdown SW620 cells. The methylation profiles of the CpG probes for CysLTRs significantly predicted lymph node (area under the curve [AUC] = 0.76, p < 0.0001) and distant (AUC = 0.83, p < 0.0001) metastasis. Intriguingly, the CpG probes cg26848126 (HR = 1.51, p = 0.03) for CYSLTR1, and cg16299590 (HR = 2.14, p = 0.03) for CYSLTR2 significantly predicted poor prognosis in terms of OS, whereas the CpG probe cg16886259 for CYSLTR2 significantly predicts a poor prognosis group in terms of DFS (HR = 2.88, p = 0.03). The CYSLTR1 and CYSLTR2 gene expression and methylation results were successfully validated in a CC patient cohort. In this study, we have demonstrated that CysLTRs' methylation and gene expression profile are associated with the progression, prognosis, and metastasis of CRC, which might be used for the assessment of high-risk CRC patients after validating the result in a larger CRC cohort.
Collapse
|
2
|
Slater K, Bosch R, Smith KF, Jahangir CA, Garcia-Mulero S, Rahman A, O’Connell F, Piulats JM, O’Neill V, Horgan N, Coupland SE, O’Sullivan J, Gallagher WM, Villanueva A, Kennedy BN. 1,4-dihydroxy quininib modulates the secretome of uveal melanoma tumour explants and a marker of oxidative phosphorylation in a metastatic xenograft model. Front Med (Lausanne) 2023; 9:1036322. [PMID: 36698840 PMCID: PMC9868667 DOI: 10.3389/fmed.2022.1036322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/04/2022] [Indexed: 01/11/2023] Open
Abstract
Uveal melanoma (UM) is an intraocular cancer with propensity for liver metastases. The median overall survival (OS) for metastatic UM (MUM) is 1.07 years, with a reported range of 0.84-1.34. In primary UM, high cysteinyl leukotriene receptor 1 (CysLT1) expression associates with poor outcomes. CysLT1 antagonists, quininib and 1,4-dihydroxy quininib, alter cancer hallmarks of primary and metastatic UM cell lines in vitro. Here, the clinical relevance of CysLT receptors and therapeutic potential of quininib analogs is elaborated in UM using preclinical in vivo orthotopic xenograft models and ex vivo patient samples. Immunohistochemical staining of an independent cohort (n = 64) of primary UM patients confirmed high CysLT1 expression significantly associates with death from metastatic disease (p = 0.02; HR 2.28; 95% CI 1.08-4.78), solidifying the disease relevance of CysLT1 in UM. In primary UM samples (n = 11) cultured as ex vivo explants, 1,4-dihydroxy quininib significantly alters the secretion of IL-13, IL-2, and TNF-α. In an orthotopic, cell line-derived xenograft model of MUM, 1,4-dihydroxy quininib administered intraperitoneally at 25 mg/kg significantly decreases ATP5B expression (p = 0.03), a marker of oxidative phosphorylation. In UM, high ATP5F1B is a poor prognostic indicator, whereas low ATP5F1B, in combination with disomy 3, correlates with an absence of metastatic disease in the TCGA-UM dataset. These preclinical data highlight the diagnostic potential of CysLT1 and ATP5F1B in UM, and the therapeutic potential of 1,4-dihydroxy quininib with ATP5F1B as a companion diagnostic to treat MUM.
Collapse
Affiliation(s)
- Kayleigh Slater
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Rosa Bosch
- Xenopat S.L., Parc Científic de Barcelona, Barcelona, Spain
| | - Kaelin Francis Smith
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chowdhury Arif Jahangir
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Sandra Garcia-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, Barcelona, Spain,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Arman Rahman
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Fiona O’Connell
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, St. James’s Hospital, Dublin, Ireland
| | - Josep M. Piulats
- Department of Medical Oncology, Catalan Institute of Cancer (ICO), Bellvitge Biomedical Research Institute (IDIBELL)-OncoBell, Barcelona, Spain
| | | | - Noel Horgan
- Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, St. James’s Hospital, Dublin, Ireland
| | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alberto Villanueva
- Xenopat S.L., Parc Científic de Barcelona, Barcelona, Spain,Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Breandán N. Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,*Correspondence: Breandán N. Kennedy,
| |
Collapse
|
3
|
Tsai MJ, Chang WA, Chuang CH, Wu KL, Cheng CH, Sheu CC, Hsu YL, Hung JY. Cysteinyl Leukotriene Pathway and Cancer. Int J Mol Sci 2021; 23:ijms23010120. [PMID: 35008546 PMCID: PMC8745400 DOI: 10.3390/ijms23010120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer remains a leading cause of death worldwide, despite many advances being made in recent decades. Changes in the tumor microenvironment, including dysregulated immunity, may contribute to carcinogenesis and cancer progression. The cysteinyl leukotriene (CysLT) pathway is involved in several signal pathways, having various functions in different tissues. We summarized major findings of studies about the roles of the CysLT pathway in cancer. Many in vitro studies suggested the roles of CysLTs in cell survival/proliferation via CysLT1 receptor (CysLT1R). CysLT1R antagonism decreased cell vitality and induced cell death in several types of cancer cells, such as colorectal, urological, breast, lung and neurological malignancies. CysLTs were also associated with multidrug resistance of cancer, and CysLT1R antagonism might reverse chemoresistance. Some animal studies demonstrated the beneficial effects of CysLT1R antagonist in inhibiting tumorigenesis and progression of some cancer types, particularly colorectal cancer and lung cancer. The expression of CysLT1R was shown in various cancer tissues, particularly colorectal cancer and urological malignancies, and higher expression was associated with a poorer prognosis. The chemo-preventive effects of CysLT1R antagonists were demonstrated in two large retrospective cohort studies. In summary, the roles of the CysLT pathway in cancer have been delineated, whereas further studies are still warranted.
Collapse
Affiliation(s)
- Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cheng-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Kuan-Li Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chih-Hung Cheng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-J.T.); (W.-A.C.); (C.-H.C.); (K.-L.W.); (C.-H.C.); (C.-C.S.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 5651)
| |
Collapse
|
4
|
Sutton SS, Magagnoli J, Cummings TH, Hardin JW. Leukotriene inhibition and the risk of lung cancer among U.S. veterans with asthma. Pulm Pharmacol Ther 2021; 71:102084. [PMID: 34662740 DOI: 10.1016/j.pupt.2021.102084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022]
Abstract
Leukotriene inhibition, in vitro and in vivo, is found to suppress tumor growth across a variety of cancer cells. A mouse model of lung cancer revealed that the leukotriene inhibitor montelukast induced lung cancer cell death. Based on the preclinical data we hypothesize that exposure to a leukotriene inhibitor is associated with a lower risk of lung cancer. We conducted a national retrospective cohort study among U.S. Veterans with asthma to explore the relationship between leukotriene inhibition and incident lung cancer. We utilize a variety of statistical techniques, including cox proportional hazards models, propensity score matching and falsification testing to examine the association. A total of 558,466 patients met study criteria consisting of 23,730 patients with leukotriene exposure and 534,736 patients with no leukotriene medication use. Leukotriene inhibitor exposure reduced the risk of lung cancer by 17% (HR = 0.830; 95% CI = (0.757-0.911)) in the unmatched and 22.2% in the matched analysis (HR = 0.778 95% CI = (0.688-0.88)). Falsification testing with appendicitis and rotator cuff injury end points, suggest no evidence of selection bias. However, because treatment was not randomized, residual confounding cannot be ruled out. The pre-clinical data on leukotriene inhibition and lung cancer combined with our database analysis provide intriguing evidence warranting further research into the relationship between leukotrienes and lung cancer.
Collapse
Affiliation(s)
- S Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA; Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA; Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| | - Tammy H Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA; Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - James W Hardin
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA; Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
5
|
Kachi K, Kato H, Naiki-Ito A, Komura M, Nagano-Matsuo A, Naitoh I, Hayashi K, Kataoka H, Inaguma S, Takahashi S. Anti-Allergic Drug Suppressed Pancreatic Carcinogenesis via Down-Regulation of Cellular Proliferation. Int J Mol Sci 2021; 22:ijms22147444. [PMID: 34299067 PMCID: PMC8304964 DOI: 10.3390/ijms22147444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is a fatal disease, and thus its chemoprevention is an important issue. Based on the recent report that patients with allergic diseases have a low risk for pancreatic cancer, we examined the potential chemopreventive effect of anti-allergic agents using a hamster pancreatic carcinogenesis model. Among the three anti-allergic drugs administered, montelukast showed a tendency to suppress the incidence of pancreatic cancer. Further animal study revealed a significantly decreased incidence of pancreatic cancer in the high-dose montelukast group compared with controls. The development of the pancreatic intraepithelial neoplasia lesions was also significantly suppressed. The Ki-67 labeling index was significantly lower in pancreatic carcinomas in the high-dose montelukast group than in controls. In vitro experiments revealed that montelukast suppressed proliferation of pancreatic cancer cells in a dose-dependent manner with decreased expression of phospho-ERK1/2. Montelukast induced G1 phase arrest. Conversely, leukotriene D4 (LTD4), an agonist of CYSLTR1, increased cellular proliferation of pancreatic cancer cells with an accumulation of phospho-ERK1/2. In our cohort, pancreatic ductal adenocarcinoma patients with high CYSLTR1 expression showed a significantly unfavorable clinical outcome compared with those with low expression. Our results indicate that montelukast exerts a chemopreventive effect on pancreatic cancer via the LTD4–CYSLTR1 axis and has potential for treatment of pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Kenta Kachi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (K.K.); (I.N.); (K.H.); (H.K.)
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
| | - Masayuki Komura
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
| | - Aya Nagano-Matsuo
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
| | - Itaru Naitoh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (K.K.); (I.N.); (K.H.); (H.K.)
| | - Kazuki Hayashi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (K.K.); (I.N.); (K.H.); (H.K.)
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (K.K.); (I.N.); (K.H.); (H.K.)
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
- Department of Pathology, Nagoya City University East Medical Center, Nagoya 464-8547, Japan
- Correspondence: (S.I.); (S.T.)
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.K.); (A.N.-I.); (M.K.); (A.N.-M.)
- Correspondence: (S.I.); (S.T.)
| |
Collapse
|
6
|
Saier L, Peyruchaud O. Emerging role of cysteinyl LTs in cancer. Br J Pharmacol 2021; 179:5036-5055. [PMID: 33527344 DOI: 10.1111/bph.15402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 01/31/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are inflammatory lipid mediators that play a central role in the pathophysiology of several inflammatory diseases. Recently, there has been an increased interest in determining how these lipid mediators orchestrate tumour development and metastasis through promoting a pro-tumour micro-environment. Up-regulation of CysLTs receptors and CysLTs production is found in a number of cancers and has been associated with increased tumorigenesis. Understanding the molecular mechanisms underlying the role of CysLTs and their receptors in cancer progression will help investigate the potential of targeting CysLTs signalling for anti-cancer therapy. This review gives an overview of the biological effects of CysLTs and their receptors, along with current knowledge of their regulation and expression. It also provides a recent update on the molecular mechanisms that have been postulated to explain their role in tumorigenesis and on the potential of anti-CysLTs in the treatment of cancer.
Collapse
Affiliation(s)
- Lou Saier
- INSERM, Unit 1033, LYOS, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Peyruchaud
- INSERM, Unit 1033, LYOS, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
7
|
Slater K, Heeran AB, Garcia-Mulero S, Kalirai H, Sanz-Pamplona R, Rahman A, Al-Attar N, Helmi M, O’Connell F, Bosch R, Portela A, Villanueva A, Gallagher WM, Jensen LD, Piulats JM, Coupland SE, O’Sullivan J, Kennedy BN. High Cysteinyl Leukotriene Receptor 1 Expression Correlates with Poor Survival of Uveal Melanoma Patients and Cognate Antagonist Drugs Modulate the Growth, Cancer Secretome, and Metabolism of Uveal Melanoma Cells. Cancers (Basel) 2020; 12:E2950. [PMID: 33066024 PMCID: PMC7600582 DOI: 10.3390/cancers12102950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Metastatic uveal melanoma (UM) is a rare, but often lethal, form of ocular cancer arising from melanocytes within the uveal tract. UM has a high propensity to spread hematogenously to the liver, with up to 50% of patients developing liver metastases. Unfortunately, once liver metastasis occurs, patient prognosis is extremely poor with as few as 8% of patients surviving beyond two years. There are no standard-of-care therapies available for the treatment of metastatic UM, hence it is a clinical area of urgent unmet need. Here, the clinical relevance and therapeutic potential of cysteinyl leukotriene receptors (CysLT1 and CysLT2) in UM was evaluated. High expression of CYSLTR1 or CYSLTR2 transcripts is significantly associated with poor disease-free survival and poor overall survival in UM patients. Digital pathology analysis identified that high expression of CysLT1 in primary UM is associated with reduced disease-specific survival (p = 0.012; HR 2.76; 95% CI 1.21-6.3) and overall survival (p = 0.011; HR 1.46; 95% CI 0.67-3.17). High CysLT1 expression shows a statistically significant (p = 0.041) correlation with ciliary body involvement, a poor prognostic indicator in UM. Small molecule drugs targeting CysLT1 were vastly superior at exerting anti-cancer phenotypes in UM cell lines and zebrafish xenografts than drugs targeting CysLT2. Quininib, a selective CysLT1 antagonist, significantly inhibits survival (p < 0.0001), long-term proliferation (p < 0.0001), and oxidative phosphorylation (p < 0.001), but not glycolysis, in primary and metastatic UM cell lines. Quininib exerts opposing effects on the secretion of inflammatory markers in primary versus metastatic UM cell lines. Quininib significantly downregulated IL-2 and IL-6 in Mel285 cells (p < 0.05) but significantly upregulated IL-10, IL-1β, IL-2 (p < 0.0001), IL-13, IL-8 (p < 0.001), IL-12p70 and IL-6 (p < 0.05) in OMM2.5 cells. Finally, quininib significantly inhibits tumour growth in orthotopic zebrafish xenograft models of UM. These preclinical data suggest that antagonism of CysLT1, but not CysLT2, may be of therapeutic interest in the treatment of UM.
Collapse
Affiliation(s)
- Kayleigh Slater
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (K.S.); (A.R.); (N.A.-A.); (W.M.G.)
- Genomics Medicine Ireland Limited, Cherrywood Business Park Building 4, D18 K7W4 Dublin, Ireland
| | - Aisling B. Heeran
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (F.O.); (J.O.)
| | - Sandra Garcia-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (R.S.-P.)
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 8TX, UK; (H.K.); (S.E.C.)
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL) and CIBERESP, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (S.G.-M.); (R.S.-P.)
| | - Arman Rahman
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (K.S.); (A.R.); (N.A.-A.); (W.M.G.)
| | - Nebras Al-Attar
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (K.S.); (A.R.); (N.A.-A.); (W.M.G.)
| | - Mays Helmi
- Unit of Cardiovascular Medicine, Division of Diagnostics and Specialist Medicine, Department of Health, Medical and Caring Sciences, Linköping University, SE-581 83 Linköping, Sweden; (M.H.); (L.D.J.)
| | - Fiona O’Connell
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (F.O.); (J.O.)
| | - Rosa Bosch
- Xenopat S.L., Parc Científic de Barcelona, Baldiri Reixac, 15-21 Edifici Hèlix, 08028 Barcelona, Spain; (R.B.); (A.P.); (A.V.)
| | - Anna Portela
- Xenopat S.L., Parc Científic de Barcelona, Baldiri Reixac, 15-21 Edifici Hèlix, 08028 Barcelona, Spain; (R.B.); (A.P.); (A.V.)
| | - Alberto Villanueva
- Xenopat S.L., Parc Científic de Barcelona, Baldiri Reixac, 15-21 Edifici Hèlix, 08028 Barcelona, Spain; (R.B.); (A.P.); (A.V.)
| | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (K.S.); (A.R.); (N.A.-A.); (W.M.G.)
| | - Lasse D. Jensen
- Unit of Cardiovascular Medicine, Division of Diagnostics and Specialist Medicine, Department of Health, Medical and Caring Sciences, Linköping University, SE-581 83 Linköping, Sweden; (M.H.); (L.D.J.)
| | - Josep M. Piulats
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Hospitalet de Llobregat, 08908 Barcelona, Spain;
- Clinical Research in Solid Tumors Group (CREST), Bellvitge Biomedical Research Institute IDIBELL-OncoBell, CIBERONC, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 8TX, UK; (H.K.); (S.E.C.)
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool L69 3GA, UK
| | - Jacintha O’Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland; (A.B.H.); (F.O.); (J.O.)
| | - Breandán N. Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland; (K.S.); (A.R.); (N.A.-A.); (W.M.G.)
| |
Collapse
|
8
|
Slater K, Hoo PS, Buckley AM, Piulats JM, Villanueva A, Portela A, Kennedy BN. Evaluation of oncogenic cysteinyl leukotriene receptor 2 as a therapeutic target for uveal melanoma. Cancer Metastasis Rev 2018; 37:335-345. [DOI: 10.1007/s10555-018-9751-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Osman J, Savari S, Chandrashekar NK, Bellamkonda K, Douglas D, Sjölander A. Cysteinyl leukotriene receptor 1 facilitates tumorigenesis in a mouse model of colitis-associated colon cancer. Oncotarget 2018; 8:34773-34786. [PMID: 28410235 PMCID: PMC5471010 DOI: 10.18632/oncotarget.16718] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/20/2017] [Indexed: 12/19/2022] Open
Abstract
Cysteinyl leukotriene receptor 1 (CysLT1R) has been shown to be up-regulated in the adenocarcinomas of colorectal cancer patients, which is associated with a poor prognosis. In a spontaneous model of colon cancer, CysLT1R disruption was associated with a reduced tumor burden in double-mutant female mice (ApcMin/+/Cysltr1-/-) compared to ApcMin/+ littermates. In the current study, we utilized a genetic approach to investigate the effect of CysLT1R in the induced azoxymethane/dextran sulfate sodium (AOM/DSS) model of colitis-associated colon cancer. We found that AOM/DSS female mice with a global disruption of the Cysltr1 gene (Cysltr1-/-) had a higher relative body weight, a more normal weight/length colon ratio and smaller-sized colonic polyps compared to AOM/DSS wild-type counterparts. The Cysltr1-/- colonic polyps exhibited low-grade dysplasia, while wild-type polyps had an adenoma-like phenotype. The Cysltr1-/- colonic polyps exhibited significant decreases in nuclear β-catenin and COX-2 protein expression, while the normal crypts surrounding the polyps exhibited increased Mucin 2 expression. Furthermore, Cysltr1-/- mice exhibited an overall reduction in inflammation, with a significant decrease in proinflammatory cytokines, polyp 5-LOX expression and infiltration of CD45 leukocytes and F4/80 macrophages. In conclusion, the present genetic approach in an AOM/DSS model further supports an important role for CysLT1R in colon tumorigenesis.
Collapse
Affiliation(s)
- Janina Osman
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Sayeh Savari
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Naveen Kumar Chandrashekar
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Kishan Bellamkonda
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Desiree Douglas
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Anita Sjölander
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, SE-205 02 Malmö, Sweden
| |
Collapse
|
10
|
Montelukast Induces Apoptosis-Inducing Factor-Mediated Cell Death of Lung Cancer Cells. Int J Mol Sci 2017; 18:ijms18071353. [PMID: 28672809 PMCID: PMC5535846 DOI: 10.3390/ijms18071353] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
Developing novel chemo-prevention techniques and advancing treatment are key elements to beating lung cancer, the most common cause of cancer mortality worldwide. Our previous cohort study showed that cysteinyl leukotriene receptor antagonists, mainly montelukast, decreased the lung cancer risk in asthma patients. In the current study, we conducted in vivo and in vitro experiments to demonstrate the inhibiting effect of montelukast on lung cancer and to investigate the underlying mechanisms. Using Lewis lung carcinoma-bearing mice, we showed that feeding montelukast significantly delayed the tumor growth in mice (p < 0.0001). Montelukast inhibited cell proliferation and colony formation and induced the cell death of lung cancer cells. Further investigation showed the down-regulation of B-cell lymphoma 2 (Bcl-2), up-regulation of Bcl-2 homologous antagonist/killer (Bak), and nuclear translocation of apoptosis-inducing factor (AIF) in montelukast-treated lung cancer cells. Montelukast also markedly decreased the phosphorylation of several proteins, such as with no lysine 1 (WNK1), protein kinase B (Akt), extracellular signal-regulated kinase 1/2 (Erk1/2), MAPK/Erk kinase (MEK), and proline-rich Akt substrate of 40-kDa (PRAS40), which might contribute to cell death. In conclusion, montelukast induced lung cancer cell death via the nuclear translocation of AIF. This study confirmed the chemo-preventive effect of montelukast shown in our previous cohort study. The utility of montelukast in cancer prevention and treatment thus deserves further studies.
Collapse
|
11
|
Burke L, Butler CT, Murphy A, Moran B, Gallagher WM, O'Sullivan J, Kennedy BN. Evaluation of Cysteinyl Leukotriene Signaling as a Therapeutic Target for Colorectal Cancer. Front Cell Dev Biol 2016; 4:103. [PMID: 27709113 PMCID: PMC5030284 DOI: 10.3389/fcell.2016.00103] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/30/2016] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the third most common cancer worldwide and is associated with significant morbidity and mortality. Current pharmacotherapy options include cytotoxic chemotherapy, anti-VEGF, and anti-EGFR targeting drugs, but these are limited by toxic side effects, limited responses and ultimately resistance. Cysteinyl leukotriene (CysLT) signaling regulates intestinal homeostasis with mounting evidence suggesting that CysLT signaling also plays a role in the pathogenesis of colorectal cancer. Therefore, CysLT signaling represents a novel target for this malignancy. This review evaluates reported links between CysLT signaling and established hallmarks of cancer in addition to its pharmacological potential as a new therapeutic target.
Collapse
Affiliation(s)
- Lorraine Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College DublinDublin, Ireland; Translational Oncology, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's HospitalDublin, Ireland
| | - Clare T Butler
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| | - Adrian Murphy
- Department of Medical Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital Baltimore, MD, USA
| | - Bruce Moran
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| | - William M Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| | - Jacintha O'Sullivan
- Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St. James's Hospital Dublin, Ireland
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin Dublin, Ireland
| |
Collapse
|
12
|
Ghosh A, Chen F, Thakur A, Hong H. Cysteinyl Leukotrienes and Their Receptors: Emerging Therapeutic Targets in Central Nervous System Disorders. CNS Neurosci Ther 2016; 22:943-951. [PMID: 27542570 DOI: 10.1111/cns.12596] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
Cysteinyl leukotrienes are a group of the inflammatory lipid molecules well known as mediators of inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic asthma, allergic rhinitis, and others, recent advances in the field of biomedical research highlighted the role of these inflammatory mediators in a broader range of diseases such as in the inflammation associated with the central nervous system (CNS) disorders, vascular inflammation (atherosclerotic), and in cancer. Among the CNS diseases, they, along with their synthesis precursor enzyme 5-lipoxygenase and their receptors, have been shown to be associated with brain injury, Multiple sclerosis, Alzheimer's disease, Parkinson's disease, brain ischemia, epilepsy, and others. However, a lot more remains elusive as the research in these areas is emerging and only a little has been discovered. Herein, through this review, we first provided a general up-to-date information on the synthesis pathway and the receptors for the molecules. Next, we summarized the current findings on their role in the brain disorders, with an insight given to the future perspectives.
Collapse
Affiliation(s)
- Arijit Ghosh
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Fang Chen
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Hao Hong
- Laboratory for Alzheimer's Disease and Related Disorders, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Paulucci BP, Pereira J, Picciarelli P, Levy D, Di Francesco RC. Expression of cysteinyl leukotriene receptor 1 and 2 (CysLTR1 and CysLTR2) in the lymphocytes of hyperplastic tonsils: comparison between allergic and nonallergic snoring children. Int Forum Allergy Rhinol 2016; 6:1151-1158. [PMID: 27221082 DOI: 10.1002/alr.21798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/07/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cysteinyl leukotriene receptor 1 and 2 (CysLTR1 and CysLTR2) are involved in allergic processes and play a role in adenotonsillar hyperplasia (AH). Clinically, only CysLTR1 may be blocked by montelukast. Our objective was to compare the expression of CysLTR1 and CysLTR2 in the B and T cells of hyperplasic tonsils of sensitized (SE) and control (NS) snoring children. METHODS Sixty children, 5 to 10 years of age, referred for adenotonsillectomy, were divided into SE and NS groups, according to their responses to the skin-prick test. Cells from the removed tissues were stained for CysLTR1, CysLTR2, CD19, and CD3 and counted via flow cytometry. messenger RNA (mRNA) expression of the CysLTRs genes was measured real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS The SE group showed reduced expression of the small CD3+/CysLTR1+ lymphocytes (4.6 ± 2.2 vs 6.5 ± 5.0; p = 0.04). Regarding the large lymphocytes, the SE group showed lower expression of CD3+/CysLTR1+ (40.9 ± 14.5 vs 47.6 ± 11.7; p = 0.05), CD19+/CysLTR1+ (44.6 ± 16.9 vs 54.1 ± 12.4; p = 0.01), and CD19+/CysLTR2+ (55.3 ± 11.3 vs 61.5 ± 12.6; p = 0.05) lymphocytes. Considering the total number of lymphocytes, the SE group had fewer CD3+/CysLTR1+ lymphocytes (11.1 ± 5.5 vs 13.7 ± 6.2; p = 0.04). All other cell populations exhibited reduced expression in the SE group without statistical significance. The expression of CysLTR2 was significantly higher (p < 0.05) than CysLTR1 in most studied cell populations. The mRNA expression did not show significant differences between the groups. CONCLUSION The expression of CysLTR is higher in the lymphocytes of the NS children, and CysLTR2 shows greater expression than CysLTR1 Respiratory allergies do not appear to be a stimulus for AH occurrence. Newer drugs capable of blocking both CysLTRs warrant further study.
Collapse
Affiliation(s)
- Bruno Peres Paulucci
- Department of Otolaryngology of Hospital das Clinicas, University of Sao Paulo, Sao Paulo, Brazil. ,
| | - Juliana Pereira
- Department of Hematology of Hospital das Clinicas, University of Sao Paulo, Sao Paulo, Brazil
| | - Patricia Picciarelli
- Department of Pathology of Hospital das Clinicas, University of Sao Paulo, Sao Paulo, Brazil
| | - Debora Levy
- Laboratory of Research in Hematology of Hospital das Clinicas, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
14
|
Cysteinyl Leukotriene Receptor Antagonists Decrease Cancer Risk in Asthma Patients. Sci Rep 2016; 6:23979. [PMID: 27052782 PMCID: PMC4823742 DOI: 10.1038/srep23979] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/17/2016] [Indexed: 01/18/2023] Open
Abstract
Previous in vitro and in vivo studies have demonstrated the potential of using cysteinyl leukotriene receptor antagonists (LTRAs) for chemoprevention, but this has not been investigated in any clinical setting. We therefore investigated the chemopreventive effect of LTRAs in a nationwide population-based study. From the Taiwan National Health Insurance Research Database, we enrolled adults with newly-diagnosed asthma between 2001 and 2011. Among these patients, each LTRA user was matched with five randomly-selected LTRA non-users by sex, age, asthma diagnostic year and modified Charlson Comorbidity Index score. We considered the development of cancer as the outcome. Totally, 4185 LTRA users and 20925 LTRA non-users were identified. LTRA users had a significantly lower cancer incidence rate than LTRA non-users did. Multivariable Cox regression analyses adjusting for baseline characteristics and comorbidities showed LTRA use was an independent protecting factor (hazard ratio = 0.31 [95% CI: 0.24–0.39]), and cancer risk decreased progressively with higher cumulative dose of LTRAs. In conclusion, this study revealed that the LTRA use decreased cancer risk in a dose-dependent manner in asthma patients. The chemopreventive effect of LTRAs deserves further study.
Collapse
|
15
|
Savari S, Chandrashekar NK, Osman J, Douglas D, Bellamkonda K, Jönsson G, Juhas M, Greicius G, Pettersson S, Sjölander A. Cysteinyl leukotriene 1 receptor influences intestinal polyp incidence in a gender-specific manner in the ApcMin/+mouse model. Carcinogenesis 2016; 37:491-9. [DOI: 10.1093/carcin/bgw031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/25/2016] [Indexed: 12/24/2022] Open
|
16
|
Han H, Xue-Franzén Y, Miao X, Nagy E, Li N, Xu D, Sjöberg J, Björkholm M, Claesson HE. Early growth response gene (EGR)-1 regulates leukotriene D4-induced cytokine transcription in Hodgkin lymphoma cells. Prostaglandins Other Lipid Mediat 2015; 121:122-30. [DOI: 10.1016/j.prostaglandins.2015.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/29/2015] [Accepted: 06/16/2015] [Indexed: 12/29/2022]
|
17
|
Savari S, Vinnakota K, Zhang Y, Sjölander A. Cysteinyl leukotrienes and their receptors: Bridging inflammation and colorectal cancer. World J Gastroenterol 2014; 20:968-977. [PMID: 24574769 PMCID: PMC3921548 DOI: 10.3748/wjg.v20.i4.968] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/16/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
Long-standing inflammation has emerged as a hallmark of neoplastic transformation of epithelial cells and may be a limiting factor of successful conventional tumor therapies. A complex milieu composed of distinct stromal and immune cells, soluble factors and inflammatory mediators plays a crucial role in supporting and promoting various types of cancers. An augmented inflammatory response can predispose a patient to colorectal cancer (CRC). Common risk factors associated with CRC development include diet and lifestyle, altered intestinal microbiota and commensals, and chronic inflammatory bowel diseases. Cysteinyl leukotrienes are potent inflammatory metabolites synthesized from arachidonic acid and have a broad range of functions involved in the etiology of various pathologies. This review discusses the important role of cysteinyl leukotriene signaling in linking inflammation and CRC.
Collapse
|
18
|
Savari S, Liu M, Zhang Y, Sime W, Sjölander A. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer. PLoS One 2013; 8:e73466. [PMID: 24039952 PMCID: PMC3764114 DOI: 10.1371/journal.pone.0073466] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 07/22/2013] [Indexed: 12/17/2022] Open
Abstract
The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21WAF/Cip1 (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.
Collapse
Affiliation(s)
- Sayeh Savari
- Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Minghui Liu
- Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Yuan Zhang
- Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Wondossen Sime
- Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
- * E-mail:
| |
Collapse
|
19
|
Bengtsson AM, Jönsson G, Magnusson C, Salim T, Axelsson C, Sjölander A. The cysteinyl leukotriene 2 receptor contributes to all-trans retinoic acid-induced differentiation of colon cancer cells. BMC Cancer 2013; 13:336. [PMID: 23829413 PMCID: PMC3710469 DOI: 10.1186/1471-2407-13-336] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 06/24/2013] [Indexed: 12/20/2022] Open
Abstract
Background Cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory mediators that are increased in samples from patients with inflammatory bowel diseases (IBDs). Individuals with IBDs have enhanced susceptibility to colon carcinogenesis. In colorectal cancer, the balance between the pro-mitogenic cysteinyl leukotriene 1 receptor (CysLT1R) and the differentiation-promoting cysteinyl leukotriene 2 receptor (CysLT2R) is lost. Further, our previous data indicate that patients with high CysLT1R and low CysLT2R expression have a poor prognosis. In this study, we examined whether the balance between CysLT1R and CysLT2R could be restored by treatment with the cancer chemopreventive agent all-trans retinoic acid (ATRA). Methods To determine the effect of ATRA on CysLT2R promoter activation, mRNA level, and protein level, we performed luciferase gene reporter assays, real-time polymerase chain reactions, and Western blots in colon cancer cell lines under various conditions. Results ATRA treatment induces CysLT2R mRNA and protein expression without affecting CysLT1R levels. Experiments using siRNA and mutant cell lines indicate that the up-regulation is retinoic acid receptor (RAR) dependent. Interestingly, ATRA also up-regulates mRNA expression of leukotriene C4 synthase, the enzyme responsible for the production of the ligand for CysLT2R. Importantly, ATRA-induced differentiation of colorectal cancer cells as shown by increased expression of MUC-2 and production of alkaline phosphatase, both of which could be reduced by a CysLT2R-specific inhibitor. Conclusions This study identifies a novel mechanism of action for ATRA in colorectal cancer cell differentiation and demonstrates that retinoids can have anti-tumorigenic effects through their action on the cysteinyl leukotriene pathway.
Collapse
|
20
|
Role of cysteinyl leukotriene receptor-1 antagonists in treatment of experimentally induced mammary tumor. Toxicol Ind Health 2013; 31:1024-36. [DOI: 10.1177/0748233713485884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been reported that a leukotriene (LT)-D4 receptor (i.e. cysteinyl LT1 receptor; CysLT1R) has an important role in carcinogenesis. The current study was carried out to assess the possible antitumor effects of montelukast (MON), a CysLT1R antagonist, in a mouse mammary carcinoma model, that is, a solid Ehrlich carcinoma (SEC). Effects of MON on tumor-induced immune dysfunction and the possibility that MON may modulate the antitumor and immunomodulatory effects of doxorubicin (DOX) were also studied. The effects in tumor-bearing hosts of several dosings with MON (10 mg/kg, per os), with and without the added presence of DOX (2 mg/kg, intraperitoneal), were investigated in vivo; end points evaluated included assessment of tumor volume, splenic lymphocyte profiles/functionality, tumor necrosis factor-α content, as well as apoptosis and expression of nuclear factor-κB (NF-κB) among the tumor cells. The data indicate that MON induced significant antitumor activity against the SEC. MON treatments also significantly mitigated both tumor- and DOX-induced declines in immune parameters assessed here. Moreover, MON led to decreased NF-κB nuclear expression and, in doing so, appeared to chemosensitize these tumor cells to DOX-induced apoptosis.
Collapse
|
21
|
Drost AC, Seitz G, Boehmler A, Funk M, Norz KP, Zipfel A, Xue X, Kanz L, Möhle R. The G protein-coupled receptor CysLT1 mediates chemokine-like effects and prolongs survival in chronic lymphocytic leukemia. Leuk Lymphoma 2012; 53:665-73. [PMID: 21936770 DOI: 10.3109/10428194.2011.625578] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The G protein-coupled receptor (GPCR) CXCR4 is involved in bone marrow tropism and survival of chronic lymphocytic leukemia (CLL) cells. The function of the GPCRs cysteinyl leukotriene receptor 1 (CysLT1) and CysLT2 remains elusive. Here we demonstrate that in CLL and normal B lymphocytes, CysLT1 mRNA is consistently expressed, in contrast to low CysLT2 levels. Similar to the CXCR4 ligand CXCL12, the cysteinyl leukotriene (cysLT) LTD(4) induces calcium fluxes, actin polymerization, and chemotaxis. These effects are blocked by specific CysLT1 antagonists. Their inhibition by pertussis toxin suggests Giα/o protein involvement. Furthermore, CysLT1 mediates MAP-kinase phosphorylation, which implicates contribution of cysLT to survival. Indeed, CysLT1 antagonists induce apoptosis and reduce viability independent of Gαi/o protein signaling. Considering the production of cysLTs in the bone marrow, our data suggest that CysLT1 induces chemokine-like effects, supports accumulation and survival of CLL cells in the bone marrow and thus represents a potential treatment target.
Collapse
Affiliation(s)
- Adriana C Drost
- Department of Hematology, Oncology, Rheumatology, Clinical Immunology and Pulmology, University Hospital Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|