1
|
Chen Y, Wang K, Zhang X, Tao D, Shang Y, Wang P, Li Q, Liu Y. Prognostic model development using novel genetic signature associated with adenosine metabolism and immune status for patients with hepatocellular carcinoma. J Physiol Biochem 2025; 81:157-172. [PMID: 39546272 PMCID: PMC11958414 DOI: 10.1007/s13105-024-01061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The high mortality rate of hepatocellular carcinoma (HCC) is partly due to advanced diagnosis, emphasizing the need for effective predictive tools in HCC treatment. The aim of this study is to propose a novel prognostic model for HCC based on adenosine metabolizing genes and explore the potential relationship between them. Regression analysis was performed to identify differentially expressed genes associated with adenosine metabolism in HCC patients using RNA sequencing data obtained from a public database. Adenosine metabolism-related risk score (AMrisk) was derived using the least absolute shrinkage and selection operator (LASSO) Cox regression and verified using another database. Changes in adenosine metabolism in HCC were analyzed using functional enrichment analysis and multiple immune scores. The gene expression levels in patient samples were validated using quantitative reverse transcription polymerase chain reaction. Thirty adenosine metabolism-related differentially expressed genes were identified in HCC, and six genes (ADA, P2RY4, P2RY6, RPIA, SLC6A3, and VEGFA) were used to calculate the AMrisk score; the higher the risk scores, the lower the overall survival. Moreover, immune infiltration activation and immune checkpoints were considerably higher in the high-risk group. Additional in vitro experiments validated the enhanced expression of these six genes in HCC. The established predictive model demonstrated that adenosine metabolism-related genes was significantly associated with prognosis in HCC patients.
Collapse
Affiliation(s)
- Yidan Chen
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Kemei Wang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xingyun Zhang
- Department of General Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dongying Tao
- Department of Pediatric, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yulong Shang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ping Wang
- Department of Gastroenterology, Dongying People's Hospital, Dongying, China.
| | - Qiang Li
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.
- Department of General Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Yansheng Liu
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
2
|
Jennings MR, Min S, Xu GS, Homayuni K, Suresh B, Haikal YA, Blazeck J. Optimized expression and purification of a human adenosine deaminase in E. coli and characterization of its Asp8Asn variant. Protein Expr Purif 2024; 213:106362. [PMID: 37683902 PMCID: PMC10664833 DOI: 10.1016/j.pep.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Homo sapiens adenosine deaminase isoform 1 (HsADA1) hydrolyzes adenosine and 2-deoxyadenosine as a key step in the purine nucleoside salvage pathway. Some HsADA1 mutations have severe deleterious effects, as is the case in a severe combined immunodeficiency resulting from loss of enzyme activity (ADA-SCID). Other mutations that reduce enzyme activity, for instance the Asp8Asn (D8N) variant, do not cause ADA-SCID but are correlated with other consequences to health. To ease further study of HsADA1 and its variants, we optimized an inexpensive, recombinant expression process in an Escherichia coli host through multiplexed parameter testing enabled by a lysate-based microtiter plate assay. We demonstrate the importance of gene codon usage, induction time and temperature, and alcohol supplementation towards improving enzyme yield to a final titer of 5 mg per liter of culture. We further show that use of a double-histidine-tag (his-tag) system greatly improves purity. We then utilize our expression and purification framework to produce the HsADA1 D8N variant, which had previously not been purified to homogeneity. We confirm that the D8N variant is ∼30% less active than the wildtype HsADA1 and show that it better retains its activity in human serum. Additionally, we show that both HsADA1 and the D8N variant have heightened activity in serum, driven in part by a previously undescribed phenomenon involving albumin. Therefore, this work presents a valuable process to produce HsADA1 that allows for insights into it and its variants' behavior. We also confirm the utility of lysate-based activity assays towards finding optimal E. coli expression conditions for enzymes and show how fusing his-tags in tandem can enhance product purity.
Collapse
Affiliation(s)
- Maria Rain Jennings
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Soohyon Min
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Grace S Xu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kassandra Homayuni
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Bhavana Suresh
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yusef Amir Haikal
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Adenosine-Metabolizing Enzymes, Adenosine Kinase and Adenosine Deaminase, in Cancer. Biomolecules 2022; 12:biom12030418. [PMID: 35327609 PMCID: PMC8946555 DOI: 10.3390/biom12030418] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 12/17/2022] Open
Abstract
The immunosuppressive effect of adenosine in the microenvironment of a tumor is well established. Presently, researchers are developing approaches in immune therapy that target inhibition of adenosine or its signaling such as CD39 or CD73 inhibiting antibodies or adenosine A2A receptor antagonists. However, numerous enzymatic pathways that control ATP-adenosine balance, as well as understudied intracellular adenosine regulation, can prevent successful immunotherapy. This review contains the latest data on two adenosine-lowering enzymes: adenosine kinase (ADK) and adenosine deaminase (ADA). ADK deletes adenosine by its phosphorylation into 5′-adenosine monophosphate. Recent studies have revealed an association between a long nuclear ADK isoform and an increase in global DNA methylation, which explains epigenetic receptor-independent role of adenosine. ADA regulates the level of adenosine by converting it to inosine. The changes in the activity of ADA are detected in patients with various cancer types. The article focuses on the biological significance of these enzymes and their roles in the development of cancer. Perspectives of future studies on these enzymes in therapy for cancer are discussed.
Collapse
|
4
|
Verdoia M, Tonon F, Gioscia R, Nardin M, Fierro N, Sagazio E, Negro F, Pergolini P, Rolla R, De Luca G. Impact of the rs73598374 polymorphism of the adenosine deaminase gene on platelet reactivity and long-term outcomes among patients with acute coronary syndrome treated with ticagrelor. Thromb Res 2020; 196:231-237. [PMID: 32916566 DOI: 10.1016/j.thromres.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/07/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The positive interaction of ticagrelor with the metabolism of adenosine has been claimed for the large antithrombotic and antiischemic benefits of this antiplatelet agent in acute coronary syndromes (ACS). Adenosine catabolism is regulated by the activity of the adenosine deaminase enzyme (ADA), for which several polymorphisms have been identified. Therefore, the aim of our study was to explore the impact of the rs73598374 polymorphism of ADA gene on platelet reactivity in ACS patients treated with ticagrelor. METHODS We included consecutive patients receiving ASA and ticagrelor after an ACS and coronary intervention. Platelet reactivity was evaluated by impedance aggregometry at 30-90 days post-discharge. The genetic analysis was carried out by PCR and RFLP. Clinical endpoints were mortality, cardiovascular death, recurrent myocardial infarction or coronary revascularization at the maximum available follow-up. RESULTS Our population is represented by 464 patients, of whom 33.4% were A-heterozygotes and 6 homozygotes. A-allele carriers showed a greater prevalence of renal failure (p = 0.02) and a lower rate of previous coronary artery bypass graft (p = 0.03) and statin treatment (p = 0.02). No differences in the mean values of platelet reactivity or HRPR on ticagrelor were found according to the ADA genotype (11.3%vs13.9%, p = 0.45; adjusted OR[95% CI] = 1.17[0.64-2.14], p = 0.61). At follow up, patients carrying the A-allele showed a non-significantly lower incidence of ACS and repeated unplanned revascularization, although with no effect on mortality. CONCLUSIONS In the present study the rs73598374 polymorphism of the ADA gene did not affect platelet reactivity or the long-term prognosis in patients with ACS receiving dual antiplatelet therapy with ASA and ticagrelor.
Collapse
Affiliation(s)
- Monica Verdoia
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy; Division of Cardiology, Ospedale degli Infermi, ASL, Biella, Italy
| | - Francesco Tonon
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy
| | - Rocco Gioscia
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy; Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Matteo Nardin
- Internal Medicine, ASST Spedali Civili, Brescia, Italy
| | - Nicolai Fierro
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy; Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Emanuele Sagazio
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy; Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Federica Negro
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy
| | - Patrizia Pergolini
- Division of Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Roberta Rolla
- Division of Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy
| | - Giuseppe De Luca
- Department of Translational Medicine Eastern Piedmont University, Novara, Italy; Division of Cardiology, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Eastern Piedmont University, Novara, Italy.
| | | |
Collapse
|
5
|
Evaluation of the adenosine deaminase (ADA) G22A gene polymorphism with recurrent spontaneous abortion among Egyptian patients. Cent Eur J Immunol 2017; 42:281-286. [PMID: 29204093 PMCID: PMC5708210 DOI: 10.5114/ceji.2017.70972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 11/21/2022] Open
Abstract
Introduction Adenosine and deoxyadenosine metabolism is influenced by adenosine deaminase (ADA) enzyme. ADA increases in different diseases and is considered as one of the markers for cell-mediated immunity. Pregnancy is associated with depressed cell-mediated immunity. The level of ADA expression, which seems to play a key role in maintaining pregnancy, is influenced by adenosine deaminase G22A gene polymorphism. We aimed in our study to evaluate the association of ADA G22A gene polymorphism with recurrent spontaneous abortion (RSA) in Egyptian women. Material and methods Adenosine deaminase G22A gene polymorphism was genotyped in 40 patients (age range 22-39 years) with a history of RSA, selected from those attending the Gynaecology and Obstetrics Clinic of Beni-Suef University Hospital, and 20 age-matched healthy women as a control group, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Results In our study, no statistically significant difference was found between RSA patients and control group as regards ADA G22A genotypes (p = 0.653) and alleles (p = 0.697). A comparison of the frequencies of ADA alleles in RSA patients as regards the below-35-years-old age group revealed that ADA 2(A) allele was associated with a low risk for RSA in patients aged 35 years old or younger (p = 0.008). Conclusions In conclusion, our study revealed an age-dependent protective value of ADA 2(A) allele in recurrent spontaneous abortions among the Egyptian population.
Collapse
|